
HAL Id: inria-00533058
https://hal.inria.fr/inria-00533058

Submitted on 5 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Performance Message Passing over generic
Ethernet Hardware with Open-MX

Brice Goglin

To cite this version:
Brice Goglin. High-Performance Message Passing over generic Ethernet Hardware with Open-MX.
Parallel Computing, Elsevier, 2011, 37 (2), pp.85-100. �10.1016/j.parco.2010.11.001�. �inria-00533058�

https://hal.inria.fr/inria-00533058
https://hal.archives-ouvertes.fr

High-Performance Message Passing

over generic Ethernet Hardware with Open-MX

Brice Goglin

INRIA Bordeaux - Sud-Ouest – LaBRI

351 cours de la Libération – F-33405 Talence – France

Abstract

In the last decade, cluster computing has become the most popular high-performance computing architec-

ture. Although numerous technological innovations have been proposed to improve the interconnection

of nodes, many clusters still rely on commodity Ethernet hardware to implement message passing within

parallel applications. We present Open-MX, an open-source message passing stack over generic Ethernet.

It offers the same abilities as the specialized Myrinet Express stack, without requiring dedicated support

from the networking hardware. Open-MX works transparently in the most popular MPI implementations

through its MX interface compatibility. It also enables interoperability between hosts running the special-

ized MX stack and generic Ethernet hosts. We detail how Open-MX copes with the inherent limitations of

the Ethernet hardware to satisfy the requirements of message passing by applying an innovative copy offload

model. Combined with a careful tuning of the fabric and of the MX wire protocol, Open-MX achieves better

performance than TCP implementations, especially on 10 gigabit/s hardware.

Key words: Message Passing, MPI, Ethernet, Copy Offload, Myrinet Express

1. Introduction

High-performance computing has become increasingly important over the last three decades. It has

spread into many domains, from research to industry, from particle physics to seismology and automotive

crash simulation. This trend has led to many technological innovations. Although the most powerful com-

puting installations use custom supercomputer architectures [1], the current market is dominated by clusters.

These machines are assembled from regular workstation nodes and the Message Passing Interface (MPI [2])

is the standard for communicating between nodes within parallel applications.

The interconnection between cluster nodes has been the subject of much research. Indeed this internode

communication could have a dramatic impact on the overall performance of parallel applications. Numer-

ous software and hardware optimizations have been proposed, and specialized fabrics and protocols such as

InfiniBand [3] and Myrinet [4] have been designed to implement the MPI standard more efficiently. How-

ever these dedicated technologies remain expensive and only target a limited set of applications in which

latency or network bandwidth is critical. As a consequence, most current clusters still rely on commodity

networking technologies such as Ethernet [1]. Although these specialized and commodity interconnects are

expected to converge in the near future, the gap between them in terms of performance and capabilities

remains large.

It is not yet clear which features will be part of the future converged technology. Ethernet already appears

as an interesting networking layer within local networks for various protocols such as FibreChannel [5] and

ATA [6]. Several research projects are seeking to implement high-performance MPI stacks over generic

Preprint submitted to Elsevier October 10, 2010

Ethernet hardware [7, 8, 9, 10, 11]. In this paper we introduce an open-source¡ message passing stack called

Open-MX that addresses this issue while trying to remain compatible with the existing Myrinet Express

stack (MX [12]) for Myricom fabrics. Thanks to this compatibility, Open-MX is immediately available to

most existing MPI implementations, for instance OpenMPI [13] and MPICH2 [14].

The MX stack has been designed for high-performance message passing over specialized HPC network-

ing hardware. Open-MX aims to offer the exact same capabilities on top of generic Ethernet hardware. It

also enables interoperability between Myricom specialized hardware and commodity Ethernet hardware.

This feature has been experimented as a way to provide the networking layer for PVFS2 [15] in BlueGene/P

systems. However, Ethernet-based protocols often suffer from the limited capabilities of standard Ether-

net hardware. We therefore describe in this paper how Open-MX circumvents these limits and achieves

high-performance message passing using innovative optimizations in the networking stack.

This paper is an extended revision of [16, 17] which introduced the Open-MX stack. It is organized

as follows: Section 2 describes the past and current trends in HPC and its networking-based solutions.

Section 3 then motivates our work and details its objectives and design. Actual performance issues with

message-passing over Ethernet and our solutions in the Open-MX stack are then presented in Section 4 and

evaluated in Section 5.

2. High-Performance Networking over Ethernet

Cluster computing emerged about fifteen years ago with the NOW [18] and Beowulf [19] projects which

assembled hundreds of commodity workstations into larger computing systems. It has since resulted in the

development of dedicated high-speed networking technologies that are now widespread in modern clusters.

However, many clusters still use traditional networking technologies when communication performance

is not critical. Here, we detail the main commodity and specialized networking solutions that have been

proposed for both hardware and software.

2.1. High-Speed Networking in HPC

The widespread use of clusters in high-performance computing was eased by a reasonable perfor-

mance/price ratio because most hardware components are now considered to be mainstream. However,

assembling such a distributed system from many physically-separated machines quickly raised the problem

of the cost of external communication between them. Indeed, the latency between two processors in the

cluster could almost reach a millisecond, up to a hundred times slower than in a massively parallel super-

computer. This problem has led to the development of dedicated networking technologies so as to improve

communication performance without requiring highly-specialized modifications of the host.

High-speed networks such as Myrinet [4] or more recently InfiniBand [3] have been widely used in

clusters for a decade, now representing about 30% of the Top500 [1]. These technologies rely on scalable

topologies to prevent congestion, advanced network interface controllers (NIC) that can offload communi-

cation management, and optimized message passing software stacks that bypass most of the traditionally-

expensive communication layers. The innovations on the end-nodes include the following:

Zero-copy data transfer between the user-level application memory and the NIC through DMA (Direct

Memory Access), so as to reduce latency and CPU copy overhead.

OS-bypass operations allowing the application to submit communication requests to the NIC without going

across all the expensive operating system layers. Request completion may also be polled explicitly by

the application because the NIC deposits packets and events directly in the user-space memory.

2

Overlap of communication with computation due to asynchronous interfaces and offloading of most of the

communication processing into the NIC.

2.2. HPC with Commodity Networks

Communication-sensitive applications may obtain significant performance improvement due to dedi-

cated high-speed network technologies [20]. However, because communication is not a major bottleneck

for most applications, many clusters (more than half of the Top500 [1]) still use commodity networking

technologies such as gigabit/s Ethernet. Indeed, most parallel applications use an implementation of the

Message Passing Interface (MPI [2]) on top of TCP, even though TCP/IP has often been recognized as

being slow in the context of high-performance computing.

TCP/IP is known to have large overheads, especially due to its memory copies [21]. Its inability to

benefit from high-speed technologies was demonstrated once multi-gigabit/s technologies emerged [22]. In

the meantime, lighter protocols were designed to bypass the expensive traversal of all the operating sys-

tem layers. Active Messages [23] proposed a message-driven interface that eliminates buffering beyond

the requirements of network transport and offers some overlap capabilities. Another example is Fast Mes-

sages [24] which leverages high-performance messaging capabilities up to the MPI implementation.

The aforementioned custom protocols raised the need for advanced capabilities in the network inter-

face to facilitate high performance message passing. Although some dedicated offloading capabilities were

added to specialized high-speed networks, commodity hardware has been slowly improving, mostly only

for IP networking. Most modern adapters may now offload checksum computations as well as transmit

segmentation (TSO). Some advanced boards are even able to split the traffic into multiple queues so as to

scatter the workload among multiple cores (Multiqueue [25]), or to gather multiple consecutive incoming

packets to reduce the host overhead on the receiver side (Large Receive Offload [26]). The offloading of

the entire TCP stack into the network interface was also proposed but was never accepted in practice due

to many technical problems [27]. TCP/IP performance has dramatically improved in recent years thanks to

these hardware improvements, now easily reaching line rates of 10 gigabit/s on modern servers. However,

the gap between these commodity networks and dedicated message passing stacks has not disappeared, and

it has led to further work on improving message passing on top of Ethernet technologies.

2.3. Convergence between High-Speed Networks and Ethernet

Specialized high-speed networks and commodity technologies diverged significantly in the last decade

as they target different use cases, message passing or TCP/IP. Data centers now often use both technologies

for different purposes, but they also often use a dedicated storage network such as FibreChannel. This has

resulted in convergence between administrative (commodity) networking and storage networking solutions

through the FibreChannel-over-Ethernet standard (FCoE [5]). Vendors have now been talking about the

possible convergence of high-speed networks and commodity networks towards a single technology offering

the best features and performance for multiple usages. However, it raises the question of how the existing

software and hardware HPC innovations can be translated to mainstream technologies.

The re-implementation of protocols over the low-level Ethernet layer is a new trend that was initiated in

the context of storage with ATA-over-Ethernet (AoE [6]) and has now spread into the HPC market. Myri-

com followed this path in 2005 when introducing the Myri-10G hardware [28] which makes 10G Ethernet

and the specialized network interoperable due to the XAUI-compatible physical port. It is then possible to

use Myricom high-performance message passing stack (Myrinet Express over Ethernet, MXoE) on top of

standard 10G Ethernet networks thanks to the addition of Ethernet routing headers to MX packets by the

interface. Quadrics QsNet III was following a similar path before the company closed down in 2009. Infini-

Bandwas also supposed to become interoperable with Ethernet because the Mellanox ConnectX interface is

3

able to switch from one protocol to another at startup [29]. However the incompatibility between these pro-

tocols at the physical level limits their interoperability in practice. The emergence of Converged Enhanced

Ethernet may enable the actual wide deployment of InfiniBand protocols over Ethernet (RoCEE [30]) and

make the interoperability finally possible.

As no standardization effort towards convergence between Ethernet and HPC were actually proposed,

many research projects attempted to improve message passing over Ethernet in the meantime. GAMMA [7]

and PM-Ethernet [8] modify some low-level drivers and replace the existing IP stack so as to provide im-

proved message passing stacks on some popular gigabit/s hardware. MultiEdge [11] uses a similar design

on recent 1 and 10 gigabit/s hardware and thus achieves good bandwidth, but it does not offer small la-

tencies. EMP [31] goes even further by modifying the firmware of some programmable boards to achieve

better performance. Some projects such as MPI/QMP [9] and PM-Ethernet [10] focus on unmodified

low-level drivers and try to improve message passing performance by using the aggregated throughput of

a trunked Ethernet connection. However, they are not designed for single high-performance links such

as modern Myri-10G NICs. Moreover, all these projects, as well as some proprietary solutions such as

ParaStation [32], rely on custom MPI implementations instead of contributing their work to widespread

implementations such as MPICH2 [14] or OpenMPI [13], which are portable and considered stable and

efficient.

The only attempt at standardization of high-performance message passing over Ethernet was iWarp

which uses an IB-like model to provide RDMA semantics at the application level within the TCP stack. It

achieves good performance on RDMA-enabled NICs [33]. A software-only implementation is also avail-

able for generic hardware [34] but its performance is significantly limited. Indeed iWarp was designed for

RDMA-enabled NICs and thus suffers from additional memory copies when used on top of non-RDMA

NICs. Moreover, iWarp is highly similar to a modified high-performance TCP/IP stack that targets long

distance connections where the CPU overhead should be as low as possible, and it is not only limited to

cluster computing.

Although many projects sought to improve message passing over Ethernet, most of them require intru-

sive hardware or software modifications, and do not provide as high throughputs and as low latencies as

expected on modern 10G hardware.

3. Design of a Modern Message Passing Stack for Ethernet

In this section, we introduce the Open-MX open-source software stack which is available for download

from http://open-mx.org. It targets the following objectives:

O1 To expose a standard and/or popular programming interface to ease interoperability, so that existing

general-purpose MPI implementations might work on top of it.

O2 To work on any commodity/generic Ethernet hardware without requiring any specific hardware capa-

bilities.

O3 Not to break the existing networking stack or drivers because they may be used for administration or

storage simultaneously.

O4 To provide high-performance message passing to applications by efficient use of modern hardware,

and to take advantage of advanced features if available, such as trunked Ethernet connections, scat-

ter/gather, or copy offload.

4

3.1. Compatibility with Myrinet Express

The aforementioned objective O1 of exposing a standard and/or popular interface in Open-MX required

an in-depth analysis of current trends in high-performance computing. Many custom programming inter-

faces have been proposed for existing message passing stacks as explained in Section 2.3. However, none

of them became popular or widely used because application developers in HPC tend to continue using the

same interfaces. The Message Passing Interface (MPI [2]) is the current de facto standard. However, it

covers more than only basic networking: for instance, it offers collective operations. A message passing

driver does not need to handle these features that are already efficiently implemented and widely tested

in general-purpose MPI layers such as OpenMPI or MPICH2. One popular message passing driver that

works underneath all popular MPI implementations is Myrinet Express (MX [12]). It exposes all necessary

Point-to-point communication capabilities that are used by MPI as well as storage systems such as PVFS or

Lustre.

We thus designed our Open-MX networking stack to offer the MX programming interface as well

as its binary interface. It enables the linking of existing applications over Open-MX without rebuilding,

for instance through OpenMPI or PVFS. Secondly, we made Open-MX wire-compatible with MXoE, the

Ethernet flavor of MX (see Section 2.3). It enables interoperability between any generic hardware running

Open-MX and Myricom hardware running MX when they are connected to the same Ethernet fabric. This

wire compatibility is being tested at the Argonne National Laboratory to provide a PVFS2 [15] transport

layer between BlueGene/P [35] compute and I/O nodes. The compute nodes running Open-MX are con-

nected through a Broadcom 10 gigabit/s Ethernet interface to I/O nodes with a Myri-10G interfaces running

the native MXoE stack as depicted in Figure 1.

Ethernet+Myrinet

Switch

Mixed

(Ethernet) (Myrinet)

I/O

System Calls

PVFS2

over Open−MX

PVFS2

over MX

I/O

Node

I/O

I/O

Node

Node

Node

I/O Storage

Node

Storage

Storage

Storage

Node

Node

Node

Internal Network

BlueGene/P

Compute Nodes

Compute Nodes

Compute Nodes

Compute Nodes

Figure 1: Open-MX in the BlueGene/P PVFS2 networking layer. Open-MX enables the removal of the IP layer for direct use of the

native message passing capabilities of the fabric.

Open-MX implements the MX protocol which consists of three main methods for passing messages.

Small messages (below 128 bytes) are optimized along the sender side by writing data in the NIC using a

PIO and passing a single packet on the wire. Medium messages (from 129 bytes to 32 kB) are copied in a

statically pinned buffer on both sides and the hardware transfers them through DMA and within multiple

packets if necessary. Large messages (> 32 kB) are not sent through an eager protocol. They are processed

through zero-copy after a rendezvous and memory pinning. The sender passes a window handle to the re-

ceiver which pulls data from it in 32 kB blocks. Multiple blocks may be requested in parallel, and each

of them is transferred as a set of eight 4 kB-packets by default. The MX wire protocol only specifies the

message types, lengths and fragmentation. It does not force Open-MX to use a similar PIO or DMA imple-

5

mentation. In the following sections, we detail how we translated this MX implementation into Open-MX,

and which non-MX-compatible wire extensions have been introduced.

3.2. Emulating the MX stack in software

The Myrinet Express software stack has been designed for high-performance message passing [12].

Therefore, it exploits the capabilities of Myrinet and Myri-10G hardware and firmware at the application

level while providing low-latency and high bandwidth (2 µs and 1250 MB/s data rate). For this purpose,

OS-bypass communication is used, as along with zero-copy for large messages. The operating system is not

involved in the communication. Only the initialization phase and the memory registration of large messages

require its assistance (see Figure 2). All the actual communication management is implemented in the

user-space library and in the firmware. The MX firmware is also responsible for selecting packet headers

depending on the fabric: Ethernet headers when talking to standard Ethernet switches (MXoE mode), or

Myrinet specific headers when talking to Myricom switches (native MX mode).

MX Library

MX

Driver

Generic Ethernet Layer

Open−MX Library

Open−MX

Driver

Application

Ethernet Driver

MXoE Firmware Ethernet Board

Ethernet Wires

O
S

 B
y
p

a
s
s

Figure 2: Design of the native MX and generic Open-MX software stacks.

We use a similar design for the Open-MX implementation while retaining the ability to diverge from this

model later if necessary. However, Open-MX cannot rely on any specific hardware features because only the

generic Ethernet software stack and hardware features are available. Open-MX is thus implemented on top

of the Ethernet layer of the Linux kernel and must emulate the native MX firmware (see Figure 2). Although

it is portable across all existing Ethernet hardware that Linux supports, this interface is simple as depicted

by Figure 3. Thanks to this model, Open-MX works transparently on any generic NIC, without requiring

any advanced feature, and it maintains the other existing stacks such as IP intact (objectives O2 and O3).

The Open-MX stack is therefore composed of a user-space library (similar to the native MX one), and a

kernel driver that replaces the MX NIC firmware by sending and receiving raw Ethernet messages (Socket

Buffers, skbuff). Because these skbuffs are managed by the Ethernet layer in the Linux kernel, OS-bypass

is impossible. Whereas MX uses PIO from user-space, Open-MX relies on a system call which places

the application data in a skbuff and passes it to the Ethernet driver for sending. Section 4 describes more

specifically how socket buffers are used for data movement in Open-MX. Fortunately, the cost of system

calls has decreased dramatically in recent years, making OS-bypass almost useless. Indeed, on modern

AMD and Intel processors, the basic cost of a system call is close to 100 nanoseconds. In earlier systems,

it was often above 500 ns, making it undesirable on latency-critical paths.

The Open-MX user-space library provides the same features that are available in the native MX li-

brary. It first matches incoming messages against posted receives and makes the communication protocol

progress in case of rendezvous. Secondly, it manages retransmission by acknowledging or resending mes-

sages if necessary. The Open-MX library also offers thread-safety to ease the development of middleware

6

/* Register receive handler function for incoming Open-MX packet type */

struct packet_type omx_pt = {

.type = __constant_htons(ETH_P_OMX),

.func = omx_recv,

};

dev_add_pack(&omx_pt);

/* Send Socket Buffer skb using Interface ifp */

skb_header->type = htons(ETH_P_OMX);

skb->dev = ifp;

dev_queue_xmit(skb);

Figure 3: Summary of the Ethernet programming interface in the Linux kernel.

or applications with multiple threads concurrently accessing the networking stack, for instance PVFS2 or

MPI_THREAD_MULTIPLE support in MPI implementations [36]. Finally, Open-MX also handles commu-

nication with other processes on the same host (Intra-node communication) in an optimized manner [37].

Even though the major MPI implementations already handle this special case, a few implementations, such

as MPICH-MX do not. Because this feature must always be available to any application, Open-MX offers

this ability and lets the MPI implementation bypass it when desired.

4. High-Performance Message Passing over Ethernet

High-performance interconnects yield high throughput data transfers due to a carefully optimized data

path. For instance, memory copies are avoided as much as possible so as to improve bandwidth, to decrease

CPU consumption, and to reduce cache pollution,. These zero-copy strategies rely on the capability of both

hardware and driver to manipulate the host’s physical memory in a flexible way. However, such advanced

features are not available in generic Ethernet hardware. We now detail the implementation of the Open-MX

send and receive stacks, the management of memory copies, and how the model may be tuned to achieve

high performance.

4.1. Overall Implementation

As explained in Section 3.2, although MX directly drives the NIC, Open-MX uses system calls that

manipulate both Socket Buffers and low-level Ethernet drivers. Modern networking hardware may read/write

from non-contiguous memory regions (Scatter/Gather, objective O4). Therefore, the Open-MX driver may

decide at runtime between copying the outgoing data in a newly-allocated contiguous buffer (usually for

small messages), or directly passing references to the applications buffers to the NIC by attaching its pages

to the skbuff (preferable for large messages). The default path from the application to the network through

the user-space library and kernel driver is summarized in Figure 4. It uses as many memory copies as the

native MX stack, i.e. one copy for small and medium messages and no copy for large messages However,

due to the wide variety of hardware that Open-MX supports, it also enables the administrator to tune its

behavior and thresholds depending on the underlying hardware capabilities and performance.

Although skbuff management is easy on the sender side, the receiver side of Open-MX raises several

important issues. First, the Open-MX stack cannot decide where incoming data will be stored by the hard-

ware. The Ethernet driver is responsible for allocating its own skbuffs and passing them to Open-MX once

the NIC has filled them, which makes zero-copy impossible on the receiver side. This problem is actually

7

skbuff skbuff skbuff

large

pinning

small medium

copy

copy

attach
attach

library

driver

statically
pinned ring

Open-MX MX

Library Driver Library NIC

Small × Copy PIO Copy ×

Medium Copy Attach+DMA Copy DMA

Large Pin Attach+DMA Pin DMA

Figure 4: Open-MX send strategies and comparison with MX. See Section 3.1 for details about message types.

not Open-MX-specific, and any other Ethernet-based protocol suffers from the same issue. It has resulted

in the design of custom hardware, protocols and software stacks to avoid memory copies by replacing the

TCP/IP implementation. For instance RDMA-enabled NICs and drivers, such as EMP [31] or iWarp [33],

let the advanced hardware place the data in the right receive buffers. Unfortunately, this problem implies

that the performance improvements achieved through these technologies cannot be obtained with standard

Ethernet hardware. Secondly, the interrupt-driven model of the Ethernet stack causes the incoming packets

to be processed by the Bottom Half Interrupt Handler, i.e. outside of the application’s context. The NIC

specific handler invokes the Open-MX receive handler to process the newly-received skbuff, which means

that the target application page table is not necessarily available when processing the data.

skbuff

large

pinning

skbuff

small medium

library

driver

copy

copy

+copy
matching

statically
pinned ring

Open-MX MX

Driver Lib NIC Lib

Small Copy Copy DMA Copy

Medium Copy Copy DMA Copy

Large Copy Pin DMA Pin

Figure 5: Open-MX receive strategies and comparison with MX.

In the native MX receive stack, small and medium incoming messages are copied into a statically allo-

cated user-space ring, and the user library can move the data to the application buffers after the matching.

For large messages, the NIC already knows the final destination buffer because the data transfer occurs after

a rendezvous. The Open-MX receiver side mimics these strategies by having the receive handler copy the

data where the MX NIC would have placed it directly. The obvious drawback of this strategy lies in the

additional memory copy that it involves, as shown in Figure 5. This model puts high pressure on both the

CPU and the memory bus and thus limits the receiver side performance.

One way to avoid memory copies is to use virtual memory tricks to remap the source buffer in the target

virtual address space. Such a strategy has been studied for a long time and zero-copy socket implementations

have been proposed [38]. However, for this remapping to be possible in practice, virtual pages must be

aligned in the same way in the source and destination buffers. It has been proposed to embed alignment

constraints in the wire protocol as a way to circumvent this problem [39]. However, this solution does not

apply to the existing general-purpose wire protocols that cannot include such alignment information. Also,

remapping induces numerous pathological cases because modern operating systems rely heavily on multiple

page table states, pages being shared, or memory pinning. And it induces a non-negligible page-table

synchronization overhead on modern manycore platforms. This makes remapping difficult and expensive

in many cases, although it is indeed a powerful method to improve performance and reduce the CPU load.

Because it seems hard to avoid memory copies without dedicated support in the NIC and protocol, we now

8

introduce a solution based on reducing the impact of these copies by offloading them, as planned in objective

O4.

4.2. Opportunities for I/O AT copy offload in Open-MX

Intel’s I/O Acceleration Technology (I/O AT) is a set of hardware features tailored to improve networking

performance in data centers [40]. One interesting feature is the ability to perform asynchronous memory

copies in the background because a DMA engine is integrated in the memory chipset (see Figure 6). It

enables memory copies to be overlapped with neither CPU usage nor cache pollution, in contrast to the

usual memcpy method. Such hardware has already been available in all modern Intel servers for several

years. The DMA engine programming interface of the Linux kernel [41] is mainly used by the TCP/IP

receiver stack. It offloads memory copies while the user process sleeps in the recv() system call until there

is enough data to receive. The CPU usage is reduced and the network throughput is improved for various

applications such as PVFS file transfers [42]. To the best of our knowledge, no other networking stack is yet

using I/O AT copy offload.

CPU CPU CPU CPU CPU CPU CPU CPU

Cache Cache Cache Cache

DMA Engine

I/O AT

Memory and

I/O Chipset
Memory

and Devices

I/O Bus

Figure 6: Description of the I/O AT hardware architecture in our dual quad-core Xeon hosts.

In addition to improving performance and reducing CPU overhead, offloading memory copies with

I/O AT also has the advantage of reducing cache pollution. This is critical for large messages because

copying several megabytes can easily pollute the entire cache of the processor when using standard memcpy

strategies. Indeed, it has been proven that offloaded copy improves concurrent memory operations [43].

However, this cache pollution cannot always be considered as problematic because it may actually preload

data that the receiver application will soon read. For this reason, it may actually be interesting to use memcpy

for small messages, or for the beginning of larger messages, and then switch to I/O AT. However, this would

require memcpy to occur on a core that shares a cache with the target application, which is as of today hardly

predictable.

The I/O AT copy offload mechanism appears as an interesting solution to improve the Open-MX receive

stack by offloading memory copies between incoming skbuffs and the target data buffers without requiring

advanced features from the NIC. We expect it to suit the current Open-MX large message receive stack and

to actually enable 10G throughput on 10G hardware as planned in objective O4. The basic idea is to replace

any existing memory copy (memcpy) in the Open-MX receive path with the submission of an asynchronous

copy to the I/O AT kernel subsystem.

Once all submitted copies have been completed, the corresponding Open-MX event is deposited in user-

space as if memcpy were complete. However the I/O AT hardware cannot directly notify the Linux kernel

of the completion of some asynchronous copy requests because the programming model does not offer any

9

interrupt-based completion callback. Therefore the submitter has to explicitly poll the hardware to determine

whether some requests have been completed yet before assuming that the data transfer is finished. In the end,

the model becomes interesting as soon as the overhead of submitting offloaded copy requests and checking

their completion is faster than the corresponding memcpy operation. For this reason, it is important to submit

as many chunk copies as possible before waiting for their completion so as to maximize the overlap abilities

of the model. The Open-MX receive stack only has to wait for copy completion when it must notify the user

library of the arrival of some packets or messages:

Small and Medium messages: Each packet is delivered to user-space as an independent event. It thus

requires its payload to be copied before the event is delivered. The payload is limited to the MTU.

Thus, usually less than 9000 bytes may have to be copied before waiting for copy completion. This

case does not offer much room for overlap.

Large messages: A single event is notified to user-space when the whole message has been received.

Therefore, copy completions only have to be polled once all packets have been received and their

copies have been requested, offering greater room for overlap when the message is large.

4.3. Asynchronous Copy Offload of Large Message Receive

The Open-MX receiver side processes incoming packets within its specific receive callback, which is

invoked by the bottom half interrupt handler of the operating system. The packet headers are first decoded

to find the corresponding user endpoint and application. Then the payload is copied into the target buffer. A

single event is reported to user-space for large messages when the last packet is received (see Figure 7).

CPU#1

CPU#2

Notify Event
to User−space

Process#1 Copy#1 Process#3 Copy#3 Process#5 Copy#5

Process#2 Copy#2 Process#4 Copy#4

Figure 7: Timeline of the receipt of a 5-packets large message on 2 processors without I/O AT support. The header of each packet is

first decoded (Process#n) then the payload is copied (Copy#n) before releasing the CPU and being able to process another incoming

packet. The last packet callback notifies user-space of the completion of the receipt.

CPU#1

CPU#2

I/O AT

Copy Submit

Copy#1

Notify Event

to User−space

Copy#2 Copy#3 Copy#4 Copy#5

Process#5

Completion

Process#4Process#2

Process#1 Process#3

Figure 8: Timeline of the receipt of a 5-packets large message on 2 processors with I/O AT offload of asynchronous copies. The

last packet callback waits for the completion of all asynchronous copies before notifying user-space of the receipt completion. All

other packet callbacks release the CPU right after processing the packet header (Process#n) and submitting the asynchronous copy

(Copy#n).

The I/O AT DMA engine will therefore be used to receive Open-MX large messages as follows: during

the processing of any large message packet, the usual memcpy is replaced with the submission of the corre-

sponding I/O AT asynchronous copy. If the current packet is the last one, the Open-MX callback waits for

all previous copies to be completed for this large message. Then, it reports a completion event to user-space

as usual. If the current packet is not the last one, then there is nothing to do after submitting asynchronous

10

copies, the CPU is released immediately. Waiting for all packet copies to be completed is actually quite

inexpensive because the I/O AT hardware processes requests in order and reports their completions directly

in the host memory. Therefore Open-MX simply needs to invoke the I/O AT routine that returns the identifier

of the last processed copy request, and compare it with the identifier of the last submitted request.

As shown in Figure 8, this model enables the full overlap of the copies of all but the last packet payload

for large messages. Processing packets with I/O AT enabled is actually slightly more expensive due to the

need to submit asynchronous copy requests. However, the CPU is released much faster, and the I/O AT

hardware performs memory copies faster as explained later in Section 5.3. The overall receiving cost is thus

dramatically reduced.

One drawback of the model is the need to free packet descriptors so as to avoid memory starvation in

the case of very large messages. However, they cannot be freed before their copy requests are completed

The Open-MX driver thus periodically has to check the I/O AT progress and cleanup the already processed

packet descriptors. Because the MX large message model involves the periodic requesting of new packets

to the remote side1, the cleanup routine is invoked when a new request is sent. This routine is also invoked

when the retransmission timeout expires in case of packet loss.

4.4. Performance Tuning

Open-MX works on any generic Ethernet hardware and may thus accommodate to usual tuning of NICs

for IP workloads. However, because its message passing requirements are often very different from those

of general-purpose networking (small message latency is often much more important than equity between

flows), some Open-MX-specific tuning may improve the performance significantly.

The interrupt-driven model of Open-MX receiver side is problematic for the latency. The native MX im-

plementation may switch between interrupts and polling at runtime depending on the application behavior.

However, Open-MX has to rely on a interrupt-driven model to receive events because incoming packets are

only reported to Open-MX through a callback from the underlying Ethernet drivers. The faster the interrupt

arrives, the lower the latency. Although NAPI [44] may perform some polling that could facilitate reduc-

ing the latency, the Linux networking stack does not let protocols such as Open-MX control this polling.

Therefore, Open-MX may not accommodate the delivery of its incoming packets to its protocol and perfor-

mance requirements. Moreover, delaying interrupts (Interrupt Coalescing) may be enabled to shorten the

host overhead [45]. Depending on the application’s communication pattern, it may thus be interesting to

reduce the NIC interrupt coalescing delay so as to reduce the small message latency, or to increase it, so as

to improve the large message throughput.

Generic Ethernet hardware may also vary significantly in their data transfer strategies. For instance,

some NICs cannot transfer a packet from/to sparse host memory buffers (Scatter/Gather). In this case,

Open-MX may switch to a mode where all outgoing packet buffers are directly made contiguous. Even if

a memory copy is required, it may be optimized by the Open-MX driver based on the knowledge of how it

was stored in the sender application (objective O4).

Then, the Open-MX wire protocol may be modified to improve performance. Indeed, the MXoE wire

protocol was designed for the MX firmware of Myricom NICs (low latency, high throughput, message pass-

ing capabilities, small per-packet host overhead). Its characteristics are very different from those of the

generic and potentially-slower Ethernet hardware that Open-MX supports. However, the MX wire compati-

bility is only useful when actually mixing the native MX stack and the Open-MX stack on the same fabric.

1Four pipelined blocks of eight packets are outstanding for each large message under normal circumstances, see Section 3.1.

11

Apart from specific systems such as BlueGene/P (see Figure 1), Open-MX is usually only used to commu-

nicate with itself, in which case wire-compatibility is not strictly required. The Open-MX wire protocol may

thus be changed to better fit the characteristics of Ethernet fabrics.

First, because the per-packet overhead is higher on Ethernet hardware than in the native MX stack,

Open-MX may use the whole available MTU (Maximal Transfer Unit, usually 1500 or 9000 bytes) instead

of only power-of-2 packet sizes up-to 4 kB as MX does. Then, because the latency is usually much higher

than with MX (from 5 to 100 µs instead of 2 µs), filling the wire between two hosts requires many more

packets. As explained in Section 3.1, large messages are transferred as blocks of 8 packets. This block size

may be increased to 32 in Open-MX to better match the network latency.

5. Performance Evaluation

In this section, we introduce the performance of Open-MX and compare it with the native MX and

TCP implementations. We look at some microbenchmarks and present the improvements offered by several

optimization techniques before describing application performance in detail.

5.1. Experimental Platform

The experimental platform is composed of two hosts interconnected without any switches through a

commodity 1 gigabit/s (1G) NIC2 and a Myricom Myri-10G dual-protocol NIC. The Myri-10G NIC may

either run the native MX stack or a plain 10 gigabit/s (10G) Ethernet stack. A simple firmware/driver

reload thus lets us compare Open-MX on top of this 10G Ethernet mode and the native MX using the same

hardware. Unless specified, jumbo-frames are used (MTU 9000). Each host is composed of 2 quad-core

2.33 GHz Intel Xeon E5345 Clovertown processors as depicted in Figure 6.

Both hosts run a 2.6.30 Linux kernel and Open-MX 1.2.1. Intel MPI Benchmarks 3.2 (IMB [46]) is

used for benchmarking MPI point-to-point and collective operations, and NAS Parallel Benchmarks 3.3

(NPB [47]) is used for application-level performance. These MPI applications are built and launched on top

of OpenMPI 1.4.1 using either its BTL TCP or MTL MX components3. Indeed, because Open-MX is binary

compatible with MX, OpenMPI may transparently run on top of MX or Open-MX.

To achieve reproducible results, OpenMPI assigned each process to a single core. Thus the system

scheduler does not ever try to migrate processes and cause cacheline bounces if a system daemon wakes

up, for instance. Additionally, the following tuning options help concentrate on the actual performance and

bottlenecks in the network stack in evaluating the microbenchmarks. This configuration will be referred to

as Tuned-mode in the following sections:

• Interrupts are bound to a single core to avoid the cache-line bounces that usually arise if the operating

system lets the interrupt handler runs on any random core.

• Interrupt coalescing is disabled to avoid random latencies due to the NIC deferring the delivery of

interrupts (see Section 4.4).

• Power-saving is disabled in the processor so that incoming packets do not wait for any core to wake

up before their interrupts are processed.

2Broadcom NetXtreme II BCM5708.
3OpenMPI also offers a BTL MX component but it is slower because it does not benefit from MX and Open-MX matching

capabilities.

12

5.2. Comparison with TCP

Figures 9(a) and 9(b) present the performance of MPI point-to-point operations measured with the IMB

Pingpong tests with 1G and 10G fabrics. In both cases, we compare the performance of Open-MX and TCP

with and without the aforementioned tuning of the network stack.

 0

 20

 40

 60

 80

 100

 120

256B 4kB 64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

Open-MX MTL - Tuned
TCP BTL - Tuned
Open-MX MTL
TCP BTL

(a) between 1G NICs.

 0

 200

 400

 600

 800

 1000

 1200

256B 4kB 64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

Open-MX MTL - Tuned
TCP BTL - Tuned
Open-MX MTL
TCP BTL

(b) between 10G NICs.

Figure 9: IMB Pingpong throughput.

On the 1G fabric, both Open-MX and TCP achieve the full wire capacity for large messages (megabytes),

but Open-MX achieves up to a 10% better throughput when the size is on the order of tens or hundreds of

kilobytes. Additionally, the Open-MX latency is 44.6 µs, and TCP’s is 50.5 µs. These latencies are mostly

related to the high interrupt coalescing delay in the NICs, but the difference is due to Open-MX bypassing

the TCP/IP stack to reduce the critical path. Tuning the stack does not improve the throughput significantly

because the 1G wire is supposedly the major bottleneck. Both Open-MX and TCP improve by up to 10%

thanks to this tuning. More important, because the interrupt coalescing is disabled, it decreases the latency

by about 20 µs, down to 24.9 µs for Open-MX and 30.8 µs for TCP.

When using 10G NICs, Open-MX exhibits about 80% higher throughput for large messages. The latency

is again 5 µs lower for Open-MX, down to 70 µs. Tuning the network stack improves performance signifi-

cantly, up to doubling the throughput and reducing the latency to 7.3 µs for Open-MX and 13.2 µs for TCP.

Indeed, when a powerful 10G NIC is involved, the host bottlenecks are revealed and careful optimization is

required. Fortunately, Open-MX enables the full usage of the 10G wire for large messages.

These results show that Open-MX bypassing TCP/IP and implementing a dedicated stack is an efficient

solution because it reduces the host overhead (and thus latency) and because I/O AT copy offload produces

better throughput for large messages.

Table 1 summarizes the improvement is offered by Open-MX over TCP on collective operations with

IMB. Such communication patterns saturate the 1G fabric so easily that host bottlenecks are negligible. Thus

this comparison is mostly relevant for 10G networks. The lower latency of Open-MX improves operations

with small messages (or no data at all in Barrier) by almost a factor of 2, on average. It also improves

most large message operations significantly, by about 50%. It is not clear why Broadcast is not improved,

although its communication pattern looks similar to Scatter for instance.

Open-MX also offers interesting improvements for medium messages (from kilobytes to tens of kilo-

bytes) but the difference is smaller. Indeed these messages do not benefit for any specific advantage of the

Open-MX model. The lower latency is mostly beneficial to small messages, and I/O AT copy offload only

13

Operation 16 bytes 4 kbytes 64 kbytes 4 megabytes

SendRecv +107% +4.66% +8.88% +32.7%

Exchange +143% +8.38% +24.2% +29.0%

Allreduce +87.9% +2.51% +11.6% +4.77%

Reduce +64.7% +23.1% +26.5% -23.6%

Allgather +79.2% -7.1% +21.5% +56.0%

Gather +72.5% +52.6% +4.57% +76.4%

Scatter +86.3% +51.6% +18.4% +80.9%

Alltoall +47.0% +15.2% +47.2% +54.7%

Bcast +44.6% +20.1% -26.9% -39.6%

Barrier +73.7%

Table 1: Speedup of IMB collective operations using Open-MX instead of TCP. 16 processes were used on 2 nodes with a 10G

interface in I/O AT and tuned mode.

helps for large messages.

5.3. Impact of I/O AT Copy Offload

We now look at the actual impact of I/O AT copy offload on the overall Open-MX performance. Fig-

ure 10 presents a comparison of native MX and Open-MX Pingpong with 10G NICs. MX achieves up to

1140 MiB/s for large messages, and Open-MX without I/O AT copy offload saturates near 800 MiB/s4. For

the purpose of performance prediction, if we disable Open-MX copies in the receive callback of the Open-

MX driver, 10G line rate appears to be achievable. This motivated our work on offloading these memory

copies on I/O AT hardware so as to achieve line rate performance.

 0

 200

 400

 600

 800

 1000

 1200

16B 256B 4kB 64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

Native MX
Open-MX ignoring BH receive copy
Open-MX with I/OAT copy offload in BH
Open-MX without copy offload

Figure 10: Comparison between MX, Open-MX without copy offload support, with the receiver side copy ignored in the bottom

half interrupt handler (BH), and with I/O AT copy offload.

I/O AT hardware copies data much faster (2.5 GB/s) than a standard memcpy on our machine (1.5 GB/s).

However, it costs 350 ns to submit each physically-contiguous memory chunk copy to the I/O AT hardware.

In the end, I/O AT is only interesting when the incoming packets are larger than 1 kB. Moreover, each single

message is completed once the payload of all its packets has been copied. Given the I/O AT management

4The actual data rate of 10 Gbit/s Ethernet is 9953 Mbit/s = 1244 MB/s = 1186 MiB/s.

14

and completion polling overhead, copy offload is only advantageous when messages contain at least tens

of kilobytes. Thanks to such careful tuning, enabling I/O AT copy offload improves Open-MX performance

dramatically for large messages (larger than 32 kB), now achieving 10G line rate. However, copy offload

cannot help for messages smaller than 32 kB because its management overhead is no longer negligible, and

also because it is harder to apply to the MX medium message model, as explained in Section 4.2.

%
C

P
U

 U
s
a
g
e

Message size

BH receive without copy offload
Driver
User-library

 0

 20

 40

 60

 80

 100

64kB 256kB 1MB 4MB 16MB

%
C

P
U

 U
s
a
g
e

Message size

BH receive with Overlapped I/OAT Copy Offload
Driver
User-library

 0

 20

 40

 60

 80

 100

64kB 256kB 1MB 4MB 16MB

Figure 11: CPU usage of the Open-MX library, driver command processing, and bottom half receive processing while receiving a

stream of synchronous large messages with and without overlapped asynchronous copy offload.

Figure 11 presents the CPU usage of the Open-MX stack receiving a unidirectional stream of large mes-

sages. It shows that the standard memcpy-based large receive implementation saturates one of the 2.33 GHz

Xeon cores up-to 95 %. The user-space CPU load is mostly negligible because it only consists of posting

requests to the driver and then waiting for a completion event. The driver time is higher because it in-

volves memory pinning during a system call prior to the data transfer. Both the user and driver times do

not depend on I/O AT being enabled but the corresponding CPU usage percentages are higher with I/O AT

enabled because the overall communication is faster. The actual small CPU availability (in white) comes

from the rendezvous handshake before the large data transfer occurs since the processors are idle during the

round-trip on a network.

When our I/O AT overlapped copy model is enabled, the overall CPU usage drops from 50 to 42 % for

32 kB messages, and from 95 % to 60 % for multi-megabyte messages. On average, the processor is now

available for overlap during 48% of the communication time instead of 28%. Therefore, even if the overall

communication time is reduced by about a third, the absolute time for overlap is still increased by about

10% on average. Thus, in addition to significantly improving the Open-MX throughput for large messages

up to the 10G Ethernet line rate, the I/O AT hardware also dramatically reduces the host load, eliminating

the CPU as the bottleneck.

Table 2 compares the improvement produced by I/O AT for TCP and Open-MX as a function of the

fabric MTU. As explained earlier, I/O AT is only an advantage when large Ethernet packets are used, which

makes it almost useless when MTU is 1500. Moreover, I/O AT hardly improves the TCP throughput: it

actually only improves CPU availability [42]. The reason why TCP does not benefit from I/O AT as much

as Open-MX may be that the TCP receive stack cannot overlap the copy submission and processing early

unless very large receive requests are posted, which is not the case in the MPI implementation.

An early performance evaluation on latest Intel platforms reveals that I/O AT offers a less significant

performance improvement. The major reason is that the memory copy throughput improved dramatically

15

MTU Stack 4 MB Pingpong 4 MB Alltoall16

Speedup Speedup

9000

Open-MX +24.3% +10.6%

TCP -1.8% -12.9%

Open-MX tuned +32.2% +57.2%

TCP tuned 0% 0%

1500

Open-MX +10.4% +7.6%

TCP +1.3% 0%

Open-MX tuned +0.7% +5.6%

TCP tuned 0% 0%

Table 2: Influence of I/O AT copy-offload on the throughput of 4 MB Pingpong and 4 MB Alltoall operation between 16 hosts.

in latest Intel processors (Nehalem and Westmere) and the QPI interconnect is much more scalable than

the old centralized front-side bus. In the meantime, the I/O AT hardware did not evolve significantly (its

raw throughput increased by only about 20%) and the QPI topology places it further away from memory

banks than the processor (NUMA architecture, Non Uniform Memory Access). Fortunately, we believe that

the DMA engine technology will be integrated into next generation processors. It should make its copy

throughput comparable to processor memcpy, and thus I/O AT copy offload should offer attractive improve-

ments again.

5.4. Impact of MTU

 0

 20

 40

 60

 80

 100

 120

256B 4kB 64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

Open-MX MTL - MTU 9000
TCP BTL - MTU 9000
Open-MX MTL - MTU 1500
TCP BTL - MTU 1500

(a) on 1G fabric in non-tuned mode.

 0

 200

 400

 600

 800

 1000

 1200

256B 4kB 64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

Open-MX MTL - MTU 9000
TCP BTL - MTU 9000
Open-MX MTL - MTU 1500
TCP BTL - MTU 1500

(b) on 10G fabric in I/O AT tuned mode.

Figure 12: IMB Pingpong throughput depending on the MTU.

We now take a deeper look at the impact of packet size, through the MTU, on the performance of Open-

MX and TCP. Figure 12(a) shows the throughput of a IMB Pingpong on our 1G network in the non-tuned

case. Although Open-MX is always a bit faster than TCP, larger packets only bring a 3 % improvement for

large messages. This limited improvement is related to the fact than 1G networks do not cause high packet

rate and thus do not overload the host with packet processing when small packets are used. The smaller

MTU is even faster for medium messages. This unexpected result is likely a result of from NIC vendors

optimizing the hardware for the most common use, which today is still MTU 1500.

16

Figure 12(b) compares the throughput on our 10G network in the tuned case. TCP does not show a

large performance difference because the NIC is able to segment and reassemble small packets in hardware

(TSO), causing the host to manipulate large packets independently of the actual physical MTU underneath.

Open-MX does not benefit from such hardware features and is thus improved significantly by a large MTU,

by a factor of 2. Fortunately, Open-MX compensates for these missing hardware features with a stack that

was designed for message passing and that uses I/O AT copy offload, achieving up to 50 % better throughput

than TCP for large messages.

5.5. MX Wire-Compatibility

 0

 200

 400

 600

 800

 1000

 1200

256B 4kB 64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

MX <-> MX
Open-MX tuned <-> MX
Open-MX tuned without I/OAT <-> MX
Open-MX <-> MX
Open-MX without I/OAT <-> MX

Figure 13: Performance of the Open-MX Wire-Compatibility with MXoE. A native MXoE host talks to a host running the wire-

compatible Open-MX stack on a Myri-10G NIC in native Ethernet mode.

Previous experiments have shown that a large MTU and offloading memory copies on I/O AT hardware

are two important features that help Open-MX achieve interesting performance. Because Open-MX is wire-

compatible with the native MX stack, we now look at the impact of Open-MX on MX performance. One of

our host now runs the native MX stack on its Myri-10G NIC, and the other still runs the Ethernet stack with

Open-MX. As expected, the latency is the average of the latencies of MX and Open-MX, 4.6 µs in tuned

mode, 38 µs otherwise.

Figure 13 presents the throughput of IMB Pingpong. It shows that Open-MX can approach the perfor-

mance of the native MX, down-to at least 65% of its throughput, and even 90% for large messages. However,

as expected, it also shows that tuning the network stack and offloading memory copies on I/O AT hardware

is critical to obtaining the highest performance.

One major constraint with the MX wire-compatibility is that it enforces the use of a wire protocol that

was designed for dedicated hardware, and Open-MX usually runs on slower hardware. We now look at

the impact of breaking the wire-compatibility when it is not strictly required, as described in Section 3.2.

Figures 14(a) and 14(b) present the performance improvements enabled by using larger packets and high

numbers of packets in each block of large messages. As explained in Section 5.4, the use of larger packets

improve performance significantly in all cases because it reduces the number of packets to be processed by

the Open-MX stack. Increasing the block size helps dramatically in the non-tuned mode. Indeed, the latency

is high (about 70 µs) and thus requires a lot of in-flight packets to fill the wire between the hosts. The tuned

case is not as significantly improved because the latency is much slower and thus does not require a large

block size. However, both optimizations offer some interesting improvement and justify the idea of breaking

the MXoE wire compatibility when it is not useful.

17

 0

 200

 400

 600

 800

 1000

 1200

64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

MX
Open-MX - 32x 8kB fragments

Open-MX - 8x 8kB fragments
Open-MX - 32x 4kB fragments

Open-MX wire-compatible - 8x 4kB fragments

(a) non-tuned I/O AT mode.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

64kB 1MB

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

Message size

MX
Open-MX - 32x 8kB fragments

Open-MX - 8x 8kB fragments
Open-MX - 32x 4kB fragments

Open-MX wire-compatible - 8x 4kB fragments

(b) tuned I/O AT mode.

Figure 14: Impact of larger packets and deeper pipeline on the Open-MX throughput.

Benchmark TCP Open-MX MX

bt.C.16 272.37 269.07 266.25

cg.C.16 90.79 89.75 84.76

ep.C.16 30.40 30.66 30.28

ft.B.165 21.59 20.48 19.16

is.C.16 5.84 5.62 4.57

lu.C.16 205.44 202.39 199.33

mg.C.16 44.10 43.59 43.44

sp.C.16 556.53 547.13 541.71

Table 3: NAS Parallel Benchmarks execution time, in seconds. Class C was used with 16 processes on 2 nodes.

5.6. Applications

Table 3 presents the absolute execution time of the NAS Parallel Benchmarks over the native MX and

TCP stacks, as well as Open-MX. MX demonstrates 6.2% of speedup over TCP on average. Given that most

of these applications are not communication intensive [47], this improvement is attractive. As expected,

the communication intensive IS improved the most (+21.7%) while EP is almost unchanged because it uses

almost no communication.

Open-MX improves the execution time of all NAS benchmarks by 1.8% on average over TCP. It is

only a third of the speedup that MX brings over TCP, but Open-MX does not require dedicated message

passing capabilities in the NIC to do so. IS actually required the careful binding of processes and interrupts

because this application involves many large messages and collective operations. They cause contention in

the memory bus and caches that may increase the execution time by up to a factor of 4 under some unclear

circumstances. Indeed, having the interrupt handlers process incoming packets on all cores and also pass

them to target applications running on all cores may induce many cache-line bounces between cores. A more

suitable way to address this issue is to add Multiqueue support to the stack so that packets are processed on

the core that runs their target application, as explained in [48].

5FT class C could not complete because it uses more memory than available on our test machines.

18

6. Conclusion

The spreading of clusters in high-performance computing in the last decade has led to the development of

specialized high-speed networks such as InfiniBand or Myrinet. However Ethernet is still the most popular

technology and many research projects try to offer high-performance message passing on top of it. Open-MX

is an open-source networking stack that applies advanced software innovations such as I/O AT copy offload

to circumvent the limitations of the Ethernet model. It also benefits from its interface compatibility with

the popular MX stack and thus works transparently with many existing MPI implementations. Open-MX is

available for download at http://open-mx.org.

In this article, we presented an in-depth study of the implementation and performance of Open-MX.

Its overlapped copy offload model enables high throughput and reduces CPU utilization, while its careful

tuning of the interrupt coalescing significantly decreases the latency. Open-MX surpasses the performance

of TCP-based MPI implementations, especially on 10G networks where it reaches a latency of 7 µs for

small messages and the 10G line rate for large messages. The overall execution time of the NAS Parallel

Benchmarks is reduced by 2 % on average.

Although it is slower than the specialized MX stack on the same hardware, Open-MX shows that apply-

ing high-performance networking ideas to commodity Ethernet hardware can improve performance. It also

demonstrates that it is not necessary to rewrite a custom application interface dedicated to Ethernet because

the MX interface was successfully mapped on top of Open-MX. On the other hand, the wire protocol speci-

fication of MX had to be modified to better match the capabilities of the fabric, especially its higher latency

and larger MTU.

Moreover, our work also raises the question of which dedicated features should be added to Ethernet

NIC to facilitate message passing. For instance, our results show that TCP implementations suffer less from

smaller MTUs because they benefit from simple hardware features such as segmentation offload (TSO)

which reduces the host overhead. Open-MX cannot benefit from such features. The possible convergence

between specialized HPC networks and commodity Ethernet will certainly have to address this question.

References

[1] Top500 Supercomputing Sites, http://top500.org.

[2] Message Passing Interface Forum, MPI: A message-passing interface standard, Tech. Rep. UT-CS-94-

230 (1994).

[3] Infiniband architecture specifications, InfiniBand Trade Association, http://www.infinibandta.

org (2001).

[4] Myricom Inc., http://www.myri.com.

[5] FCoE (Fibre Channel over Ethernet), http://www.fcoe.com.

[6] Coraid: The Linux Storage People, http://www.coraid.com.

[7] G. Ciaccio, G. Chiola, GAMMA and MPI/GAMMA on gigabitethernet, in: Proceedings of 7th

EuroPVM-MPI conference, Balatonfured, Hongrie, 2000, pp. 129–136.

[8] S. Sumimoto, K. Kumon, PM/Ehernet-kRMA: A High Performance Remote Memory Access Facility

Using Multiple Gigabit Ethernet Cards, in: 3rd International Symposium on Cluster Computing and

the Grid (CCGrid2003), IEEE, 2003, pp. 326–334.

19

[9] J. Chen, W. Watson III, R. Edwards, W. Mao, Message Passing for Linux Clusters with Gigabit Eth-

ernet Mesh Connections, in: IPDPS’05: Proceedings of the 19th IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS’05) - Workshop 9, Denver, CO, 2005.

[10] S. Sumimoto, K. Ooe, K. Kumon, T. Boku, M. Sato, A. Ukawa, A Scalable Communication Layer for

Multi-Dimensional Hyper Crossbar Network Using Multiple Gigabit Ethernet, in: ICS’06: Proceed-

ings of the 20th International Conference on Supercomputing, Cairns, Australia, 2006, pp. 107–115.

[11] S. Karlsson, S. Passas, G. Kotsis2, A. Bilas, MultiEdge: An Edge-based Communication Subsystem

for Scalable Commodity Servers, in: Proceedings of the 21st International Parallel and Distributed

Processing Symposium (IPDPS’07), Long Beach, CA, 2007, p. 28.

[12] Myricom, Inc, Myrinet Express (MX): A High Performance, Low-Level, Message-Passing Interface

for Myrinet, http://www.myri.com/scs/MX/doc/mx.pdf (2006).

[13] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,

B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham, T. S. Woodall, Open MPI:

Goals, concept, and design of a next generation MPI implementation, in: Proceedings, 11th European

PVM/MPI Users’ Group Meeting, Budapest, Hungary, 2004, pp. 97–104.

[14] D. Buntinas, G. Mercier, W. Gropp, Implementation and Evaluation of Shared-Memory Communi-

cation and Synchronization Operations in MPICH2 using the Nemesis Communication Subsystem,

Parallel Computing, Selected Papers from EuroPVM/MPI 2006 33 (9) (2007) 634–644.

[15] The Parallel Virtual File System, version 2, http://www.pvfs.org.

[16] B. Goglin, Design and Implementation of Open-MX: High-Performance Message Passing over generic

Ethernet hardware, in: CAC 2008: Workshop on Communication Architecture for Clusters, held in

conjunction with IPDPS 2008, IEEE Computer Society Press, Miami, FL, 2008.

[17] B. Goglin, Improving Message Passing over Ethernet with I/OAT Copy Offload in Open-MX, in: Pro-

ceedings of the IEEE International Conference on Cluster Computing, IEEE Computer Society Press,

Tsukuba, Japan, 2008, pp. 223–231.

[18] T. E. Anderson, D. E. Culler, D. A. Patterson, A Case for NOW (Networks of Workstations, IEEE

Micro 15 (1) (1995) 54–64.

[19] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, C. V. Packer, BEOWULF: A

parallel workstation for scientific computation, in: Proceedings of the 24th International Conference

on Parallel Processing, Oconomowoc, WI, 1995, pp. I:11–14.

[20] R. P. Martin, A. M. Vahdat, D. E. Culler, T. E. Anderson, Effects of Communication Latency, Overhead,

and Bandwidth in a Cluster Architecture, in: Proceedings of the 24th Annual International Symposium

on Computer Architecture, Denver, CO, 1997, pp. 85–97.

[21] D. D. Clark, V. Jacobson, J. Romkey, H. Salwen, An Analysis of TCP Processing Overhead, IEEE

Communications Magazine 27 (1989) 23–29.

[22] A. Barak, I. Gilderman, I. Metrik, Performance of the Communication Layers of TCP/IP with the

Myrinet Gigabit LAN, Computer Communication 22 (11).

20

[23] T. von Eicken, D. E. Culler, S. C. Goldstein, K. E. Schauser, Active Messages: a Mechanism for

Integrated Communication and Computation, in: Proceedings of the 19th Int’l Symp. on Computer

Architecture, Gold Coast, Australia, 1992.

[24] S. Pakin, V. Karamcheti, A. A. Chien, Fast Messages (FM): Efficient, Portable Communication for

Workstation Clusters and Massively-Parallel Processors, IEEE Concurrency 5 (1997) 60–73.

[25] Z. Yi, P. P. Waskiewicz, Enabling Linux Network Support of Hardware Multiqueue Devices, in: Pro-

ceedings of the Linux Symposium (OLS2007), Ottawa, Canada, 2007, pp. 305–310.

[26] L. Grossman, Large Receive Offload Implementation in Neterion 10GbE Ethernet Driver, in: Proceed-

ings of the Linux Symposium (OLS2005), Ottawa, Canada, 2005, pp. 195–200.

[27] Linux Foundation, Net:TOE, http://www.linuxfoundation.org/en/Net:TOE (2006).

[28] Myricom Myri-10G, http://www.myri.com/Myri-10G/.

[29] Mellanox ConnectX - 4th Generation Server & Storage Adapter Architecture, http://mellanox.

com/products/connectx_architecture.php.

[30] D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause, R. Recio, D. Crupnicoff, L. Dick-

man, P. Grun, Remote Direct Memory Access over the Converged Enhanced Ethernet Fabric: Evaluat-

ing the Options, in: Proceedings of the 17th Annual Symposium on High-Performance Interconnects

(HotI’09), New York, NJ, 2009, pp. 123–130.

[31] P. Shivam, P. Wyckoff, D. K. Panda, EMP: Zero-copy OS-bypass NIC-driven Gigabit Ethernet Message

Passing, in: Proceeding of Supercomputing ACM/IEEE 2001 Conference, Denver, CO, 2001, p. 57.

[32] ParTec Cluster Competence Center, http://www.par-tec.com.

[33] M. J. Rashti, A. Afsahi, 10-Gigabit iWARP Ethernet: Comparative Performance Analysis with Infini-

band and Myrinet-10G, in: Proceedings of the International Workshop on Communication Architecture

for Clusters (CAC), held in conjunction with IPDPS’07, Long Beach, CA, 2007, p. 234.

[34] D. Dalessandro, A. Devulapalli, P. Wyckoff, Design and Implementation of the iWarp Protocol in

Software, in: Proceedings of PDCS’05, Phoenix, AZ, 2005, pp. 471–476.

[35] The IBM Blue Gene team, Overview of the IBM Blue Gene/P project, IBM Journal of Research and

Development 52 (1/2), http://www.research.ibm.com/journal/rd/521/team.html.

[36] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, R. Thakur, Toward Efficient Support for Multithreaded

MPI Communication, in: Proceedings of the 15th European PVM/MPI Users’ Group Meeting on

Recent Advances in Parallel Virtual Machine and Message Passing Interface, Springer-Verlag, 2008,

pp. 120–129.

[37] B. Goglin, High Throughput Intra-Node MPI Communication with Open-MX, in: Proceedings of

the 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

(PDP2009), IEEE Computer Society Press, Weimar, Germany, 2009, pp. 173–180.

[38] H. K. J. Chu, Zero-Copy TCP in Solaris, in: Proceedings of the USENIX Annual Technical Confer-

ence, San Diego, CA, 1996, pp. 253–264.

21

[39] S. Passas, K. Magoutis, A. Bilas, Towards 100 Gbit/s Ethernet: Multicore-based Parallel Commu-

nication Protocol Design, in: Proceedings of the 23rd international conference on Supercomputing

(ICS’09), ACM/SIGARCH, Yorktown Heights, NY, 2009, pp. 214–224.

[40] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn, R. Huggahalli, D. Newell, L. Cline, A. Foong,

TCP Onloading for Data Center Servers, Computer 37 (11) (2004) 48–58.

[41] A. Grover, C. Leech, Accelerating Network Receive Processing (Intel I/O Acceleration Technology),

in: Proceedings of the Linux Symposium (OLS2005), Ottawa, Canada, 2005, pp. 281–288.

[42] K. Vaidyanathan, D. K. Panda, Benefits of I/O Acceleration Technology (I/OAT) in Clusters, in: Pro-

ceedings of the International Symposium on Performance Analysis of Systems and Software, San Jose,

CA, 2007, pp. 220–229.

[43] K. Vaidyanathan, W. Huang, L. Chai, D. K. Panda, Designing Efficient Asynchronous Memory Oper-

ations Using Hardware Copy Engine: A Case Study with I/OAT, in: Proceedings of the International

Workshop on Communication Architecture for Clusters (CAC), held in conjunction with IPDPS’07,

Long Beach, CA, 2007, p. 234.

[44] J. H. Salim, R. Olsson, A. Kuznetsov, Beyond softnet, in: Proceedings of the 5th annual Linux Show-

case & Conference, Oakland, CA, 2001.

[45] K. Salah, To Coalesce or Not To Coalesce, International Journal of Electronics and Communications

61 (2007) 215–225.

[46] Intel MPI Benchmarks, http://www.intel.com/cd/software/products/asmo-na/eng/

cluster/mpi/219847.htm.

[47] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A. Fatoohi, P. O.

Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, S. K. Weeratunga,

The NAS Parallel Benchmarks, The International Journal of Supercomputer Applications 5 (3) (1991)

63–73.

[48] B. Goglin, NIC-assisted Cache-Efficient Receive Stack for Message Passing over Ethernet, in: Pro-

ceedings of the 15th International Euro-Par Conference, Lecture Notes in Computer Science, Vol.

5704 of Lecture Notes in Computer Science, Springer, Delft, The Netherlands, 2009, pp. 1065–1077.

22

