
HAL Id: hal-00533327
https://hal.archives-ouvertes.fr/hal-00533327

Submitted on 5 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An asymptotic preserving scheme based on a
micro-macro decomposition for collisional Vlasov
equations: diffusion and high-field scaling limits.

Nicolas Crouseilles, Mohammed Lemou

To cite this version:
Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro
decomposition for collisional Vlasov equations: diffusion and high-field scaling limits.. Kinetic and
Related Models , AIMS, 2011, 4 (2), pp.441-477. �10.3934/krm.2011.4.441�. �hal-00533327�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50042953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00533327
https://hal.archives-ouvertes.fr
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decomposition for collisional Vlasov equations: diffusion and

high-field scaling limits.

Nicolas Crouseilles ∗ Mohammed Lemou †

October 29, 2010

Abstract

In this work, we extend the micro-macro decomposition based numerical schemes developed
in [3] to the collisional Vlasov-Poisson model in the diffusion and high-field asymptotics. In
doing so, we first write the Vlasov-Poisson model as a system that couples the macroscopic
(equilibrium) part with the remainder part. A suitable discretization of this micro-macro model
enables to derive an asymptotic preserving scheme in the diffusion and high-field asymptotics. In
addition, two main improvements are presented: On the one hand a self-consistent electric field
is introduced, which induces a specific discretization in the velocity direction, and represents
a wide range of applications in plasma physics. On the other hand, as suggested in [28], we
introduce a suitable reformulation of the micro-macro scheme which leads to an asymptotic
preserving property with the following property: It degenerates into an implicit scheme for
the diffusion limit model when ε → 0, which makes it free from the usual diffusion constraint
∆t = O(∆x2) in all regimes. Numerical examples are used to demonstrate the efficiency and
the applicability of the schemes for both regimes.
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1 Introduction

For the description of plasma, the fundamental kinetic model is the Vlasov equation satisfied by
the distribution function f(t, x, v) which depends on time t ≥ 0, on the position x ∈ R

d and on
their velocity v ∈ R

d, with d the dimension of the problem. Even if fluid response of the plasma
requires low computational efforts, the system may be far from equilibrium, and this requires the
use of kinetic models.

The modelling and simulation of plasmas at the kinetic level is known to be a challenging
problem due to the high dimensionality of the phase space (6 dimensions plus time for the general
case), but also due to the existence of multiscale phenomena that occur. Among them, the Debye
length or the mean free path which can be very small compared to the size of the device ; in the
same way, the relaxation time may also introduce an additional time scale. From a numerical point
of view, a classical explicit scheme has to solve these micro-scales in order to remain stable. This
makes these schemes extremely time consuming.

Then reduced models are usually proposed to describe specific regimes in specific regions of
the simulated device. However, such domain decomposition approaches (see [1, 6, 23, 9, 10]) need
heavy development to for example connect the different models at the interfaces and to distinguish
the fluid region from the kinetic ones at different times. The kinetic and fluid models are solved
simultaneously on the different subdomains of the computational domain. Obviously, the high
dimensional cases become technical and difficult since the interfaces become curves or surfaces.
Then, it seems interesting to develop alternative approaches which can switch automatically from
one regime to another.

In this paper, we are concerned with the development of numerical scheme for solving the Vlasov
equation with collisions that are uniformly stable along the transition from kinetic to macroscopic
regime. More precisely, two asymptotics are considered here: the diffusion and the high-field limits.
For the first limit, the initial model is the Vlasov-Poisson-BGK model (for which the diffusion limit
has been studied mathematically in [34] and numerically in [25]) whereas for the second limit, a
more suitable model is the Vlasov-Poisson-Fokker-Planck equation (see [33, 5, 4] for a mathematical
study). It is well known that standard discretizations suffer from restrictive condition on the time
step ∆t (∆t = O(ε2) or O(ε), where ε is the small parameter) which prevents from a numerical
asymptotic study.

To construct such numerical schemes, we propose an extension of the micro-macro decomposi-
tion based strategy introduced in [30, 3, 28, 29, 22] to the framework of collisional Vlasov-Poisson
kinetic equation. The micro-macro decomposition is simply based on the fact that the kinetic
unknown f is equal to the sum of an equilibrium and a rest g (see Figure 1) as for the Chapman-
Enskog expansion. The associated model is then composed of a kinetic equation satisfied by g and
a macroscopic equation satisfied by the moments of f (which are equal to those of its associated
equilibrium). The model is solved with a suitable semi-implicit method which overcomes the diffi-
culty induced by the stiff terms when the small parameter becomes close to zero. Obviously, this
is of great interest since standard explicit schemes lead to very expensive numerical simulations
(the time step has to be of the order of the small parameter). One other interesting property for
this approach is the following: a general class of numerical schemes can be constructed from this
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micro-macro decomposition that enjoys the Asymptotic Preserving (AP) property (see [18]): if
we fix the numerical parameters, and let the small parameter going to zero then the micro-macro
decomposition provides a consistent numerical scheme for the asymptotic limit.

Previous works have been performed in this direction but using other strategies or applied to
other models (radiative transfer, semi-conductors or Boltzmann). We can cite for the diffusion
regime [19, 20, 21, 22, 23, 24, 26, 31, 17], especially [25] in which the diffusion limit of charged
particles is investigated. Fluid limits have also been studied in [3, 15, 12] and we can mention works
devoted to the quasineutral limit [11, 2]. The main purpose is to develop a model (equivalent to
the original one) the discretization of which is able to describe the different regimes that can
occur in a realistic simulation. Standard asymptotic preserving schemes usually capture the limit
ε = 0 but the micro-macro approach enables to capture the first order corrective terms in ε (see
[3]). This property can be explained by the fact that the micro-macro decomposition mimics in
a certain way the Chapman-Enskog method. Let us mention that some strategies are based on
a splitting procedure but this is not the case here. Moreover, the present approach enables an
implicit treatment of the space-diffusion term which appears in the asymptotic model (in both
diffusion and high-field asymptotics), as suggested in [28]. This improvement of the micro-macro
approach has the following important property : it makes the numerical scheme free from the usual
restrictive CFL condition ∆t = O(∆x2) at all regimes where ∆x denotes the spatial step. Finally,
as in [24, 25, 29], we are interested in the study of boundary conditions. This is done following [29].
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Figure 1: Micro-macro decomposition in the velocity direction.

In this work, the starting model is the collisional Vlasov-Poisson equation coupling a transport
equation on the distribution function f(t, x, v) ≥ 0 in the phase space, with the self consistent
electric field E(t, x). The spatial variable x belongs to the interval [0, L], L > 0, whereas the
velocity v belongs to R and the time t to R

+. More precisely, the system reads

∂f

∂t
+

v

εα
∂xf +

E

ε
∂vf =

1

ε1+α
Q(f), (1.1)

∂xE(t, x) = ρ(t, x)− 1, (1.2)
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where Q is a linear collision operator, and ρ(t, x) =
∫

R
f(t, x, v)dv. The parameter α takes the

value α = 1 in the diffusion scaling case and the value α = 0 in the high-field limit case. If periodic
boundary conditions are considered, the function f satisfies the following boundary conditions
(periodic in the spatial direction)

f(t, 0, v) = f(t, L, v),∀v ∈ R, t ≥ 0.

In case of Dirichlet boundary conditions, we set

f(t, 0, v) = fL(t, v),∀v ≥ 0, f(t, L, v) = fR(t, v),∀v < 0, t ≥ 0,

with limv→±∞ f(t, x, v) = 0,∀x ∈ [0, L], t ≥ 0. In order to ensure the well-posedness of the problem,
a boundary condition E(t, x = 0) has to be given or a mean electrostatic condition has to be added,

∫ L

0

E(t, x)dx = λ(t), ∀t ≥ 0, (1.3)

where λ(t) is the potential drop at time t. Finally, an initial condition has to be considered for the
transport equation

f(0, x, v) = f0(x, v), ∀x ∈ [0, L], v ∈ R. (1.4)

As said before, we are interested in two types of collision operators: the BGK operator for the
diffusion limit (α = 1 in (1.1)):

Q(f)(t, x, v) =
ρ(t, x)√

2π
exp(−v2/2) − f(t, x, v), with ρ(t, x) =

∫

R

f(t, x, v)dv, (1.5)

and the Fokker-Planck operator for the high-field limit (α = 0 in (1.1))

Q(f)(t, x, v) = ∂v [vf(t, x, v) + ∂vf(t, x, v)]. (1.6)

We now recall that the Poisson equation (1.2) subjected to condition (1.3) implies the Ampère
equation

∂tE = − 1

εα
(J − J̄), (1.7)

where J(t, x) =
∫

R
vf(t, x, v)dv and J̄(t, x) = 1/L

∫ L
0

∫

R
vf(t, x, v)dvdx+λ′(t)/L, with λ defined in

(1.3). Finally, integrating (1.2) between x = 0 and x = L gives

E(t, 0) = E(t, L) ⇔ 1

L

∫ L

0

∫

R

f(t, x, v)dvdx = 1,∀t ≥ 0, (1.8)

which translates the global neutrality of the plasma.
The main goal of this work is to extend the methodology of [3, 28, 29] and construct numerical

schemes which are uniformly stable in the diffusion limit ε → 0 for system (1.1)-(1.2)-(1.5) with
α = 1, and in the high-field limit for system (1.1)-(1.2)-(1.6) with α = 0. We will see that theses
numerical schemes enjoy the following properties: (i) they are Asymptotic Preserving for the
two asymptotics (Vlasov-Poisson-BGK towards (2.5) and Vlasov-Poisson-Fokker-Planck towards
(3.11)), (ii) the high-field limit takes into account the first order correction terms (which means
that the numerical scheme is first order (in ε) Asymptotic Preserving, (iii) they are not constrained
by the space-diffusive CFL condition ∆t = O(∆x2) for all regimes (ε << 1 and ε ≈ 1).

The rest of the paper is organized as follows: we first deal with the diffusion limit by presenting
the derivation of the micro-macro model and its associated asymptotic preserving discretization.
Next, we consider the high-field limit using the same outlines. Finally, the last part is devoted to
the numerical results.
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2 Diffusion limit

This section is devoted to the derivation and the discretization of the micro-macro model starting
from the Vlasov-Poisson-BGK equation (1.1)-(1.2)-(1.5) with α = 1, which is well suited to study
the diffusion limit. Obviously, the Fokker-Planck collision operator (1.6) can be used, but the BGK
operator leads to simple computations.

We can define the null space of the linear BGK operator (1.5): using the notation 〈f〉 =
∫

R
f(v)dv, it is given byN = Span{M} = {f = ρM, where ρ := 〈f〉}, whereM(v) = 1/

√
2π exp(−v2/2)

is the absolute Maxwellian and its rank R = (N )⊥ = {f such that 〈f〉 = 0}. Following [30, 28, 29,
3], we decompose f as follows

f = ρM + g, with ρ(t, x) =

∫

R

f(t, x, v)dv and M(v) =
1√
2π

exp(−v2/2). (2.1)

As remarked in [28], g = f − ρM is not necessarily small. We now introduce the orthogonal
projector Π in L2(M−1dv) onto N :

Πϕ = 〈ϕ〉M, with 〈ϕ〉 =
∫

R

ϕ(v)dv.

In the following, using these notations, the micro-macro decomposition model is derived and ap-
proximated to get an asymptotic preserving scheme in the diffusion limit.

2.1 Derivation of the micro-macro model

Introducing the transport operator T f = v∂xf +E∂vf , the decomposition (2.1) of f in the Vlasov
equation (1.1) with α = 1 (diffusion scaling) leads to

∂t(ρM) + ∂tg +
1

ε
T (ρM) +

1

ε
T g = − 1

ε2
g. (2.2)

Applying (I −Π) to (2.2) gives

(I −Π)

(

∂t(ρM) +
1

ε
T (ρM)

)

+ (I −Π)

(

∂tg +
1

ε
T g

)

= − 1

ε2
(I −Π)g.

Using the relations (I−Π)(∂t(ρM)) = Π(g) = Π(∂tg) = 0 (Lemma 3.1 of [3]), we get the microscopic
part of the decomposition

∂tg +
1

ε
(I −Π)(T (ρM)) +

1

ε
(I −Π)(T g) = − 1

ε2
g.

Applying now Π to (2.2) leads to the macroscopic part of the decomposition

∂tρ+
1

ε
∂x〈vg〉 = 0.

With the notations T f = v∂xf +E∂vf , M(v) = 1/
√
2π exp(−v2/2), the micro-macro formulation

of (1.1)-(1.2) with α = 1 and Q chosen as the linear BGK operator (1.5) finally reads






∂tg +
1

ε
(T g − ∂x〈vg〉M) =

1

ε2
[−g − εT (ρM)] ,

∂tρ+
1

ε
∂x〈vg〉 = 0,

∂xE = ρ− 1.

(2.3)

This formulation is equivalent to the original Vlasov-Poisson-BGK equation (1.1)-(1.2)-(1.5),
as precised in the following proposition.
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Proposition 2.1. (formal)
(i) If (f,E) is a solution to (1.1)-(1.2)-(1.5) with the initial data (1.4), then (ρ, g,E) = (〈f〉, f −
ρM,E) is a solution to (2.3) with the associated initial data

ρ0 = 〈f0〉, g0 = f0 − ρ0M. (2.4)

(ii) Conversely, if (ρ, g,E) is a solution of (2.3) with initial data ρ(t = 0) = ρ0 and g(t = 0) = g0
with 〈g0〉 = 0 then 〈g(t)〉 = 0,∀t > 0 and (f = ρM + g,E) is a solution to (1.1)-(1.2)-(1.5) with
initial data f0 = ρ0M + g0.

2.2 Chapman-Enskog expansion

In this subsection, the formal derivation of the diffusion model is performed starting the micro-
macro model (2.3). Th diffusion model has been derived mathematically in [34]. Hereafter, we
will see that the formal derivation is really straightforward starting from (2.3) (compared to the
equivalent formulation of (1.1)-(1.2)-(1.5)), since the micro-macro model is well suited to deal with
the asymptotic model in the diffusion limit. Indeed, for small ε, the first equation of (2.3) gives
formally

g = −εT (ρM) +O(ε2) = −ε(vM∂xρ+ Eρ∂vM) +O(ε2),

which, injected in the second equation of (2.3), leads to

∂tρ− ∂x
(
〈v2M〉∂xρ+ Eρ〈v∂vM〉

)
= O(ε).

Since 〈v2M〉 = 1 and 〈v∂vM〉 = −1, we finally get the asymptotic model (coupled with the Poisson
equation)

{

∂tρ− ∂x (∂xρ− Eρ) = 0,

∂xE = ρ− 1.
(2.5)

2.3 Numerical scheme

We present here two discretizations of (2.3) which provide a numerical scheme to solve the original
model (1.1)-(1.2)-(1.5) with α = 1 and have the following properties: (i) For all fixed ε > 0, the nu-
merical schemes are consistent with (2.3) and (1.1)-(1.2)-(1.5); (ii) For fixed numerical parameters
∆t,∆x,∆v these schemes will degenerate into consistent discretizations of the asymptotic model
(2.5) when ε → 0; moreover, for the second discretization, we have: (iii) The scheme is free from
the usual diffusive CFL condition ∆t = O(∆x2), and a time-implicit scheme is obtained for the
diffusion term in (2.5) in the limit ε → 0.

2.3.1 Time explicit discretization

This subsection is devoted to the discretization of the micro-macro system (2.3) following the
strategy proposed in [29]. We first present the time discretization and then tackle the full discretized
problem.

Semi-discretization in time The fixed time step is ∆t, and the current time tn = n∆t, n ∈ IN.
Let ρn and gn be the approximations of ρ and g at time tn. Using the notation T f = v∂xf+En∂vf ,
where En satisfies the Poisson equation at time tn (∂xE

n = ρn − 1), the discretization of the first
equation of (2.3) writes

gn+1 − gn

∆t
+

1

ε
(T gn − ∂x〈vgn〉M) =

1

ε2
[
−gn+1 − εT (ρnM)

]
, (2.6)

6



with M(v) = 1/
√
2π exp(−v2/2). Once gn+1 is computed thanks to (2.6), we look for the time

approximation of the macroscopic part of (2.3). As in [29], we propose

ρn+1 − ρn

∆t
+

1

ε
∂x〈vgn+1〉 = 0. (2.7)

We now claim that, as ε → 0, the discretization (2.6)-(2.7) leads to a consistent time discretiza-
tion of the asymptotic diffusion model (2.5). Indeed, when ε is small, we get from (2.6)

gn+1 = −εT (ρnM) +O(ε2) = −ε(vM∂xρ
n + Enρn∂vM) +O(ε2).

Injecting it in (2.7) leads to

ρn+1 − ρn

∆t
− ∂x(∂xρ

n − Enρn) = 0. (2.8)

Considering the Poisson equation ∂xE
n = ρn−1, this corresponds to an explicit time discretization

of the diffusion model (2.5).

Full-discretization As in [3], we consider the micro equation of (2.3) at xi+1/2 = (i+1/2)∆x, i =
−1, · · · , Nx and vk = vmin+ k∆v, k = 0, · · · , Nv − 1 where ∆x = L/Nx and ∆v = (vmax− vmin)/Nv

(with vmax = −vmin) are the phase space uniform discretization. Hence we denote by gni+1/2,k an

approximation of g(tn, xi+1/2, vk) andMk an approximation of M(vk). On the other side, the macro
part of (2.3) is approximated at xi = i∆x, i = 0, · · · , Nx so that we use the notations ρni ≈ ρ(tn, xi)
and ρni+1/2 = (ρni + ρni+1

)/2. The electric field is evaluated at xi+1/2: En
i+1/2 ≈ E(tn, xi+1/2) and

the phase space fluxes are first order upwind fluxes

Φi+1/2,k = v+k
gni+1/2,k − gni−1/2,k

∆x
+ v−k

gni+3/2,k − gni+1/2,k

∆x
(2.9)

Ψi+1/2,k = En,+
i+1/2

gni+1/2,k − gni+1/2,k−1

∆v
+ En,−

i+1/2

gni+1/2,k+1
− gni+1/2,k

∆v
, (2.10)

where the notations v± = (v±|v|)/2 and En,±
i+1/2

= (En
i+1/2±|En

i+1/2|)/2 are used. Let us recall the

given potential drop λ(t) given by (1.3) and the notation 〈Mk〉 = ∆v
∑Nv−1

k=0
Mk.

The following proposition presents the full discretized numerical scheme for the explicit version
of the Asymptotic Preserving scheme in the diffusion limit.

Proposition 2.2. With the notations introduced above, the following discretization of the micro-
macro model (2.3) enjoys the Asymptotic Preserving property in the diffusion limit

gn+1

i+1/2,k

(
ε2

∆t
+ 1

)

= gni+1/2,k

ε2

∆t
− ε

[
Φi+1/2,k +Ψi+1/2,k − 〈Φi+1/2,k〉Mk

]

− ε

[

vkMk
ρni+1 − ρni

∆x
+ En

i+1/2ρ
n
i+1/2

Mk+1 −Mk−1

2∆v

]

, (2.11)

ρn+1

i − ρni
∆t

= − 1

ε∆x
〈vk(gn+1

i+1/2,k − gn+1

i−1/2,k)〉, (2.12)

En
i+1/2 − En

i−1/2 = (ρni − 1)∆x, with ∆x

Nx∑

i=0

En
i+1/2 = λ(tn). (2.13)

The associated asymptotic numerical scheme (ε → 0) is given by

ρn+1

i − ρni
∆t

− ρni+1 − 2ρni + ρni−1

∆x2
+

En
i+1/2ρ

n
i+1/2 − En

i−1/2ρ
n
i−1/2

∆x
= 0. (2.14)
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Together with (2.13), it provides a consistent discretization of the limit model (2.5). A necessary
condition for the stability of (2.14) is ∆t = O(∆x2).

Remark 2.1. For the micro part, the space and velocity derivatives for gn in (2.11) are approx-
imated by a first order upwind scheme but many other choices of numerical fluxes are possible.
The space derivative for ρn and the velocity derivative for M in (2.11) are considered as a source
term so that centered difference schemes are used. For the macro part, since it is approximated
at point xi, the non-equilibrium flux can be naturally approximated by a central difference scheme.
Obviously, other strategies are possible in which the same grid is used for the micro and the macro
parts.

Proof. (Formal asymptotics) Let us now detail the formal proof of the asymptotic preserving prop-
erty of the numerical scheme (2.11)-(2.12): we prove that the previous scheme degenerates into a
consistent scheme for the diffusion equation (2.5) when ε → 0. In particular, we shall derive the
asymptotic discretization of the diffusion model (2.5).

From (2.11), we have for small ε

gn+1

i+1/2,k = −ε

(

vkMk
ρni+1 − ρni

∆x
+ En

i+1/2ρ
n
i+1/2

Mk+1 −Mk−1

2∆v

)

+O(ε2),

which, injected in (2.12), leads to (up to first order in ε)

ρn+1

i − ρni
∆t

= − 1

ε∆x
〈vk(gn+1

i+1/2,k − gn+1

i−1/2,k)〉

=
1

∆x
〈v2kMk〉

(
ρni+1

− ρni
∆x

− ρni+1
− ρni

∆x

)

+
1

∆x

(

〈vk
Mk+1 −Mk−1

2∆v
〉(En

i+1/2ρ
n
i+1/2 −En

i−1/2ρ
n
i−1/2)

)

=
ρni+1 − 2ρni + ρni−1

∆x2
−

En
i+1/2ρ

n
i+1/2 − En

i−1/2ρ
n
i−1/2

∆x
.

We used the following discrete integration by parts (neglecting the boundary terms)

〈vk
Mk+1 −Mk−1

2∆v
〉 = 〈vk−1 − vk+1

2∆v
Mk〉 = −〈Mk〉 = −1.

The so-obtained discretization

ρn+1

i − ρni
∆t

− ρni+1
− 2ρni + ρni−1

∆x2
+

En
i+1/2ρ

n
i+1/2 − En

i−1/2ρ
n
i−1/2

∆x
= 0,

with ρni+1/2 = (ρni + ρni+1
)/2 and the discretization (2.13) of the Poisson equation is a consistent

discretization of the limit model (2.5) where the diffusion term ∂2
xρ is explicit.

2.3.2 Time implicit discretization

This part is devoted to the construction of a numerical scheme for the micro-macro model (2.3),
the limiting scheme of which involves a time implicit treatment of the diffusion term ∂2

xρ in (2.5).
The motivation is to overcome the diffusion restriction on the time step ∆t = O(∆x2).
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Proposition 2.3. With the notations introduced in Proposition 2.2 and (2.13), the following dis-
cretization of the micro-macro model (2.3) enjoys the Asymptotic Preserving property and it is free
from the usual diffusion condition on the time step

gn+1

i+1/2,k

(
ε2

∆t
+ 1

)

= gni+1/2,k

ε2

∆t
− ε

[
Φi+1/2,k +Ψi+1/2,k − 〈Φi+1/2,k〉Mk

]

− ε

[

vkMk
ρni+1 − ρni

∆x
+ En

i+1/2ρ
n
i+1/2

Mk+1 −Mk−1

2∆v

]

, (2.15)

ρn+1

i − ρni
∆t

= − 1

ε∆x

(

1 +
∆t

ε2

)−1(

〈vk(gni+1/2,k − gni−1/2,k)〉 −
∆t

ε
〈vk(Φi+1/2,k − Φi−1/2,k)〉

− ∆t

ε
〈vk(Ψi+1/2,k −Ψi−1/2,k)〉 −

∆t

ε
〈v2kMk〉

ρn+1

i+1
− 2ρn+1

i + ρn+1

i−1

∆x

− ∆t

ε
(En

i+1/2ρ
n
i+1/2 − En

i−1/2ρ
n
i−1/2)

)

. (2.16)

The associated asymptotic numerical scheme (ε → 0) is given by

ρn+1

i − ρni
∆t

− ρn+1

i+1
− 2ρn+1

i + ρn+1

i−1

∆x2
+

En
i+1/2ρ

n
i+1/2 − En

i−1/2ρ
n
i−1/2

∆x
= 0, (2.17)

which, together with (2.13), provides a consistent discretization of the limit model (2.5).

Proof. To derive this implicit discretization of (2.3), let us start with the semi-discrete case. First of
all, the origin of the diffusion term has to be identified. Following the Chapman-Enskog procedure
detailed in subsection 2.2, for small ε the kinetic part g is given by

g = −εT (ρM) = −ε(vM∂xρ+ Eρ∂vM) +O(ε2).

Therefore (−εvM∂xρ) is the term that generates the diffusion ∂2
xρ in the asymptotics ε → 0. In

the following, we exploit this to derive an implicit treatment of the spatial diffusion.
First, we rewrite (2.6) to obtain the expression of gn+1 (recalling that T gn = v∂xg

n+En∂vg
n),

gn+1 =

(

1 +
∆t

ε2

)−1 [

gn − ∆t

ε
(T gn − ∂x〈vgn〉M)− ∆t

ε
vM∂xρ

n − ∆t

ε
Enρn∂vM

]

. (2.18)

We can inject this expression in the flux of the macro equation to get

ρn+1 − ρn

∆t
+
1

ε

(

1 +
∆t

ε2

)−1

∂x〈v
[

gn − ∆t

ε
(T gn − ∂x〈vgn〉M)− ∆t

ε
vM∂xρ

n − ∆t

ε
Enρn∂vM

]

〉 = 0.

(2.19)
Some computations enable to simplify the term into brackets

〈v
[

gn − ∆t

ε
(T gn − ∂x〈vgn〉M)− ∆t

ε
vM∂xρ

n − ∆t

ε
Enρn∂vM

]

〉

= 〈vgn〉 − ∆t

ε
〈v2∂xgn + vEn∂vg

n〉+ ∆t

ε
〈vM〉∂x〈vgn〉 −

∆t

ε
〈v2M〉∂xρn − ∆t

ε
〈v∂vM〉Enρn

= 〈vgn〉 − ∆t

ε
∂x〈v2gn〉 −

∆t

ε
∂xρ

n +
∆t

ε
Enρn,

where some terms vanish (third and fourth terms of the second line) using zero-mean average
property for gn and symmetry property for M in the velocity direction. Then the numerical
scheme for the macro part ρ can be written as

ρn+1 − ρn

∆t
+

1

ε

(

1 +
∆t

ε2

)−1

∂x

(

〈vgn〉 − ∆t

ε
∂x〈v2gn〉 −

∆t

ε
∂xρ

n +
∆t

ε
Enρn

)

.
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Then, it is possible to make implicit the diffusion term to finally get

ρn+1 − ρn

∆t
+

1

ε

(

1 +
∆t

ε2

)−1

∂x

(

〈vgn〉 − ∆t

ε
∂x〈v2gn〉 −

∆t

ε
∂xρ

n+1 +
∆t

ε
Enρn

)

. (2.20)

The full discretization of this new scheme can be done as previously. Indeed, starting with
(2.11) which we inject into (2.12), the full discretization of the macro part becomes

ρn+1

i − ρni
∆t

= − 1

ε∆x

(

1 +
∆t

ε2

)−1(

〈vk(gni+1/2,k − gni−1/2,k)〉 −
∆t

ε
〈vk(Φi+1/2,k − Φi−1/2,k)〉

− ∆t

ε
〈vk(Ψi+1/2,k −Ψi−1/2,k)〉 −

∆t

ε
〈v2kMk〉

ρni+1 − 2ρni + ρni−1

∆x

− ∆t

ε
(En

i+1/2ρ
n
i+1/2 − En

i−1/2ρ
n
i−1/2)

)

,

where the fluxes Φi+1/2,k and Ψi+1/2,k are given by (2.9) and (2.10). Then, it is possible to make
implicit the diffusion term to finally get

ρn+1

i − ρni
∆t

= − 1

ε∆x

(

1 +
∆t

ε2

)−1(

〈vk(gni+1/2,k − gni−1/2,k)〉 −
∆t

ε
〈vk(Φi+1/2,k − Φi−1/2,k)〉

− ∆t

ε
〈vk(Ψi+1/2,k −Ψi−1/2,k)〉 −

∆t

ε
〈v2kMk〉

ρn+1

i+1
− 2ρn+1

i + ρn+1

i−1

∆x

− ∆t

ε
(En

i+1/2ρ
n
i+1/2 − En

i−1/2ρ
n
i−1/2)

)

, (2.21)

The study of the asymptotic ε → 0 is similar to the explicit case. As ε → 0, gni+1/2,k = O(ε) so

that the fluxes Ψi+1/2,k and Φi+1/2,k are also of order ε. Moreover, (1 + ∆t/ε2)−1 is equivalent to
ε2/∆t when ε << 1, so that, at the limit ε = 0, (2.21) reduces to

ρn+1

i − ρni
∆t

− ρn+1

i+1
− 2ρn+1

i + ρn+1

i−1

∆x2
+

En
i+1/2ρ

n
i+1/2 − En

i−1/2ρ
n
i−1/2

∆x
= 0,

which, together with (2.13) is a consistent discretization of the limit model (2.5); the diffusion term
has been implicited so that this scheme (2.15)-(2.16) is free from the standard diffusion condition
on the time step.

2.3.3 Boundary conditions

In this subsection, boundary conditions in the x variable are investigated. As explained in [29], the
original boundary conditions on f cannot always be translated into boundary conditions on the
macro part ρ and the micro part g separately. For example, while periodic boundary conditions are
straightforwardly transposed into boundary conditions on ρ and g, Dirichlet boundary conditions
cannot be extracted for ρ and g and a special handling is needed in this case. This is because only
the ingoing part of f can be imposed as a Dirichlet boundary condition, as given by (1.3).

For the full kinetic model (1.1), the boundary conditions we consider here are the following (for
given functions fL and fR)

f(t, x = 0, v) = fL(v), v > 0, f(t, x = L, v) = fR(v), v < 0,

which has the following discrete version (x0 = 0 and xNx
= L)

f(t, x0, vk) = fL(vk), vk > 0, f(t, xNx
, vk), vk < 0.
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For the micro-macro decomposition, it becomes for all t ≥ 0

ρ(t, x0)Mk +
1

2
(g(t, x1/2, vk) + g(t, x−1/2, vk)) = fL(vk), vk > 0, (2.22)

ρ(t, xNx
)Mk +

1

2
(g(t, xNx+1/2, vk) + g(t, xNx−1/2, vk)) = fR(vk), vk < 0. (2.23)

For the other velocities, we impose Neumann conditions which can be viewed at a first order
approximation of g at the boundary

g(x−1/2, vk) = g(x1/2, vk), vk < 0, (2.24)

g(xNx+1/2, vk) = g(xNx−1/2, vk), vk > 0. (2.25)

Hence, following the procedure introduced in [29], we write the discrete macro equation (2.12) for
i = 0 which involves gn+1

−1/2,k for all k, and use (2.22) and (2.24) at t = tn+1 to get

ρn+1

0
− ρn0

∆t
+

1

∆x
〈vkgn+1

1/2,k − v+k [2(fL(vk)− ρn+1
0

Mk)− gn+1

1/2,k]− v−k g
n+1

1/2,k〉 = 0. (2.26)

In the same spirit for i = Nx, we get using (2.23) and (2.25) at t = tn+1

ρn+1

Nx

− ρnNx

∆t
+

1

∆x
〈v+k gn+1

Nx−1/2,k + v−k [2(fR(vk)− ρn+1

Nx

Mk)− gn+1

Nx−1/2,k]− vkg
n+1

Nx−1/2,k〉 = 0. (2.27)

Finally, using the boundary conditions (2.22) and (2.24), we can update gn+1

−1/2,k for all k

gn+1

−1/2,k = gn+1

1/2,k, vk < 0, gn+1

−1/2,k = 2(fL(vk)− ρn+1

0
Mk)− gn+1

1/2,k, vk > 0, (2.28)

and gn+1

Nx+1/2,k using (2.23) and (2.25)

gn+1

Nx+1/2,k = gn+1

Nx−1/2,k, vk > 0, gn+1

Nx+1/2,k = 2(fR(vk)− ρn+1

Nx

Mk)− gn+1

Nx−1/2,k, vk < 0. (2.29)

Finally, assuming gni+1/2,k is known for i = −1, · · · , Nx and ρni is known for i = 0, · · · , Nx, the
procedure can be summarized into 4 points

• advance (2.11) for i = 0, · · · , Nx − 1

• advance (2.12) for i = 1, · · · , Nx − 1

• compute ρn+1
0

and ρn+1

Nx

with (2.26) and (2.27)

• compute gn+1

−1/2,k and gn+1

Nx+1/2,k with (2.28) and (2.29).

For the Poisson equation, the boundary conditions of Dirichlet type are imposed on the electric
potential so that (2.13) is used for the computation of the electric field.

Remark 2.2. Note that this approach can also be applied to solve the micro-macro system where
the macro part (2.16) is now discretized with an implicit scheme.

The procedure is similar to the one presented just above. Once the micro part is advanced using
(2.11)-(2.16) for i = 0, · · · , Nx−1, we can compute ρn+1 at the boundaries using (2.26) and (2.27).
Then, the system coming from (2.16) to be solved is the following, for i = 2, . . . , Nx − 2

(Aρn+1)i = ρni − ∆t

ε∆x

(

〈vk(g̃n+1

i+1/2,k − g̃n+1

i−1/2,k)〉
)

, i = 2, . . . , Nx − 2 (2.30)
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where A is the tridiagonal matrix A = Tridiag(−α, 1 + 2α,−α) with α = −∆t2/(∆x2(ε2 + ∆t2))
and

g̃n+1

i+1/2,k = gn+1

i+1/2,k +
ε

ε2/∆t+ 1

(

vkMk
ρni+1

− ρni
∆x

)

,

with gn+1

i+1/2,k is computed with (2.11). The system is tridiagonal since ρn+1
0

and ρn+1

Nx

have been

computed using (2.26) and (2.27); hence the first line of the right hand side of the linear system
(2.30) is given by

(1 + 2α)ρn+1
1

− αρn+1
2

= ρn1 − ∆t

ε∆x

(

〈vk(g̃n+1

3/2,k − g̃n+1

1/2,k)〉
)

+ αρn+1
0

,

whereas the last line is given by

−αρn+1

Nx−2
+ (1 + 2α)ρn+1

Nx−1
= ρnNx−1 −

∆t

ε∆x

(

〈vk(g̃n+1

Nx−1/2,k − g̃n+1

Nx−3/2,k)〉
)

+ αρn+1

Nx

.

Remark 2.3. Note that the staggered grids are not necessary. They provided a simplified framework
but the same grid can be adopted for the micro and the macro part of the model ; this may be
interesting for multidimensional applications.

3 High-field limit

This section is devoted to the derivation of the micro-macro model in the high-field asymptotic
limit, and of asymptotic preserving schemes in this context. The starting model is the Vlasov-
Poisson-Fokker-Planck equation (1.1)-(1.2)-(1.6) with α = 0 which we re-write as follows

∂tf + v∂xf =
1

ε
∂v[(v − E)f + ∂vf ] =:

1

ε
Lf. (3.1)

Considering the linear operator L in the right hand side of (3.1), we can define its null space which
is given by N (L) = Span{M} = {f = ρM, where ρ := 〈f〉}, where M(v) = 1/

√
2π exp(−(v −

E)2/2) is the shifted Maxwellian and its rank R(L) = (N )⊥(L) = {f such that 〈f〉 =
∫

R
fdv = 0}.

Following [30, 28, 29, 3], we decompose f as follows

f = ρM+ g, (3.2)

with

ρ(t, x) =

∫

R

f(t, x, v)dv and M(t, x, v) =
1√
2π

exp(−(v − E(t, x))2/2). (3.3)

As in the diffusion case, we introduce the orthogonal projector Π in L2(M−1dv) onto N (L):

Πϕ = 〈ϕ〉M, with 〈ϕ〉 =
∫

R

ϕ(v)dv. (3.4)

Note that here M is not an absolute Maxwellian as previously, but depends on (t, x) throught
the electric field E. The rest of this section is devoted to the derivation and discretization of the
micro-macro decomposition model corresponding to the high-field scaling.
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3.1 Derivation of the micro-macro model

Introducing the micro-macro decomposition (3.2) in the Vlasov equation (3.1), we obtain

∂t(ρM) + ∂tg + v∂x(ρM) + v∂xg =
1

ε
Lg. (3.5)

Applying (I −Π) to (3.5) yields

(I −Π)[∂t(ρM) + v∂x(ρM)] + (I −Π)[∂tg + v∂xg] =
1

ε
(I −Π)Lg.

Since Π(g) = Π(∂tg) = Π(Lg) = 0 (Lemma 3.1 of [3]), and

Π[∂t(ρM)] = Π [M∂tρ+ ρ(∂tE)(v − E)M] = M∂tρ,

we get, using the Ampère equation (1.7) (we recall the notation J̄ = 1/L
∫ L
0
J(t, x)dx + λ′(t)/L

with λ defined in (1.3))

∂tg + (I −Π)(v∂xg) =
1

ε

[
Lg − ε(I −Π)[v∂x(ρM)] + ε(J − J̄)(v − E)(ρM)

]
. (3.6)

The current J can be defined as a function of ρ,E and g using the following expression

J(t, x) =

∫

R

v [ρ(t, x)M(t, x, v) + g(t, x, v)] dv = ρ(t, x)E(t, x) +

∫

R

vg(t, x, v)dv.

Applying now the Π projection to (3.5) and using its expression (3.4), we can write the micro-macro
formulation of (1.1)-(1.2)-(1.6) in the high-field case







∂tg + (v∂xg − ∂x〈vg〉M) =
1

ε

[
Lg − εv∂x(ρM) + ε∂x〈v(ρM)〉M + ε(J − J̄)(v − E)(ρM)

]
,

∂tρ+ ∂x〈vM〉+ ∂x〈vg〉 = 0,

∂xE = ρ− 1.
(3.7)

This formulation is equivalent to the original Vlasov-Poisson-Fokker-Planck equation (1.1)-(1.2)-
(1.6), as precised in the following proposition.

Proposition 3.1. (formal)
(i) If (f,E) is a solution of (1.1)-(1.2)-(1.6) with the initial data (1.4), then (ρ, g,E) = (〈f〉, f −
ρM, E) is a solution of (3.7) with the associated initial data

ρ0 = 〈f0〉, g0 = f0 − ρ0M(t = 0). (3.8)

(ii) Conversely, if (ρ, g,E) is a solution of (3.7) with initial data ρ(t = 0) = ρ0 and g(t = 0) = g0
with 〈g0〉 = 0 then 〈g(t)〉 = 0,∀t > 0 and (f = ρM + g,E) is a solution to (1.1)-(1.2)-(1.6) with
initial data f0 = ρ0M(t = 0) + g0.

3.2 Chapman-Enskog expansion

In the same spirit as previously, we shall derive formally the asymptotic high-field model. Let us
refer to [5, 33] for a mathematical derivation. Starting from (3.7) which is an equivalent formulation
of (1.1)-(1.2)-(1.6), we will see that the asymptotic high-field model can be quite easily obtained
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since the micro-macro model (3.7) is a well-suited model to do that. Indeed, for small ε, the first
equation of (3.7) gives formally

g = L−1
[
εv∂x(ρM)− εM∂x〈v(ρM)〉 − ε(J − J̄)(v − E)(ρM)

]
+O(ε2)

= εL−1[vM∂xρ+ ρv∂xE(v − E)M−M∂x(ρE) − (J − J̄)(v − E)ρM] +O(ε2)

= ε(∂xρ− ρ(J − J̄)) L−1((v − E)M)− ερ∂xE L−1((1 − v(v − E))M) +O(ε2). (3.9)

where L−1 is the pseudo-inverse of L (i.e. the inverse when restricted to N⊥(L) = R(L)). This
has to be injected in the second equation of (3.7).

To get an explicit expression of the pseudo-inverse L−1, let us compute L(a(v)M) for a given
function a depending only on v

L(a(v)M) = ∂v[(v − E)aM+ ∂v(aM)]

= ∂v[(v − E)aM+ a′(v)M− a(v)(v − E)M]

= ∂v[a
′(v)M]

= a
′′

(v)M− a′(v)(v − E)M.

For a(v) = v, v2/2, we then obtain the following relations (using Lg = f =⇒ g − 〈g〉M = L−1f
since L is invertible on N⊥(L) = R(L) = {f such that 〈f〉 =

∫

R
fdv = 0})

L(vM) = −(v − E)M then − vM+ 〈vM〉M = L−1((v − E)M)

and

L
(
v2

2
M
)

= M− v(v − E)M then
v2

2
M− 〈v

2

2
M〉M = L−1((1− v(v − E))M).

Then, injecting these two last expressions into (3.9) leads to

g = −ε(∂xρ− ρ(J − J̄))(v − E)M− ερ∂xE

(
v2

2
M−M(1 + E2)

2

)

+O(ε2)

= −ε(∂xρ− ρ(J − J̄))(v − E)M− ε

2
ρ∂xE (v2 − 1− E2)M+O(ε2). (3.10)

We are now ready to write the asymptotic model using the previous computations. We first use
(3.10) in the second equation of (3.7) and get

∂tρ+ ∂x〈v(ρM)〉 + ε∂x〈v
[
−(∂xρ− ρ(J − J̄))(v − E)M− ρ∂xE(v2/2− (1 + E2)/2)M

]
〉 = O(ε2).

The third term of this equation gives

−ε∂x
[
(∂xρ− ρ(J − J̄))〈v(v − E)M〉

]
= −ε∂2

xρ+ ε∂x(ρ(J − J̄)),

whereas the fourth one writes

−ε∂x

[

ρ∂xE〈v
3

2
M− 1 + E2

2
vM〉

]

= −ε∂x

[

ρ∂xE
1

2
(3E +E3 − E − E3)

]

= −ε∂x(ρE∂xE).

Near equilibrium, the current J can be expressed as a function of ρ and E only ; indeed, since from
(3.10), g = O(ε) and we have

J =

∫

R

vfdv = ρ

∫

R

vMdv +O(ε) = ρE +O(ε).
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With the conditions (1.8) and (1.3), and using the Poisson equation, we have :

J̄ =
1

L

∫ L

0

ρEdx+
1

L
λ′(t) +O(ε)

=
1

L

∫ L

0

(∂xE + 1)Edx+
1

L
λ′(t) +O(ε)

=
1

2L

∫ L

0

∂x(E
2)dx+

1

L

∫ L

0

Edx+
1

L
λ′(t) +O(ε)

=
1

L
(λ(t) + λ′(t)) +O(ε).

Finally, using the Poisson equation ∂xE = ρ − 1, the asymptotic model writes (with λ given by
(1.3))







∂tρ+ ∂x (ρE) = ε∂2
xρ− ε∂x (ρE) + ε

λ+ λ′

L
∂xρ,

∂xE = ρ− 1.
(3.11)

If the condition λ(t) = 0 is fulfilled, we recover the standard high-field model derived in [4].

3.3 Numerical scheme

We then present a discretization of (3.7) which provides a numerical scheme to solve the original
model (1.1)-(1.2)-(1.6) with α = 0 and has the following properties: (i) For all fixed ε > 0, the
numerical scheme is consistent with (3.7) and (1.1)-(1.2)-(1.6); (ii) For fixed numerical parameters
∆t,∆x,∆v the scheme will degenerate into a consistent discretization of the asymptotic model
(3.11) when ε → 0, up to terms of order O(ε2). We consider the same outlines as in the diffusion
case (subsection 2.3).

3.3.1 Time explicit discretization

This subsection is devoted to the discretization of the micro-macro system (3.7) following the
strategy proposed in [29]. We first present the time discretization and then tackle the full discretized
problem.

Semi-discretization in time As previously, we denote by ∆t the time step, tn = n∆t, n ∈ IN
the current time, gn, ρn and En the approximations of g, ρ and E at time tn. The semi-implicit
time discretization of the micro part of (3.7) is

gn+1 − gn

∆t
+ v∂xg

n − ∂x〈vgn〉Mn =
1

ε

[
Lgn+1 − εv∂x(ρ

nMn) + ε∂x〈v(ρnMn)〉Mn

+ ε(Jn − J̄n)(v − En)(ρnMn)
]

(3.12)

with Mn = 1/
√
2π exp(−(v − En)2/2). The macro part of (3.7) is discretized as follows

ρn+1 − ρn

∆t
+ ∂x〈v(ρnMn)〉+ ∂x〈vgn+1〉 = 0. (3.13)

We now prove formally that the semi-discretization (3.12)-(3.13) leads to a consistent time
discretization of the limit model (3.11) when ε → 0, ∆t being fixed. Indeed, from (3.12), we get
when ε is small,

gn+1 = L−1
[
εv∂x(ρ

nMn)− ε∂x〈v(ρnMn)〉Mn − ε(Jn − J̄n)(v − En)(ρnMn)
]
+O(ε2).
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We then express (3.13) in terms of ρ only by injecting the previous equality in (3.13)

ρn+1 − ρn

∆t
+ ∂x〈v(ρnMn)〉

+ ε∂x〈vL−1
(
v∂x(ρ

nMn)− ∂x〈v(ρnMn)〉Mn − (Jn − J̄n)(v − En)(ρnMn)
)
〉 = O(ε2).

Using computations which are similar to the continuous case, we finally get the asymptotic time
discretization model

ρn+1 − ρn

∆t
+ ∂x(E

nρn) = ε∂2
xρ

n − ε∂x (ρ
nEn) .

Considering the Poisson equation ∂xE
n = ρn − 1, this is an explicit time discretization of the

continuous asymptotic model (3.11).

Full-discretization As in the diffusion case, we consider the micro equation of (3.7) at xi+1/2 =
(i + 1/2)∆x, i = −1, · · · , Nx and vk = vmin + k∆v, k = 0, · · · , Nv − 1 where ∆x = L/Nx and
∆v = (vmax − vmin)/Nv (with vmax = −vmin) are the phase space uniform discretization. Hence we
denote by gni+1/2,k an approximation of g(tn, xi+1/2, vk). On the other side, the macro part (3.7)

is approximated at xi = xmin + i∆x, i = 0, · · · , Nx and ρni denotes an approximation of ρ(tn, xi).
The electric field is evaluated at xi+1/2: En

i+1/2 ≈ E(tn, xi+1/2) as well as the current Jn
i+1/2 ≈

J(tn, xi+1/2) whereas for its spatial average, we have J̄n ≈ J̄n ; the Maxwellian is approximated

as follows Mn
i+1/2,k = 1/

√
2π exp(−(vk − En

i+1/2)
2/2). It enables to determine Li+1/2 such that

for a function on the velocity grid (gk)k, we have Li+1/2 gk ≈ (Lg)(xi+1/2, vk). Finally, for the
macroscopic flux ∂x〈v(ρnMn)〉 = ∂x(ρ

nEn), we use a Deshpande-Pullin [32] (but any other more
sophisticated choice of numerical fluxes can be simply adapted)

Fi+1/2(ρ
n) = 〈v+k ρni Mn

i,k + v−k ρ
n
i+1Mn

i+1,k〉. (3.14)

Proposition 3.2. With the notations introduced above, the following discretization of the micro-
macro model (3.12) enjoys the Asymptotic Preserving property in the high-field limit

(

1− ∆t

ε
Li+1/2

)

gn+1

i+1/2,k = gni+1/2,k −∆t
[

Φi+1/2,k − 〈Φi+1/2,k〉Mn
i+1/2,k

+ Mn
i+1/2,k(vk − En

i+1/2)
ρni+1 − ρni

∆x
+ Gn

i+1/2,k

]

(3.15)

ρn+1 − ρn

∆t
+

Fi+1/2(ρ
n)− Fi−1/2(ρ

n)

∆x
+

1

∆x
〈vk(gn+1

i+1/2,k − gn+1

i−1/2,k)〉=0, (3.16)

En
i+1/2 − En

i−1/2 = (ρni − 1)∆x, with ∆x

Nx∑

i=0

En
i+1/2 = λ(tn), (3.17)

where the space flux Φi+1/2,k is given by (2.9), the macroscopic flux Fi+1/2(ρ
n) is given by (3.14)

and Gi+1/2,k = ρni+1/2Mn
i+1/2,k((E

n
i+1 −En

i )/∆x [vk(vk −En
i+1/2)− 1]− (Jn

i+1/2 − J̄n)(vk −En
i+1/2)).

The associated asymptotic numerical scheme (ε → 0) is given by

ρn+1

i − ρni
∆t

+
En

i+1/2ρ
n
i+1/2 − En

i−1/2ρ
n
i−1/2

∆x
= ε

ρni+1
− 2ρni + ρni−1

∆x2
− ε

En
i+1/2ρ

n
i+1/2 − En

i−1/2ρ
n
i−1/2

∆x
,

(3.18)
Together with (3.17), it is a consistent discretization of the limit model (3.11). A necessary condi-
tion for the stability of (3.18) is ∆t = O(∆x2/ε).
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Proof. Before proving (formally) that the numerical scheme (3.15)-(3.16)-(3.17) is asymptotic pre-
serving, let us detail the discretization of the collision operator L.

For the discretization of Lg, we apply the strategy of [7, 13]: the Fokker-Planck operator (3.1)
is rewritten as

(Lg)(v) = ∂v[M∂v(g/M)], with M(v) =
1√
2π

exp(−(v − E)2/2).

Starting with this formulation, we employ the following velocity discretization

(Lg)k =
1

2
D+

[
MD−(g/M)k

]

k
+

1

2
D−

[
MD+(g/M)k

]

k
, (3.19)

where D+(g)k = (gk+1 − gk)/∆v and D−(g)k = (gk − gk−1)/∆v are discrete differential operators.
The expression (3.19) can also be transformed into

(Lg)(vk) ≈ (Lg)k =
1

2∆v2
[gk−1(1 +Mk/Mk−1)

+ gk(−2− (Mk+1 +Mk−1)/Mk) + gk+1(1 +Mk/Mk+1)] . (3.20)

We then approximate (Lg)k by a matrix vector product (Ag)k where A is a Nv × Nv tridiagonal
matrix and g the vector of components gk, k = 0, ..., Nv − 1. The pseudo-inverse L−1f of g is
obtained from the following operation

f = Lg ⇐⇒ L−1f = g − 〈g〉M,

so that, at the discrete level, we have

fk = (Ag)k ⇐⇒ (A−1f)k = gk −
(

Nv−1∑

k=0

gk∆v

)

Mk.

Now, let us prove (formally) that the numerical scheme (3.15)-(3.16)-(3.17) enjoys the asymp-
totic preserving property. To do that, we first observe that (1−∆t/ε L)−1 = −ε/∆t L−1 +O(ε2),
so that (3.15) becomes, for small ε

gn+1

i+1/2,k = εL−1

i+1/2

(

vkMn
i+1/2,k

ρni+1
− ρni

∆x
+ ρni+1/2vk

En
i+1

− En
i

∆x
(vk − En

i+1/2)Mn
i+1/2,k

− Mn
i+1/2,kE

n
i+1/2

ρni+1 − ρni
∆x

−Mn
i+1/2,kρ

n
i+1/2

En
i+1 − En

i

∆x

− ρni+1/2(J
n
i+1/2 − J̄n)(vk − En

i+1/2)Mn
i+1/2,k

)

= εL−1

i+1/2

(

(vk − En
i+1/2)Mn

i+1/2,k

)(ρni+1 − ρni
∆x

− ρni+1/2(J
n
i+1/2 − J̄n)

)

+ εL−1

i+1/2

(

(v2k − vkE
n
i+1/2 − 1)Mn

i+1/2,k

)(

ρni+1/2

En
i+1

− En
i

∆x

)

.

Considering the inversion of Li+1/2 as in the continuous case (i.e. exact with respect to v), we get

gn+1

i+1/2,k = −ε(vk − En
i+1/2)Mn

i+1/2,k

(
ρni+1 − ρni

∆x
− ρni+1/2(J

n
i+1/2 − J̄n)

)

− ε

2
(1 + (En

i+1/2)
2 − v2k)Mn

i+1/2,k

(

ρni+1/2

En
i+1

−En
i

∆x

)

.
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We have now to inject this expression in the macro part, i.e. we have to compute 〈vk(gn+1

i+1/2,k −
gn+1

i−1/2,k)〉. First we compute 〈vkgn+1

i+1/2,k〉 = ∆v
∑Nv

k=0
(vkg

n+1

i+1/2,k)

〈vkgn+1

i+1/2,k〉 = −ε

(
ρni+1 − ρni

∆x
− ρni+1/2(J

n
i+1/2 − J̄n)

)

〈vk(vk − En
i+1/2)Mn

i+1/2,k〉

− ε

2

(

ρni+1/2

En
i+1

− En
i

∆x

)

〈vk
[

1 + (En
i+1/2)

2 − v2k

]

Mn
i+1/2,k〉

= −ε

(
ρni+1 − ρni

∆x
− ρni+1/2(J

n
i+1/2 − J̄n)

)

− εEn
i+1/2ρ

n
i+1/2

En
i+1 − En

i

∆x
.

For the last equality, we used the following identities

〈vk(vk − En
i+1/2)Mn

i+1/2,k〉 = 〈
(

(vk − En
i+1/2)

2 + En
i+1/2(vk − En

i+1/2)
)

Mn
i+1/2,k〉 = 1,

and

〈vk
[

1 + (En
i+1/2)

2 − v2k

]

Mn
i+1/2,k〉 = 〈vkMn

i+1/2,k〉+ (En
i+1/2)

2〈vkMn
i+1/2,k〉 − 〈v3kMn

i+1/2,k〉
= −2En

i+1/2.

Now, as in the continuous case (when λ = 0 for simplicity), we remark that Jn
i+1/2 − J̄n =

ρni+1/2E
n
i+1/2 +O(ε), so we can replace (Jn

i+1/2 − J̄n) by ρni+1/2E
n
i+1/2 since the correction terms are

of order O(ε2). Considering the term 〈vk(gn+1

i+1/2,k − gn+1

i−1/2,k)〉 enables to conclude

1

∆x
〈vk(gn+1

i+1/2,k − gn+1

i−1/2,k)〉 = −ε
ρni+1 − 2ρni + ρni−1

∆x2
+ ε

(

(ρni+1/2)
2En

i+1/2 − (ρni−1/2)
2En

i−1/2

)

/∆x

− ε

∆x2

(

ρni+1/2(E
n
i+1 − En

i )E
n
i+1/2 − ρni−1/2(E

n
i − En

i−1)E
n
i−1/2

)

= −ε
ρni+1 − 2ρni + ρni−1

∆x2

+
ε

∆x




ρni+1/2E

n
i+1/2

=1 using Poisson equation
︷ ︸︸ ︷

(ρni+1/2 − (En
i+1 − En

i )/∆x)

− ρni−1/2E
n
i−1/2 (ρni−1/2 − (En

i −En
i−1)∆x)

︸ ︷︷ ︸

=1 using Poisson equation







= −ε
ρni+1 − 2ρni + ρni−1

∆x2
+

ε

∆x

(

ρni+1/2E
n
i+1/2 − ρni−1/2E

n
i−1/2

)

.

This is a discretization of first order terms in the limit model (3.11), which proves that our scheme
is an asymptotic preserving scheme and recover also the first order corrective terms in ε.

Remark 3.1. Let us remark that a time implicit discretization is also possible in this case, as
for the diffusion asymptotic. The approach is similar (but more technical) as for the diffusion
case: the diffusion term ε∂2

xρ is provided by vM∂xρ and by ME∂xρ. In fact, this procedure is not
necessary for small ε since the diffusive CFL condition for the asymptotic model is of the form
∆t = O(∆x2/ε), which is not restrictive in this case. We observed that the implicit or explicit
approach give rise to equivalent results. The implicit approach is however used in the numerical
results (it ensures that the time step only is only restricted by the transport condition).
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4 Numerical results

We will test our algorithms with the classical test cases of plasma physics.

4.1 Periodic boundary condition and Landau damping

The initial condition associated to the scaled Vlasov-Poisson-BGK equation has the following form

f0(x, v) =
1√
2π

exp(−v2/2)(1 + α cos(kx)), (x, v) ∈ [0, 2π/k] × R,

where k = 0.5 is the wave number and α = 0.05 is the amplitude of the perturbation. A cartesian
mesh is used to represent the phase space with a computational domain [0, 2π/k] × [vmin, vmax],
−vmin = vmax = 6. The number of mesh points in the spatial and velocity directions is designated
by Nx and Nv respectively.

Diffusion case Our purpose is to compare the three models considering the diffusion scaling:
(i) Vlasov refers to the Vlasov-Poisson-BGK equation (1.1)-(1.2)-(1.5) with α = 1, discretized in
an explicit way (see [10] for instance), (ii) MM stands for the micro-macro associated model (2.3)
discretized using the implicit discretization of Proposition 2.3 and (iii) LIM refers to the diffusion
model (2.5) discretized in an explicit way (2.14).

For these three models, the time step is chosen to satisfy the CFL conditions (induced by the
transport and the diffusion); using the notation βx = ∆x/vmax and βv = ∆v/Emax (where Emax

denotes the maximum value of the electric field) we choose

- Vlasov: ∆t = Cmin
(
εβx, εβv , ε

2
)
,

- MM: ∆t = min (Cεβx/max(0, 1 − Cβx/ε), Cεβv/max(0, 1 − Cβv/ε)),

- LIM: ∆t = Cmin
(
∆x/Emax,∆x2

)
.

The CFL number C is chosen equal to C = 0.5. Finally, the phase space grid is discretized using
Nx = Nv = 128 points except for ε = 1 in which 512 points are used per direction.

Let us remark that the use of the time implicit discretization (given by Proposition 2.3) for the
micro-macro model gives rise to numerical results which are very close to those produced by the
explicit discretization (given by Proposition 2.2). Hence, only the implicit discretization is used for
the following results.

For our micro-macro model, the initial conditions are given by

ρ(t = 0, x) = 1 + α cos(kx), and g(t = 0, x, v) = 0,

whereas for the diffusion model the initial condition is

ρ(t = 0, x) = 1 + α cos(kx).

We are looking for the time evolution of the electric energy ‖E(t)‖L2 in log scale for the three
models (Vlasov, MM and LIM) but we also plot the density ρ and the electric field E as a function
of x for different times. We are interested in the influence of the ε parameter. On the one hand,
when ε ≈ 1, the MM model is very close to the reference Vlasov solution (see Figures 2 and 3). The
same is true for ε = 0.5 (see Figure 4). On the other hand, with a fixed ∆t,∆x and ∆v, we observe
that the MM model gives the right limit ε → 0 since its solution is very close to the LIM model.
Indeed, on Figures 5 and 6, we can observe that even for the density and the electric field, both
models (MM and LIM) give very similar results. Obviously, when ε is small, the computational
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time required for the explicit Vlasov scheme is too large. For some given numerical parameters, the
CPU time of the micro-macro model is about twice the CPU time of the simulation of the Vlasov-
Poisson-BGK equation. If ε is very small, the explicit computation (Vlasov) becomes unreachable
while the MM scheme coincides with the LIM model with nongrowing computational cost.
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Figure 2: Linear Landau damping in the diffusion case: ε = 1. Electric energy as a function of
time (up left), and density as a function of space x for t = 1 (up right), t = 2 (bottom left) and
t = 10 (bottom right).
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Figure 3: Linear Landau damping in the diffusion case: ε = 1. Electric energy as a function of
time (up left), and electric field as a function of space x for t = 1 (up right), t = 2 (bottom left)
and t = 10 (bottom right).
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Figure 4: Linear Landau damping in the diffusion case: ε = 0.5.
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Figure 5: Linear Landau damping in the diffusion case: ε = 0.001. Electric energy as a function
of time (up left), and density as a function of space x for t = 1 (up right), t = 2 (bottom left) and
t = 10 (bottom right).
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Figure 6: Linear Landau damping in the diffusion case: ε = 0.001. Electric energy as a function
of time (up left), and electric field as a function of space x for t = 1 (up right), t = 2 (bottom left)
and t = 10 (bottom right).

High-field case We follow the same strategy as previously considering the high-field scaling.
Indeed, the Landau damping test case is used to compare the following three models: (i) Vlasov,
which refers to the Vlasov-Poisson-Fokker-Planck model (1.1)-(1.2)-(1.6) with the high-field scaling
(α = 0) discretized in an explicit way, (ii) MM which refers to the associated micro-macro model
(3.7) discretized following Proposition 3.2 (the associated implicit version) and (iii) LIM which
refers to the high-field model (3.11) discretized in an explicit way (3.18).

Note that the use of the diffusion type Fokker-Planck collision operator imposes a condition
on the time step when explicit scheme is used: in addition to the CFL condition for the transport
∆t = Cmin(βx, εβv), ∆t has to satisfy the diffusion condition in velocity ∆t = O(ε∆v2). Hence,
the time step is chosen as follows (with βx = ∆x/vmax, βv = ∆v/Emax and C = 0.5)

- Vlasov: ∆t = Cmin(βx, εβv , ε∆v2),

- MM: ∆t = Cβx,

- LIM: ∆t = Cmin
(
∆x/Emax,∆x/(εEmax),∆x2/ε

)
.
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With the same geometry as previously, the numerical parameters are chosen as follows: Nx = Nv =
256.

For our micro-macro model (3.7), the initial conditions are given by

ρ(t = 0, x) = 1 + α cos(kx), and g(t = 0, x, v) = f(t = 0, x, v) − ρ(t = 0, x)M(t = 0, x, v),

with M(t = 0, x, v) = 1/
√
2π exp(−(v − E(t = 0, x))2/2) where E(t = 0, x) is the electric field

satisfying the Poisson equation at initial time ∂xE(t = 0, x) = ρ(t = 0, x) − 1.
We are looking for the time evolution of the electric energy ‖E(t)‖L2 in log scale for the three

models (Vlasov, MM and LIM). We are interested in the influence of the ε parameter. On the one
side, when ε = 1, 0.5, the MM model is very close to the reference Vlasov solution when regarding
the electric energy, the density or the electric field (see Figures 7 and 8 for ε = 1 and Figures 9 and
10 for ε = 0.5). On the other side, with a fixed ∆t,∆x and ∆v, we observe that the MM model
gives the right limit ε → 0 (see Figures 11 and 12 for ε = 0.01), since its solution is very close to
the LIM model. As claimed before, the computational time is independent from ε since the time
step and the mesh is fixed once for all (for ε = 1, the time computation for the micro-macro model
is about two times as large as the CPU time needed for the explicit discretization of the Vlasov
equation when the same numerical parameters are considered). If ε is very small, the explicit
computation (Vlasov) becomes unreachable while the MM scheme coincides with the LIM model
with nongrowing computational cost.
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Figure 7: Linear Landau damping in the high-field case: ε = 1. Electric energy as a function of
time (up left), and density as a function of space x for t = 1 (up right), t = 2 (bottom left) and
t = 10 (bottom right).
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Figure 8: Linear Landau damping in the high-field case: ε = 1. Electric energy as a function of
time (up left), and electric field as a function of space x for t = 1 (up right), t = 2 (bottom left)
and t = 10 (bottom right).
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Figure 9: Linear Landau damping in the high-field case: ε = 0.5. Electric energy as a function of
time (up left), and density as a function of space x for t = 1 (up right), t = 2 (bottom left) and
t = 10 (bottom right).
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Figure 10: Linear Landau damping in the high-field case: ε = 0.5. Electric energy as a function of
time (up left), and electric field as a function of space x for t = 1 (up right), t = 2 (bottom left)
and t = 10 (bottom right).
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Figure 11: Linear Landau damping in the high-field case: ε = 0.01. Electric energy as a function
of time (up left), and density as a function of space x for t = 1 (up right), t = 2 (bottom left) and
t = 10 (bottom right).
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Figure 12: Linear Landau damping in the high-field case: ε = 0.01. Electric energy as a function
of time (up left), and electric field as a function of space x for t = 1 (up right), t = 2 (bottom left)
and t = 10 (bottom right).

4.2 Periodic boundary condition: first order terms in ε

In this subsection, our purpose is to numerically check that the proposed scheme is asymptotically
equivalent to the limit scheme, up to O(ε2). To do that, we consider the high-field limit and
compare the results given by the numerical scheme of Proposition 3.2 to those obtained by the
limit model (3.18).

The test case is the bump-on-tail test, the initial condition of which is

f0(x, v) =
1√
2π

(
9

10
exp(−v2/2) +

2

10
exp(−4(v − 4.5)2)

)

(1 + α cos(kx)),

where (x, v) ∈ [0, 2π/k]×[−vmax, vmax], with vmax = 8, α = 0.05, k = 0.5. The numerical parameters
are Nx = Nv = 256. We plot on Figure 13 the difference between the relative first momentum of g:
∫
vg(t, x, v)dv/ε and the corrective terms in the high-field limit model ∂xρ− ρE (with Nx = 256),

as a function of ε. Indeed, according to the previous computations (see subsection 3.2), these two
terms only differ from ε2 terms. We consider the L1 norm in x to evaluate the difference at the
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given time t = 3. As expected, we can observe in Figure 13 that the relative difference follows a
line of slope 1, which confirms the formal analysis performed in previous sections. We also plot on
Figure 14 the two spatial functions

∫
vg(t, x, v)dv/ε given by the micro-macro model (MM) and

∂xρ(t, x) − ρ(t, x)E(t, x) given by the limit model (LIM), at t = 3, for ε = 0.1, 0.08, 0.02, 0.001. It
confirms that the scheme (3.2) accurately preserves the high-field limit asymptotics up to O(ε2).
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Figure 13: Bump-on-tail test case : L1 norm of the difference between the relative first momentum
of g (

∫
vgdv/ε) and the corrective terms in the high-field limit model ∂xρ− ρE. t = 3.
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Figure 14: Bump-on-tail test case: relative first momentum of g (
∫
vg(t, x, v)dv/ε) denoted by MM

and corrective terms ∂xρ− ρE denoted by LIM as a function of x at t = 3. Top left: ε = 0.1, top
right: ε = 0.08, bottom left: ε = 0.02, bottom right: : ε = 10−3.

4.3 Dirichlet boundary condition and boundary layer

Now, we are interested in the boundary layer induced by an imposed nonequilibrium boundary
condition (i.e. which does not correspond to the diffusion limit of the distribution function).
Hence, in the whole domain, the solution converges towards the diffusion limit as ε → 0 but when
the boundary condition is imposed to be different from the diffusion limit, the solution presents a
boundary layer (see [24, 25, 29]). To observe this phenomenon, we consider the following conditions
for the kinetic model

f(t = 0, x, v) = 0, fL(t, x = 0, v) = vM(v), fR(t, x = 1, v) = 0, v ∈ R.

For the micro-macro model, we use the procedure presented in section 2.3.3. Finally, we need to
determine the consistent boundary condition for the diffusion model; the exact condition is given
by [8] but a good approximation is given by (see [16, 24, 25, 29])

k̄(t, v) = M(v)

∫

w>0
wfL(t, x = 0, w)dw
∫

w>0
M(w)dw

,

and

ρL(t, x = 0) = k̄(t, v) +

∫

w>0

w2
[
fL(t, x = 0, w) − k̄(w)

]
dwM(v),

whereas the right condition is ρR(x = 1) = 0.
We then compare the following three models: (i) the reference Vlasov solution of (1.1)-(1.2)-

(1.5) with α = 1, (ii) the MM model (2.3) discretized following Proposition 2.3 and Remark 2.2. For
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small values of ε, (iii) the limit diffusion model (2.5) is also plotted. The comparison is performed
on four examples. For the following tests, the time steps are taken as in the Landau case i.e.:

- Vlasov: ∆t = Cmin
(
εβx, εβv , ε

2
)
,

- MM: ∆t = min (Cεβx/max(0, 1 − Cβx/ε), Cεβv/max(0, 1 − Cβv/ε)),

- LIM: ∆t = C∆x2.

The CFL number C is chosen equal to C = 0.5.

Example 1 We first investigate the radiative transport equation in which M(v) = 1 for v ∈
[−1, 1], and the electric field is considered constant null, as in [29]. The initial condition is f(t =
0, x, v) = 0 for the kinetic model. The left boundary condition is fL(v) = v which leads to a
boundary layer whereas fR(v) = 0.

On Figure 15, the density is plotted at time t = 0.4 in four configurations: the limit model (with
Nx = 128), the Vlasov equation (with ε = 10−2, Nx = 8192 and Nv = 64) and the micro-macro
model (for ε = 10−2 and 10−3, Nx = 256 and Nv = 64). As in [29], the four solutions are very close
inside the domain. Inside the boundary layer, the micro-macro model gives satisfactoring results.

Example 2 In this example, the velocity domain is [−6, 6] and the equilibrium is M(v) =
1/
√
2π exp(−v2/2). The electric field is considered null. The initial condition is f(t = 0, x, v) =

M(v) for the kinetic model. The left boundary condition is fL(v) = vM(v) whereas a null right
boundary condition is imposed. The final time is 0.1.

On Figure 16, the density is plotted at time t = 0.1 for different values of ε: 1, 10−1 and 10−2.
For the Vlasov model limit model and the micro-macro model, Nx = 400 and Nv = 32 whereas
Nx = 128 for the diffusion model. We can observe that the micro-macro model and the reference
Vlasov equation give very close results in all the domain. As in the previous case, for small ε,
the three solutions are very close inside the domain; the boundary layer is well resolved by the
micro-macro model.

Example 3 As in the previous example but here the electric field is considered constant equal to
1, as in [24]. The same conclusions as in the previous case are available here.

Example 4 The electric field is considered nonlinearly through the Poisson equation ∂xE(t, x) =
ρ(t, x) =

∫
f(t, x, v)dv, with the condition

∫
1

0
E(t, x)dx = −1 as in [14]. The initial condition is

f(t = 0, x, v) = 0 for the kinetic model.
On Figure 18, results obtained by the Vlasov equation and the micro-macro model are plotted

with ε = 1 for different times: t = 0.1, 0.2, 1. We can observe that the density given by the two
models are very close. On Figure 19, the ε parameter is taken equal to 0.1; the density given by
the two models is also nearly superimposed. Figure 20 shows results for ε = 10−2: near the right
boundary (in which equilibrium boundary condition is imposed), they are nearly superimposed,
and at x = 0, a boundary layer can be observed (resolved by the spatial discretization).
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Figure 15: Boundary layer test case, example 1: density as a function of the spatial variable at
t = 0.4.
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Figure 16: Boundary layer test case, example 2: density as a function of the spatial variable at
t = 0.1. Left: ε = 1. Middle: ε = 10−1. Right: ε = 10−2.
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Figure 17: Boundary layer test case, example 3: density as a function of the spatial variable at
t = 0.1. Left: ε = 1. Middle: ε = 10−1. Right: ε = 10−2.
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Figure 18: Boundary layer test case, example 4: ε = 1. Density as a function of the space x. Left:
t = 0.1. Middle: t = 0.2. Right: t = 1.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0  0.2  0.4  0.6  0.8  1

Vlasov
MM

D
en

si
ty

x

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Vlasov
MM

D
en

si
ty

x

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0  0.2  0.4  0.6  0.8  1

Vlasov
MM

D
en

si
ty

x

Figure 19: Boundary layer test case, example 4: ε = 0.1. Density as a function of the space x.
Left: t = 0.1. Middle: t = 0.2. Right: t = 1.
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Figure 20: Boundary layer test case, example 4: ε = 0.01. Density as a function of the space x.
Left: t = 0.1. Middle: t = 0.2. Right: t = 1.

5 Conclusion

The micro-macro decomposition has been applied to collisional Vlasov equations to derive an
asymptotic-preserving numerical scheme in the diffusion and high-field limit. The derivation is
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inspired from previous works in which the methodology has been applied to the radiative transfer
equation [29] or to the BGK equation [3].

However, some specifications are needed here: first, the electric field induces transport in the
velocity direction (and consequently an associated discretization), and second, the equilibrium
associated to the high-field limit is x-dependent which adds some technical difficulties. Hence, the
scheme presented here has the following properties:

• it enjoys the asymptotic-preserving property (up to ε2 order terms), so that the time dis-
cretization can be chosen independent of ε;

• the limiting scheme (for small values of ε) can be either explicit or implicit (using [28]);
obviously, the implicit version enables the use of time steps only induced by the transport;

• boundary layers can be treated.

Some numerical results show the good behaviour of the approach compared to the reference
solution in the transport regime (given by the Vlasov equation) and in the diffusion or high-field
limit (given by the corresponding asymptotic limit model).

Natural perspective of this work would be its extension to more relevant model from the physical
point of view, i.e. using the Landau collision operator. The derivation of an asymptotic-preserving
scheme of the Vlasov-Landau equation in the fluid limit seems to be interesting and feasible using
this approach and the scheme presented in [28].
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