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Real-time Dynamic Trajectory Planning
for Highly Automated Driving in Highways

Paulo Resende, and Fawzi Nashashibi

Abstract— This paper presents the implementation of two
methods for real-time trajectory planning in a dynamic

environment applied to highly automated driving ina highway
scenario. Both methods have been implemented forétHAVEit

European project. The first method follows the Parial Motion

Planning approach, and the second method uses"5degree
(quintic) polynomials to generate a detailed spatibemporal

description of a trajectory to be performed. Both
implementations are integrated in a simulation enwvonment

and in an experimental research vehicle within HAVE. Results
and evaluations of the trajectory planning algorithms are
presented.

Keywords— Motion planning in dynamic environments, co-

One of the major goals of HAVEIit European projectd
improve driving by introducing an intelligent joiaystem for
vehicles that allows highly automated driving [3][@n
highly automated vehicles the driver can choosevéat
different levels of automation: from manual to High
automated.

Driving in a highly automated mode means that the

vehicle has the technical capability to drive fullytomated,

but that is used in a way that the driver is always

meaningfully involved in the driving task, for expla by
initiating a driving manoeuvre that is then perfedrby the
automation. The concept of optimum task repartiaiows
the optimal allocation of control between the driead the

pilot, HAVEIt, highly automated driving, vehicle control co-system taking different driver states and emvirental

situations into account. The transition betweerfedit
| INTRODUCTION levels of assistance and automation are also agkttas this

Since early 1980's there was an increasing worldwidproject.
interest in highly automated driving at high speeds A fundamental part of this joint system is the dofpthat
Dickmanns’ pioneering work on the vision-guidedprovides passive or active assistance to the degeording
Mercedes-Benz robot van [1], the European EUREKAp the active automation level. It is in the caspimodule

PROMETHEUS project, DARPA’s ALV project, etc. Ineth that the automation driving strategy is determiaad where
90’s Dickmann’s VaMoRs-P [2] and S-Class VehiClethe trajectory p|anning is performed_

CMU'’s Navlab [3] and University of Parma’s ARGO fect

[4] contributed to demonstrate the feasibility afvihg at

long distances in an autonomous mode but with laffi¢. Il. SYSTEM ARCHITECTURE

In 2002, the fII‘St ed|t|0n Of the DARPA Gl‘and Cbﬂﬂ;e The imp'emented trajectory p|anning a|gorithms are

competitions was launched; and few years later theiegrated into the Co-Pilot component of the HAVEint

demonstrated the possibility of performing full @mous  system Framework (see Figure 1). Each componettisf

driving off road and in urban areas (Urban Chalesr2007).  framework runs as separate process and the comatiomic
In these demonstrations where the driver is totalljetween components is done by shared memory. Treritf

disconnected from the driVing process we shouldherat is possib'e to run the processes on a Sing|e moceB' on
speak about navigation and unmanned vehicles notitabmyltiple separate processors.

driving. It is hard to believe that car manufactarend

ordinary drivers would be interested in implemegtisuch Driver ‘Em.mr.memsensmq ‘Veh.c.e 59“5"’5'
solutions in tomorrow’s cars. Driver T 1T
Although the development and validation of next memtern ]f‘ ;l S ||
generation ADAS tend to go towards higher autommatio e T :
levels when compared to the current state of thethis is el L
still constrained by the user acceptance. An intefiary step i peeoae | | ™ o | Co-Pilot | 5 :
toward full autonomous driving is the cooperativividg i Tl"‘ ] 1“ §:
where the driver is assisted by a decisional systercan 1| Mad:;elemn Amn;‘:m = :MS:' i
assist him in his driving tasks. The optimizatidntiee task ' — : = :
repartition between driver and co-driving systenDS) is : J | automation level < :
usually not taken into account in fully autonomauising. ” s e !

i1 i
b motion control vector
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To support a highly automated driving and a dynaams& The Driver State Assessmemipdule (DSA) estimates the
repartition it is necessary to have sufficient infation and driver's alertness based on his inputs at the \eltiontrols
knowledge about the vehicle, the driving environtmnand and processed images from a video camera thatvasstire
the driver state, and sufficient actuators to ifice the driver’s face.
vehicle and the driver actions. The strength of this influence is determined iMade

Information about the environment, e.g. lanes an8election and Arbitration Un{tMSU). The MSU determines
obstacles, and driver state, are gathered by Sbmesors an appropriate assistance and automation mode,eto b
modules. Communications are also used to complethent suggested or requested, given the inputs from tiveeD) the
perceived environment. Data Fusion, the Co-Pilot and the Driver State Assent

The Data Fusion module collects the information modules.
available from the sensors and generates a pevoepidel The communication with the driver is carried oua d
composed of a vehicle state and perception modeé¢l and haptic multimodaHuman Machine InterfacgHMI).
obstacles information). The same HAVEit Joint System Framework runs either

The Co-Pilot module is intended to support the driver bywith a driving simulator (SMPLab) or directly inghiesearch
identifying the current driving situation and prdwig a vehicle from the German Aerospace Center (DLR)edall
recommendation of the manoeuvre to be executedhby tFASCar that is used as a demonstrator to valideteystem
driver and a trajectory to be tracked by the vehiclarchitecture and algorithms.
controllers in a highly automated mode. This tragec is
determined taking into account the driving strategy
(manoeuvre), the current vehicle state, the peimeptodel,
the driver inputs and other vehicle related cofstisa

In order to achieve a strong cooperation with theed,
irrespective of the automation level, the co-pjpobcess is Laser
achieved using two main functionalities: scanners

1) The definition of a driving strategy, providey fast and
simple algorithms, evaluates the possibility offpening Fig. 3 FASCar demonstrator vehicle
several predefined manoeuvres.

2) The def!n_mon of a trajec_tor.y, using _the playsly Ill. DRIVING STRATEGY
selected driving strategy to limit the trajectoryapner o ) ]
he goal for the trajectory planning algorithm. Jlgioal can

e, for example, to perform a lane change or tp stahe
current lane. For reliability reasons the outconfette
driving strategy module consists of a fusion of theults
from three manoeuvre planning algorithms which work
parallel. Two algorithms build up a manoeuvre gl one
algorithm generates a manoeuvre tree. Both reptasmms
are evaluated and updated within the fusion, and teethe
B e e trajectory planning algorithm.

The generated trajectories are used to influenee t
vehicle actuators via theCommand Generation and
Validation the high level controller.

The following diagram illustrates the data flow tife
trajectory functionality that can be divided in Zim blocks:
inputs, process and outputs. The process compasehe
trajectory planning algorithm.

| Data Fusio | | Manoeuvre | | Arbitrated Driver Injuts |

c
Vehicle Lanes Obstacles Manceuvre Preferred
State grid and tree, spee

A. Manoeuvre Grid

The manoeuvre grid algorithms [7] build a solutspace
as the combination of three longitudinal actionsl émree
lateral actions. In a longitudinal action the véhican
decelerate, accelerate, or hold in the currentdspaege. In
a lateral action, the vehicle can change lanedaitiht or to
the left, or stay in the current lane. To theseenin
_______________________________________________ manoeuvres, a minimum risk manoeuvre is added, hwhic
etk Alnaieiiaiiie ittty corresponds to stop in the right most lane witlmfortable
| Traiectorie | speed, together with an emergency manoeuvre, that
corresponds to a full braking until standstill. Résg from

1
1
1
:
1
i an evaluation of the collision risk and performaira#cators
/ Trajectory / / Associated : H . ..
1
1

s e like speed, comfort, consumption and respect ofditidng
rules associated to each manoeuvre, a score (calledtial)
is attributed to each one of the eleven grid maneesu

_______________________________________________

Fig. 2 Data flow of the trajectory functionality
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Fig. 4 Manoeuvre grid

B. Manoeuvre Tree

The manoeuvre tree algorithm [8] offers an integplat
representation of the current manoeuvre performedhb
vehicle and possible future manoeuvres to be peddr
regarding the current situation. The root of treetcontains
the current manoeuvre, and the feasible manoewviézsh
can possibly follow the current manoeuvre are assigto
leaves in the tree. A quality indicator ealential that
reflects the preferences of the automation, isutatied using
fuzzy logic and attributed to each feasible manoeurn the
tree.

0.03

EmergencyBrake

0.50
ChangelLaneRight
A 0.50; H: 0.90; D: 0.49;

0.79
ChangelLanelLeft
A 079 H: 0.594, D: 0.50;

100
Followvehicle
H: 1.00;D: 0.11;

Fig. 5 Manoeuvre tree

IV. TRAJECTORYPLANNING

The trajectory planning uses the current vehiciestthe
perception model, the driver inputs (e.g. preferspeed)
and driving strategy outputs, manoeuvre grid andagavre
tree, to generate a detailed spatiotemporal desnripf a
time bounded, feasible and safe trajectory to bépwred.
Although two manoeuvre representations are avaiaoly
one of them is used to set the goal for the trajggblanning
algorithm, either by using the grid or the treeresentation
after the fusion of both approaches.

A total of three trajectories are generated: onelamee.
Each generated trajectory corresponds to
manoeuvre, the one with the highest valential, #ogiven
lane: left, current or right.

The trajectories are ranked according to the vikeof
the associated manoeuvres. The best ranked trajethe
one with the highest manoeuvre valential, will lsediby the
controller. The trajectory planner will not decitte change
the manoeuvre to be performed since that taskppased to
be assigned to the driving strategy functionality.

In practice, once a coarse plan has been defingukbafic
motion plan is assigned to the vehicle. This motman
defines a sequence of desired vehicle states forfuture

time instants. This sequence of desired statesna is the
so-called trajectory.

In order to provide guarantees of the safe motibthe
vehicle, when computing the trajectory the vehiobes to
correctly consider its own limitations and the featu
movement of the other vehicles. This approach fedlahe
work described in [9][10][11]. Since the vehicle sha
limited visibility, its plans can only reach a lited horizon.
Since a wall (traffic jam, road blockage, etc.ayld exist on
the frontier of the unobserved areas all trajeewrare
required to stop before reaching the end of thébility
region. When the observed region in the perceptiodel is
updated, the trajectory is also updated.

Two trajectory planning algorithms have been
implemented for HAVEit: a simplified partial motion
planner and a quintic polynomial planner. Thegmtthms
were implemented in pure C with static memory altem
so that a future integration into an Electronic €olnUnit
(ECU) would be possible.

Due to the favourable characteristic of the polyi@dm
based trajectory planner (low execution time, aidy
expression, simple implementation and tuning, etquec
behaviour) it is the currently used method in the
demonstrator vehicle.

A. Simplified Partial Motion Planner

Because of the partial nature of the provided ttajy,
we call this approach Partial Motion Planning (PN#)

The PMP is a motion planning strategy that expicit
accounts for the real time constraint imposed by an
environment cluttered with moving obstacles, andrgotees
a bounded computation time at the expense of its
completeness, that is, the guarantee to plan a letanp
trajectory to the goal. Besides, in a real envirentnthe
evolution in time of the perception model can bedited
over a limited time only.

In order to ensure that the trajectory is feasimjethe
vehicle, the trajectories generation strategy isedaon a
search in the command space containing acceleratioh
steering rate values.

Given an initial vehicle state (position, orientati speed,
steering angle), we search the set of commandsvittiat
allow the vehicle to reach at best the goal. Thecke model
(bicycle model) used to integrate the effect oeguence of

the bégmmands takes into account the saturation of &hécle in

acceleration and steering [9]. Also, for any gigtate of the
partial trajectory it is verified that the vehidke capable of
stopping without colliding. By doing so, it is emsd that at
any time the solution available will not activelyake the
vehicle collide. In order to provide this guarantieis

necessary to use a conservative prediction of #iécle's
surroundings [12].

Directly using a full search on a discrete comnsand
space, using a continuous curvature distance ntetrieach
a specific goal and doing brute force collisionseciing has
been shown to provide satisfactory results [9].



During the construction of the sequence of statetime
in the PMP algorithm uses this metric to find theufe
vehicle state (child node) nearest to the lane (f&glre 6).
The future vehicle states are resultant from discre

& commands (acceleration and steering rate) appled t
r X Unsafe state vehicle model (bicycle model). The speed goal isgiby
Initial state Explored states the minimum between the maximum system speed,che r
_A 7% Currentstate speed limit and the driver preferred speed.
O child sates The PMP searches to minimize the distance to these
goals. If a future vehicle state (child node) itusated
Nearest child (steering or acceleration outside of the predefiirails), or

is in a collision state, it is marked as a dead @amd will not
Fig. 6 Construction of the sequence of statesrie in PMP be used in the trajectory.

However, the HAVEit project presents specific ne@f&l B. Quintic Polynomial Planner
previous work needed some adaptation. First of thk
driving is modelled as actions on lanes. The gaald
obstacles are also defined as presence on lanes.
provides a coarser (faster) spatial sampling foltisian
checking and simplifies the distance metric to goa[n
Secondly, instead of searching a trajectory thatidsvthe
obstacles and reaches the goal as best as pobgitday
means, a simplified approach is used: the trajgctmes

straight toward§ the des'Ted lane and stop§ 'fma‘?'e.'s trajectories, dynamic constraints need to be addethe
present. The circumvention of obstacles is proédjitthis polynomial

responsibility is delegated to the driving strategy 1. \odel a geometric path during a lane chan :

X : , ) alitire
functionality that will decide the sequence of lastenges (" san agpproachesp using gth degree %I:)Iynomials
required to circumvent an obstacle. These simplifims [13][14][15]

allow a more efficient implementation, in code sim@mory
usage and computation time.

Two goals, or targets, are to be reached by thécheeh
given a manoeuvre: a lane and a speed.

In order to reach a lane it is necessary to kndvaw far
are we from reaching the centre of the desired?an€o
provide an answer to this question it was implemena
distance metric that provides the shortest Dubiih po a

In this algorithm is used a mathematical functibwatt

rovides a geometric modelling (polynomial) of thehicle
1ﬁJajectory that responds to the realistic demantishe
anoeuvre to be performed.
The advantage of this approach compared to the
simplified PMP is that it is faster to run, howe\eerpure
geometric approach can lead to trajectories thahatabe
achieved by the vehicle. To eliminate these wrong

By choosing a 5th degree (quintic) polynomial, dhir
degree behaviour is assured for the longitudinal lateral
accelerations. A function of third degree is thenimum
degree that can ensure realistic behaviour of the t
acceleration components. So, the position of théclee must
follow a function of 5th degree in the longitudindland
lateralY directions.

The following figure shows an example of a typitaie

line. change relative to a system of axes of referelc¥|[
Y
X
[ Fig. 8 Example of a lane change
Fig. 7 Shortest Dubins path from point to line X(t) and Y (t) will have the following formulas function of
timet:
— 5 4 3 2
This method provides the optimal path connecting a X(1) = A+ A+ AP + A+ AL + A,
point S (position and orientation) and a life passing Y(t) =B’ +B,t" +Bt’ +B,t* + Bt +B,

through the pointsA and B. The path consists of arcs

tangentially connected by & point or a single E@gment  The equation coefficients\ls andB's) are determined by

depending on the distance between the pdiand the line, gnecifying dynamic constraints (boundary conditjds the
and the vehicle maximum turning radius at a giyesesl.



lateral and longitudinal values of the position|loeity and
acceleration. See Table I.

TABLE |
BOUNDARY CONDITIONS ON THELANE CHANGE TRAJECTORY

Initial Final
Position X©0)=0 X(AT) = X g
Y(©)=0 Y(AT) =Yy
Speed X (0) =V, X(AT) =V
Y(©)=0 Y(AT)=0
Acceleration X(©0)=0 X(@aT)=0
Y(©) =0 Y(&T)=0

« longitudinal: acceleration (engine torque or pedal

braking depending on the component signal);

- lateral: steering angle (or torque).

A straightforward idea consisting of decoupling the
longitudinal dynamics and lateral dynamics, undeme
simplification hypothesis, can lead to a substantia
simplification of the controller synthesis phasedded, with
these hypotheses, the vehicle model can be divitedwo
linear sub-models, longitudinal and lateral, eatkvioich is
controlled by a separate control organ, engineu®rgnd
pedal braking to control the longitudinal dynamarsd the
steering angle to control the lateral dynamicsthis case
linear robust controller synthesis techniques anded.

The Xinar and Ying are the position at the end of the lane To compute the vehicle actions in order to keep the
change trajectoryAT is the duration of the lane change andiehicle close to the planned trajectories, the ldégment
Vinitar 1S the initial vehicle speed. To simplify thepetween the estimated current vehicle state (velpiokition
determination of the coefficients the vehicle speled in time) and the trajectory point to be tracked ist
considered constant along the lane change trajeatut the determined. This displacement provides the relativer
initial and final acceleration are considered tebm. between “where we are” and “where we wanted tofoe&a

After the geometric model coefficients are deteedin given moment in time. Adequate control laws try to
X(t) andY(t) are calculated. These points are calculated inminimize this error and bring the vehicle stateseldo the
way that they are spaced of, at the most, hali@fiength of ~desired one. The produced controller actions anstcained

the vehicle to ensure that there is no free spateden two
consecutive states. This will be useful for thelision
checking verification to ensure that there are oblisions
between consecutive vehicle states in the trajgctor

This calculated points are then added to the ti@jgc
until the maximum number of trajectory elementeeiached,
the lane centre (goal) is reached or a collisionlasected
with an obstacle or with the road margins (e.g. ehdsible
lane). If the lane centre is reached and the t@jgds not
full then the remaining trajectory elements arkedilin with
existing lane centre points.

The collision checking is performed while filling ithe
trajectory with the determined points. A trapezbigpeed
profile is attributed to the trajectory taking indocount the

in magnitude and rate of change before being tratesino
the actuators.

VI. EXPERIMENTAL RESULTS

The trajectory planning algorithms described in
paragraph IV were validated in the HAVEit Joint &ys
simulation environment and in the FASCar demonstrat
vehicle.

The following use cases have been addressed diléng
experiments: lane keeping; stop behind front vehiahd
adaptive cruise control (ACC); lane change and takerg;
emergency braking.

The following figures and results were obtained levhi

vehicle limits in terms of lateral and |Ongitudinalperforming a h|ghway scenario with three lanes amd

acceleration, maximum allowed speed and the peskibind
collision. A timestamp is then attributed the eaajectory
element.

V. CONTROL

A typical motion control problem is the trajectory

tracking, which is concerned with the design oftoominaws
that force a vehicle to reach and follow a timeapaeterized
reference (i.e., a geometric path with an assatititaing

law). According to the designed control laws, cohtr

commands are calculated based on:
- the vehicle state estimation (Data Fusion);

- the trajectory to be tracked, that is the best @dnk

trajectory according to the driving strategy (CteB)j

« the automation level (MSU);

- direct driver controls (Driver).

This command, that takes
physical limits (e.g. in terms of vehicle stabi)ityis
transmitted to the execution layer
composed of two components:

into account the vehic

(vehicle actigjto

obstacle present in the middle lane.

Fig. 9 Trajectories in the HAVEit Joint System fework: Simplified
PMP (left) and Quintic polynomial (right)

The following table shows a brief comparison of the
implemented trajectory planning algorithms. The hamof
|%bstacles influences the collision checking comjmutatime
and therefore the total execution time of the ey
planning algorithm.



TABLE Il
TRAJECTORYPLANNERS COMPARISON [1]
Trajectory Execution Advantages Disadvantages
Planner Time
Simplified 250 ms Flexible; Accounts for Complex; Search
PMP the real time constraint metric difficult to [2]
of dynamic cluttered choose; Time
environments. consuming;
Quintic 16 ms Fast; Analytical Inefficient for [3]
polynomial expressions; Realistic  cluttered
behaviour. environments.
[4]

VIl. FURTHER DEVELOPMENTS& PERSPECTIVES

Within the HAVEit project, we plan to improve the
polynomial trajectory planner by ensuring a smoot
acceleration profile using a sigmoid shaped (S-euspeed
profile instead of a trapezoidal one. We will ogtien the
collision checking algorithm to reduce the compotatime.

In other future developments we would like to extéine
use of the trajectory planning algorithms to urbléde
driving areas: complex structured (e.g. intersestio [7]
roundabouts) and unstructured (e.g parking lots)
environments, interaction with a highly dynamic
environments and sophisticated behaviors of sudiogn 8]
obstacles (e.g. pedestrians). Also we would likdedal with
different and augmented traffic rules, like traffights [16]
and traffic signs (STOP and give way signs), anith wther
road markings like pedestrians crossroads, that rente
contained in highway scenarios. These perspectivateh
partially the scope of the new French project Awtisation
Basse Vitesse (ABV): Low Speed Automation.

(6]

(9]

[

[11]
VIIl. CONCLUSIONS
In this paper, we addressed the problem of highly
automated driving through the development of a itmt-p [12]
system. The system described here consists ofrajgctory
planning algorithms that were adapted in ordeittwith the
HAVE:it project specifications where we focus onthigpeed
driving on highways. The algorithms were integratgd the
SMPLab simulator and validated using HAVEit's FA3Ca
research vehicle. Both approaches were tested a@h réi4]
conditions with different use-cases. The quintitypomials
based technique revealed more interesting perfarenam

[13]

. : . ... [15
terms of time computations and trajectory stabiti [l
However, the PMP intrinsic characteristics could rhere
suitable for less constrained driving or for robstiike [16]

navigation. The system will be soon exhaustivestad and
validated using HAVEIit's testbeds and experimental
platforms in order to validate more use cases.
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