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Shell Model for Reconstruction and Real-Time

Simulation of Thin Anatomical Structures

Olivier Comas1,2, Christian Duriez1 and Stéphane Cotin1

1 INRIA, Shaman team, Lille, France
2 Preventative Health Flagship, CSIRO ICT, AEHRC, Brisbane, Australia

Abstract. This paper presents a new modelling technique for the defor-
mation of thin anatomical structures like membranes and hollow organs.
We show that the behaviour of this type of surface tissue can be ab-
stracted with a modelling of their elastic resistance using shell theory.
In order to apply the shell theory in the context of medical simulation,
our method propose to base the geometrical reconstruction of the organ
on the shape functions of the shell element. Moreover, we also use these
continuous shape functions to handle the contacts and the interactions
with other types of deformable tissues. The technique is illustrated using
several examples including the simulation of an angioplasty procedure.

1 Introduction

The human body is composed of various deformable anatomical structures. A key
challenge of soft-tissue modelling is the variousness of the mechanical behaviours.
It seems unrealistic to use a unique model for all tissues. Yet most of previous
works focus on volumetric models that are able to capture the behaviour of
solid organs like the liver or the brain (see for instance [1,2]). In contrast, this
paper seeks to propose a solution for simulating, in real-time, the deformation of
thin anatomical structures whose volume is negligible compared to their surface
area. Examples include hollow structures, such as the wall of blood vessels, or
membranes, such as the Glisson’s capsule surrounding the liver. It is also of
particular interest to us for modelling the colon in our colonoscopy simulator [3].

Shell theory allows the modelling of structure deformations when the thick-
ness is small compared to its other dimensions [4]. The key idea is to model the
physical shell as a surface but endowed with mechanical properties in the form
of elastic resistance to stretching and bending forces. Rather than resorting to
shell theory, previous works in medical simulation often rely on linear or angular
mass-spring models as in [5,6]. Yet, such models are limited in their ability to
describe certain behaviour, as they do not rely on continuum mechanics: it is
difficult to derive spring stiffness (in particular for angular springs) from elastic
properties (Young’s modulus and Poisson’s ratio). The work of Choi et al. [7] in
computer graphics refers to a fast shell-based modelling for interactive simula-
tion. Their model relies on simplified energy functions and precomputed modal
analysis for fast and visually realistic results. We propose to rely on a similar



approach but with more accuracy to be applicable to medical simulation. Our
model is not based on modal analysis but uses a co-rotational formulation and
polynomial shape functions presented in [8].

To model the deformation of complex anatomical structures using shell ele-
ments, the first step is to describe its surface with curved patches. This process
is quite similar to the reconstruction of the surface of objects in computer vision.
Indeed calculating curvature maps of 3D surfaces represented as digitised data
(point clouds or triangulated meshes) has been extensively studied. One of the
most common approach is to use continuous surface patches [9]. The surface is
locally approximated by an analytic representation called surface patch, usu-
ally chosen to be an implicit surface. These works target approaches that are
not noise-sensitive and coherent surface and curve extraction from 3D data [10].
However, our situation is substantially different as we want to model the defor-
mation of the structure. In that regard the curvature of the surface has a physical
meaning: it represents the mid-surface of the shell. We propose to approximate
the surface of anatomical structures with shell elements whose each surface is
described by the shape function used in our shell formulation.

These polynomial shape functions are used in three different ways in our
computational model: (a) to approximate complex geometrical shapes, (b) to
compute internal forces, (c) to compute contact forces onto a curved triangle.
Section 2 presents our Finite Element Modelling (FEM) for shell elements and
how we process contacts and interactions with other models. In section 3 we in-
troduce an automatic process to obtain meshes from image based reconstruction.
Finally the benefits of our approach (meshing of a curved surface, fast compu-
tation and possible interactions with solid models) are illustrated using various
examples showed in section 4. Implementations were carried out within the open
source framework SOFA [11].

2 Co-rotational triangular shell model for thin structures

A complete description and validation of our co-rotational triangular shell finite
element model is available in one of our previous publication [8]. Therefore we
will only remind the key points. We improved and extended a plate model first
introduced by Przemieniecki [12] to a co-rotational formulation. Co-rotational
approaches offer a good trade-off between computational efficiency and accuracy
by allowing small deformations but large displacements. Once combined with
an in-plane membrane formulation we obtain an accurate, yet computationally
efficient, shell finite element method featuring both membrane and bending en-
ergies. In the following we detail the bending stiffness computation in order to
present the polynomial shape functions that are used in the shell model.

Polynomial shape function To calculate the stiffness matrix for the trans-
verse deflections and rotations shown on Fig. 1, the deflection uz is computed
using a polynomial interpolation:

uz = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 + c7x
3 + c8xy

2 + c9y
3 (1)



Fig. 1. The different degrees of freedom u of a triangular thin plate in bending.

where c1, . . . , c9 are constants. Using a third-degree polynomial expression allows
us to reach a greater precision for both the computation of the bending energy
and the interpolation within the surface of the shell. Let us define the vector
u = {u1u2 . . . u9} of the displacements and slopes at the three corners of the
triangular plate using the following notations:

u1 = (uz)x1,y1
u2 =

(

∂uz

∂y

)

x1,y1

u3 = −

(

∂uz

∂x

)

x1,y1

(2)

and so on for the two other vertices and we can derive a matrix C such as
u = Cc where c = {c1c2 . . . c9}. We can then calculate the strains from the
flat-plate theory using:

exx = −z
∂2uz

∂x2
eyy = −z

∂2uz

∂y2
exy = −2z

∂2uz

∂x∂y
(3)

Symbolically this may be expressed as e = Dc where D derives from (1) and
(3). Noting that c = C−1u, we have e = DC−1u = bu where the strain-
displacement matrix b = DC−1. The stiffness matrix Ke for an element is then
obtained from:

Ke =

∫

v

bT
χbdV where χ is the material matrix . (4)

Mechanical interactions with the curved surface of shells The practical
interest of modelling complex behaviours such as bending and twisting would
remain fairly low for medical simulation if contacts and constraints were not
handled properly. In our case the difficulty comes from different sources. First the
collision detection must be carried out with the curved surface of shell elements
as opposed to the classic detection on plane triangles. Then forces applied to a
given triangle need to be distributed between linear forces and torques onto its
three vertices. As we will see, the same polynomial interpolation function chosen
to compute the bending energy in our FEM formulation is also used to capture
the interactions between the curved surface and other objects.

In order to detect the collision with the bent surface, we have chosen the
subdivision approach. We first sample the flat surface of each element by recur-
sively dividing each triangle into four smaller ones and the deflection of each



new vertex is computed using (1) according to the displacements and slopes at
the three vertices of the triangular element. This process of subdivision allows
us to render each shell as a curved triangle (Fig. 2 (a) and (b)) and detect any
collision with the curved surface of the shell using any of the classic collision
detection algorithms working on flat triangles.

Once a collision has been detected, it must be processed by distributing the
linear force received on the bent surface between the three vertices of the triangle.
First the linear part of the force is simply transmitted on each node using the
barycentric coordinates of the contact point’s projection onto the triangle.

The main difficulty is to convert the normal component of the force applied
to the bent surface into a torque at each of the three nodes (Fig. 2 (c)). Our
approach is the following: during force computation, we use the change in orien-
tation measured at each node to compute the local deflection of each subvertex
within the triangle. Differentiating the formulation twice yields a relation be-
tween the torque applied at each node and the generated force in bending. We
therefore need to invert the latter formulation to convert a bending force into
torques at each vertex. We start by retrieving the normal component of the
applied force vector Fz. We project the application point of the force into the
triangle’s plane and compute its local coordinates (x, y). We create the polynom
P = Fz(1 x y x2 xy y2 x3 xy2 y3)T . The moments at each vertex are then
obtained with Ω = (C−1)TP . Thus we are able to transmit any force coming
from interactions with the curved surface of shells to the mechanical vertices
used in our FEM formulation.

F
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f3
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Fig. 2. (a,b) The triangle formed by the three vertices of the shell has been recursively
subdivided 3 times to allow more accurate rendering and collision detection. (c) The
shape function is used to distribute an external force F onto the triangle nodes.

3 Physics-based reconstruction using shell elements

Because the surface of an anatomical structure has a physical meaning, we pro-
pose to patch the surface with triangular elements whose interpolation makes
use of the same shape function designed for our shell FEM formulation. More-
over, while many flat triangles are required to describe highly curved surfaces,



fewer triangular shell elements are needed to describe the given geometry with
the same precision since they can be curved. In the following we assume that we
have a high resolution triangular mesh obtained from a binary segmented image
of the organ we want to simulate (via a Marching Cube algorithm for instance).
Our goal is to create a mesh featuring the optimal number of shell elements
while staying as close as possible to our targeted geometry.

Therefore we need to ensure that the distance between the surface of our
shell-based mesh and the targeted high resolution mesh will be minimal. An
efficient technique for measuring the error between two surfaces is the Hausdorff
distance [13]. As a reminder the Hausdorff distance between two meshes is the
maximum between the two so-called one-sided Hausdorff distances:

dH(X,Y ) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

. (5)

where d() is the Euclidian distance between two points. The same technique of
subdivision used for rendering allows us to sample the actual surface described
by the shells to compute the Hausdorff distance with the targeted high resolution
mesh.

The first step in the process of generating a shell-based mesh is an important
decimation of the high resolution mesh, using quadric edge collapse technique
implemented in Meshlab [14]. The algorithm tries as much as possible to preserve
mesh boundaries and generates high quality triangular elements. We then apply
a heuristic method derived from the work of Saupin et. al [15] with tetrahedral
meshes based on simple geometrical rules. For each node of the coarse mesh, we
find the three closest triangles on the high resolution mesh and we move the node
to the barycenter of the three centres of mass of those triangles. This technique
locally smoothes the surface of the mesh while converging towards the desired
high resolution mesh. At each iteration of this algorithm we measure the error
between the curved surface of shells and the target using the Hausdorff distance
and the process is stopped when the required precision has been reached. A
simple example is shown Fig. 3 to illustrate the method.

Fig. 3. The target (a) is a high resolution cylinder mesh of 16,384 triangles and we
start from a very coarse mesh (12 triangles), rendered with flat triangles here (b). In
(c) the coarse mesh is rendered with shells and a one-sided Hausdorff distance colour
map is applied to show the initial error with the high resolution mesh. (d) One-sided
Hausdorff distance colour map after one iteration of our algorithm (48 shells).



4 Results

Meshing of anatomical structures. This approach has been applied to ap-
proximate more complex anatomical geometries with curved shell elements. In
each case the error is expressed as a percentage of the diagonal of the object’s
bounding box.

Fig. 4. (a) the targeteted high resolution Glisson’s capsule mesh (8,000 triangles). (b)
the one-sided Hausdorff distance error map after applying only one iteration of our
algorithm to the coarse mesh (1,200 shells).

Fig. 5. (a) the targeteted high resolution aneurysm mesh (28,368 triangles). (b): the
one-sided Hausdorff distance error map on a mesh of 772 shells generated with our
method.

Computation times. We perform several tests on the aneurysm model at dif-
ferent resolutions to measure computation times (Fig. 6). The shells are resisting
to a uniform pressure load and solved using a Conjugate Gradient (CG) iterative
solver. Implicit integration allows for large time steps (40ms) and the compu-
tation is real-time for 800 shell elements and a reasonable error criterion (5%).
When the computation time must be bounded (critical real-time applications),
one can fix the number of CG iterations to, for instance, 100 and remains real-
time for 1000 shell elements. However, in that case the accuracy of the results is
not checked.
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Fig. 6. Computation time on meshes of 200, 400, 600, 800 and 1000 elements.
.

Coupling between tetrahedra and shells for advanced modelling. Struc-
tures in human body can be either solid (brain, liver, prostate etc.) or hollow
(colon, blood vessels, stomach etc.). However knowing how to model the two
kind of structures is not sufficient to reach a high degree of accuracy, real life
situations are more complex. As an example, the external surface of the liver is
covered by a layer of cells called Glisson’s capsule. Its interaction with the liver
plays an important role into the overall structure’s mechanical behaviour. There-
fore considering the interaction between solid and hollow objects is as crucial as
modelling the two structures separately.

An example of medical procedure to illustrate this point even further is an-
gioplasty. Angioplasty is the technique of mechanically widening a narrowed or
obstructed blood vessel, typically as a result of atherosclerosis. An empty and
collapsed balloon on a guide wire is passed into the narrowed locations and then
inflated to a fixed size. The balloon crushes the fatty deposits, so opening up
the blood vessel to improved flow. As a proof of concept we tried to simulate
an angioplasty (Fig. 7). The blood vessel is modelled using the shell FEM for-
mulation described in this paper and the fatty deposits are simulated with a
tetrahedral FEM method and are fixed to the interior wall of the blood vessel.
When the balloon inflates it crushes the deposits and they then apply a pressure
onto the curved surfaces of shells modelling the interior wall. The forces are then
distributed onto the mechanical nodes of the blood vessel mesh as detailed in
section 2, which widens the blood vessel as expected.

5 Conclusion

We propose a framework for real-time modelling of thin anatomical structures.
The novelty of our method relies on the combination of a shell finite element
formulation and a geometric surface reconstruction both based on the same
polynomial interpolation function used to describe the surface of shells. We also
show how contacts and interactions with the curved surfaces of shells can be
handled using the same function. The efficiency of the method is illustrated
through shell-based reconstruction and real-time simulation of the deformations
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Fig. 7. Simulation of an angioplasty procedure. (a, c): A collapsed stent is inserted
into the blood vessel. (b, d): The stent is crushing the fatty deposits which creates a
pressure onto the interior wall and widens the blood vessel.

of various anatomical structures. We also present preliminary results on the
simulation of an angioplasty procedure.
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