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Abstract

This paper presents an efficient way to provide a graphical interactive visualisation to a non-
interactive existing object oriented application. Assuming that the initial application uses an ‘Ab-
stract Factory’ pattern (GoF87) in order to create new objects, our aim is achieved by using the
PAC-Amodeus model and extending the existing objects to create intermediate components, using
object oriented techniques: inheritance, polymorphism and dynamic binding, using the ‘Proxy’ pat-
tern (GoF207). Although our field of interest is physical and behavioural simulation, the techniques
developed in this paper can be applied to any non–interactive object oriented existing kernel. Then,
we present a complete simulation example ‘Bugs life’ to illustrate the use of our method. Finally,
we point out the limits of our approach, and we suggest new directions for further work.

1: Introduction

Quite often, a specialist of a particular area is able to structure an application as a hierarchy
of classes (Java, C++ or Eiffel classes for example), without taking any care about graphical user-
interface. This is particularly true in the field of simulation, as in [3], but also for any existing object
oriented non–interactive kernel.

For example, if a simulation specialist wants to transform his initial simulation, he may have
the possibility to use a particular development environment, such as those described in [5] or [11],
which will provide an interactive visualisation to the simulation. But in this case, he will have to
re-design and to re-write his simulation in order to adapt it to this kind of environment.

The other solution is to adapt the existing simulation software in order to obtain an interactive
simulation. So, our aim is here to find the best way to provide a graphical user-interface to this kind
of application. A very important thing is to let this initial application unchanged, in order to allow
the programmer to make it evolve. This point is interesting for any category of existing application.

Therefore, we propose an efficient way to use a particular software architectural model for inter-
active applications: the PAC-Amodeus model [10]. This model is derivated from PAC [1] (which
is quite different from MVC [8]) and ARCH [4], and is very well suited for the reuse of an ex-
isting object kernel [2]. More precisely, it ensures that the final application will respect software
engineering concepts such as the independence of the simulation kernel from the physical graphic
representation.

In this paper, we propose to combine efficiently some well known design patterns described in the
‘Gang of Four’ book [7] with the PAC-Amodeus model, in order to obtain an interactive simulation
without modifying a non-interactive existing simulation, as it has already been discussed in [6]. We



avoid code duplication between the initial simulation and the interactive one, and we discuss how
to minimise code duplication among the new components we create.

2: Useful design patterns for making evolution possible and easy

A typical simulation application consists in a scheduler managing simulation objects, asking
each of them to evolve at each simulation step. So, most of these applications can be built using
the ‘Template Method’ pattern (GoF325). For example, each simulation object will have to provide
an ‘evolve’ method in its programming interface, some families of simulation objects will perhaps
define this method in terms of call of some abstract methods that will have to be defined in their
subclasses. The use of such a pattern is not absolutely necessary, but it helps in fixing a general
architecture for the simulation, so that it is easier to concentrate on the behaviours of the simulation
objects as they can be defined in subclasses.

Another very interesting pattern is the ‘Abstract Factory’ pattern (GoF87), because it eases the
iterative prototyping of a simulation. The ‘Abstract Factory’ is in charge of providing new simula-
tion objects to any software component of the simulation. Then, thanks to this pattern, it becomes
very easy to provide more efficient subclasses of these simulation objects classes, without changing
any of the software components of the simulation: the only thing needed is to provide a new ‘Fac-
tory’ able to provide new simulation objects. The use of this pattern is absolutely necessary to our
transformation method, it is the only particular mechanism required to our simulation applications
in order to be able to migrate easily toward interactive simulations.

3: The Human–Computer Interface models

Now, we are going to make a point about the PAC and PAC-Amodeus models, before trying to
use them as a combination of design patterns.

3.1: The PAC model

PAC [1] is a multi-agents model which main principles are the notions of faceted agents and
recursive decomposition. An interactive system can be modelled as a hierarchy of PAC agents, as
shown in figure 1.

A PAC agent has three complementary views:

• the Presentation: it defines the agent behaviour as it can be seen by an end-user, it manages
both inputs (the end-user actions) and outputs (the end-user perception),

• the Abstraction: it defines the features of the agent independently from its possible presenta-
tion, it is the Functional Core of the agent,

• the Control: its purpose is to serve as a bridge between Presentation and Abstraction for
the maintain of consistency, and it manages the communications between PAC agents and
between its Abstraction and Presentation associated components.

In fact, although at first glance this model looks very much like the MVC model [8], PAC is quite
different from it. First, its presentation features are concentrated in the same Presentation compo-
nent, which is not the case with MVC, which puts the input features in its Controller component
and the output features in its View component. Second, and even more important, the Abstrac-
tion components are not aware of the Control and Presentation components, which is not the case
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Figure 1. PAC modelling of the software components of an interactive system

with MVC where the Model component knows about the View and the Controller components. So,
PAC ensures a better separation than MVC between the features of a non-interactive object oriented
kernel and the interactive components of the complete application.

3.2: The PAC-Amodeus model

The PAC-Amodeus model [10], described in figure 2, shares its main components with the
ARCH model [4]. It describes its main component, the Dialogue Controller component, as a hier-
archy of PAC agents.
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Figure 2. PAC-Amodeus modelling of the software components of an interactive system

The Functional Core contains the main features of the domain of the application. The Functional
Core Adapter serves as a bridge between domain objects and conceptual objects exported toward the
end-user. The Dialogue Controller manages the scheduling of the tasks and the dialogues threads,
using a PAC agents hierarchy, it ensures the correspondences between the conceptual objects and
the presentation objects. The Presentation Techniques Component defines the correspondence rules
between the presentation objects and the interactive objects. Last, Low Level Interaction Compo-



nent stands for the hardware and software targeted platform for the effective implementation of the
interactions.

4: Principle of the transformation method

4.1: The initial application

The example we are going to use to illustrate the method is shown in figure 3: an objectA1 which
sends themove message to an objectA2. The problem is here to insert these components most
efficiently within a PAC-Amodeus modelling, and without modifying these initial components.

A1 : A A2 : A

move( )

Figure 3. Initial relation between two simulation objects

4.2: An original PAC-Amodeus implementation

We use common object oriented techniques: inheritance, polymorphism and dynamic binding,
such as the ones we find in C++, Eiffel or Java. We combine well known design patterns in order
to describe our transformation method, as proposed in the chapter 7 of [9], but quite in a different
way, as our method does not rely on the ‘Observer’ pattern (GoF293).
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Figure 4. Transformation method using the PAC-Amodeus model

A way to implement that is to make the Functional Core Adapter components inherit from the
initial Functional Core ones, and to adjoin them a way to access the abstractions of the PAC com-
ponents.

In fact, it is what is described in the ‘Proxy’ pattern (GoF207). Our case study is described
in figure 4: theAA class is the ‘Proxy’ and theA class is the ‘RealSubject’, with a particular
implementation:AA inherits fromA, and redefines themove method, in order to call its inherited



one before asking theA’ abstraction to move, thenA’ asksC to move, and finallyC asks its
presentationP to move also. Here, using inheritance instead of delegation allows an optimal reuse
of the existing code, as the interface ofAA will be the same as the interface ofA, so we have to
redefine the only methods that have an impact on the visualisation of the simulation objects.

This works fine, and the use of the ‘Abstract Factory’ pattern enables to provide an instance of the
AAclass instead of an instance of theA class when needed by the simulation software components.

The only problem is that this method is quite heavy: we have to create four new classes for each
existing class to be modified. Of course, some of these classes can be written in quite a systematic
way, and most of the methods of the Adapter classes and of the Abstraction classes are mainly
relays toward other classes methods.

4.3: An optimisation of the implementation

We propose an optimisation of this implementation. First, PAC-Amodeus authorizes empty
adapter components, so, if there are no special needs, as in our case, we can empty this level. Sec-
ond, PAC allows some agents to lack one or two facettes, so here, we can suppress the abstraction
facette of the PAC agents.

Then, the solution is to create the new control components by inheritance from the initial simu-
lation application ones, as shown in figure 5 .
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Figure 5. Optimisation of the transformation method

With our small example, theC control component inherits from theA application component,
then we provide to it aP presentation component. We must also let the control components know
each other, while each initial simulation application component believes in fact that it is in touch
with another initial object.

So, theC control inherits fromA of a method that decides to ask another simulation object
instance of theA class to move. In fact,C is controlling the situation, as it makes the choice to let
its inherited method to do its job. In fact,A now makes reference to an instance ofC, so themove
method which is invoked is a method redefined inC, which will invoke theA movemethod, before
asking itsP presentation component to refresh its visualisation.

5: A case study: ‘Bugs life’ simulation with Java

Now, here is a simulation example where entities (we call them ‘bugs’) initially evolve within
a 2D (non graphical) environment. We used the ‘Template Method’ pattern (GoF325) to structure
our application: a scheduler asks these entities to ‘live’. An abstract class describes with a method
what is to ‘live’: a succession of calls to deferred methods: ‘move’, ‘grow up’, ‘eat’, ‘get tired’,



sometimes ‘reproduce’, and if ‘too old’ or ‘too weak’, ‘die’. The concrete subclasses implement
these methods.

This simulation application is written in Java.

5.1: The application

Several components are parts of this application:

• bacteria (bugs’ food),

• a reserve of bacteria,

• several sorts of bugs (basic, erratic, sniffer, hungry, long cruiser, cannibal),

• a population of bugs, which makes them live,

• a life area, within which bugs live, and which owns a reserve of bacteria and a population of
bugs,

• a factory which aim is to provide the new simulation objects to any of the software compo-
nents of the simulation,

• a life application, which creates all the simulation components, and then schedules them.

The bacteria know that they are within a reserve, so when their energy level is getting too low,
they signal it to the reserve which suppress them.

The bugs know they form a population and they are evolving in a life area. They ask this area
for finding food and for staying within its bounds. Like the bacteria, when their energy is getting
too low, they send a message to their population which suppress them.

The life application is in charge with the creation of these entities, using an appropriate factory.
It makes them live by the way of the population, as long as it contains bugs. Then, a main program
is in charge with the creation of the good factory and the life application.

5.2: Initial requirements

To ensure future consistency, we suggest to define some interfaces to let our programs manipulate
references toward instances of classes which implement these interfaces.

Here are our interfaces:

• Bacteria ,

• Bug,

• Reserve ,

• Population ,

• LifeArea ,

• Factory ,

• Life .

In practice, theBug interface inherits from theBacteria interface, and thePopulation
interface inherits from theReserve interface. It is not for a polymorphism use but simply for
code reuse.

5.3: Implementation of the initial simulation

As shown in figure 6, the main classes we create to achieve our simulation are:



• ABacteria : implements theBacteria interface,

• ABug: implements theBug interface, (and inherits fromABacteria ): this is an abstract
class which factorises attributes and common methods for all the bugs; thanks to its “live”
method which calls several abstract methods, it is this way we implement here the “Template
Method” pattern,

• ABasic , AErratic , ASniffer , AHungry , ALongCruiser andACannibal : they
all inherit (more or less directly) from theABug class, they are the concrete classes for bugs,

• AReserve : implements theReserve interface, managesBacteria s,

• APopulation : implements thePopulation interface (and inherits fromAReserve ),
managesBugs,

• ALifeArea : implements theLifeArea interface, manages aPopulation composed
of Bugs and aReserve composed ofBacteria s,

• AFactory : implements theFactory interface, provides the instances of the previous con-
crete types,

• ALife : implements theLife interface, creates all the simulation components and schedules
them.
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Bug
<<Interface>>

Populat ion
<<Interface>>

Reserve
<<Interface>>

ABacteria AReserve

10..* 10..*

ALifeArea

11 11

APopulat ion

1

1

1

1

ABug 10..* 10..*

1

0..*

1

0..*

CBug

CBacteria
CLifeArea

LifeArea
<<Interface>>

Factory
<<Interface>>

CFactory

Life
<<Interface>>

CLife

AFactory

ALife

11

Figure 6. Partial UML modelling of the classes in our simulation

Starting from this initial non-interactive simulation, we are going to apply our transformation
method to obtain an interactive simulation.



5.4: Implementation of the interactive simulation

First, we need to define theCBug interface, which extends theBug interface. Then we create
the following classes:

• CBacteria : implements theBacteria interface,

• CBasic , CErratic , CSniffer , CHungry , CLongCruiser andCCannibal : they
all implement theCBug interface and they extend respectivelyABasic , AErratic , AS-
niffer , AHungry , ALongCruiser andACannibal ,

• CLifeArea : extendsAZoneDeVie ,

• CFactory : extendsAFactory , provides the instances of the new concrete types,

• CLife : extendsALife , manages the other Human–Computer Interface components.

There is no use to define new classes inheriting fromAReservoir andAPopulation , as
these two classes can manageCBacteria andCBug instances.

A resulting partial UML model is presented in figure 6. This would be the effective model if
there was only one category of bugs: then theABug would be a concrete one, and there would be
also a concreteCBugclass. As the real situation is a little bit more sophisticated, the detailed model
of this hierarchy of bugs will be discussed further, and will be illustrated in figure 8.

public class CBasic extends ABasic implements CBug {
private PBug presentation ;
...
public void setPosition (final Point position) {

super.setPosition (position) ;
presentation.setLocation (getPosition ()) ;

}
public void die () {

super.die () ;
if (dead ()) {

presentation.erase () ;
}

}
...

}

Figure 7. Typical methods of a control component

Typically, the methods redefined in these control components are like the ones presented in figure
7: they ensure a redirection toward the inherited part, and they ensure also consistency between the
inherited component (the initial application component) and the presentation associated component.
It is important to notice that this control component does not make any assumption about the success
or fail of the methods it relays to its inherited application part: for example thesetPosition
method proposes a new position by calling the inheritedsetPosition method, and then asks the
presentation associated component to update its position by giving it a new position obtained by a
call to thegetPosition method, as it does not know if the proposed position has been effectively
reached.



Several other control classes are needed to obtain the final interactive simulation, but they do not
directly interact with the classes of the initial simulation.

Last, only three classes are needed for the visualisation of our bugs:PBacteria , PBug and
PLifeArea , as all the different types of bugs share the same presentation, parameterized with
a particular color. The only important thing to know about these classes is that each of them has
the knowledge of its associated control component. It is important because a presentation facette
may receive events from an end-user that it has to send to its associated control, in order to allow
interaction.

5.5: Problem of an existing hierarchy

We have here a little problem due to Java simple inheritance mechanism: as shown in figure 8,
there is no particular relation betweenCErratic andCBasic as there is betweenAErratic
andABasic , so the work that has been done once when writingCBasic has to be repeated for
CErratic , CSniffer , CHungry , CLongCruiser andCCannibal .

Bug
<<Interface>>

CBug
<<Interface>>

ABug

ABasic

AErratic

ASniffer

AHungry

ALongCruiser

ACannibal

CBasic

CErratic

CSniffer

CHungry

CLongCruiser

CCannibal

Figure 8. Inheritance problems in the case of an existing hierarchy

For example, C++ and Eiffel would allowCErratic to inherit fromAErratic andCBasic ,
which would reduce the work to be done. In the case of C++, it would be virtual inheritance because
of diamond inheritance.

So, another solution is here to create a quite bigger class, named for exampleCGenericBug ,
and which encapsulates an instance of some real initialBug. Using the Java RTTI mechanism,



this class is parameterized with the name of that initial bug in order to be able to make the good
object instantiation. The first problem is then that with such a delegation, each method of the
initial object has to be defined in this new class, not only the methods implied with graphics. The
second problem, more important, is that the code of all these methods is not so systematic as in
the case of inheritance: it is not enough to systematically ask the encapsulated object to invoke the
correct method, and then eventually to update the presentation associated object. The reason is that
the initial methods invoked can be some combinations of methods that all can have presentation
effects. So, the compound methods have to be totally re-written, as in the initial code, but now
in order to invoke the newly defined elementary methods. It works (we have also implemented
this ‘generic’ class), but it clearly leads to code duplication between the initial simulation and the
interactive one.

What would be great would be to be able to declare that thisCGenericBug class should dy-
namically inherit from the initial class which name is provided as a parameter: it would then be
possible for other components to dynamically instantiate the good object with correct inheritance.
The code of this class would be as simple as the code forCBasic , and would have to be written
only once. Of course, it should be necessary that the dynamical inheritance should at least ensure
that the obtained class would inherit from a particular class, for exampleABug, or would implement
a particular interface, for exampleCBug.

6: Other Implementations with C++

Two other implementations of this simulation application have been realized using the C++ lan-
guage: both share the same simulation non–interactive kernel. These applications differ only from
the visualisation they offer: one uses X-Window as graphics, the other uses OpenInventor.

The main advantage with C++ for such a method is that it eases the development process, allow-
ing multiple inheritance, which reduces the code to be written. An UML subset of this C++ bugs
hierarchy is shown figure 9.

Bug

ABug CBug<View>

ABasic CBasic<View>

AErratic CErratic<View>

ASniffer CSniffer<View>

BugView

Bug2D Bug3D

CBug

View

Figure 9. Multiple inheritance for an existing hierarchy



Here, for example theCErratic class inherits from both theErratic class and theCBasic
class, so the only methods to be written within this class are one constructor and the destructor.
We also use C++ template inheritance to share the same control components for the 2D and the 3D
applications: a control component will inherit from a particular visualisation class. The effective
instantiation is decided within the corresponding subclasses of ourFactory class :CFactory2D
andCFactory3D . It would be possible to use delegation instead of inheritance, but inheritance is
more appropriate if we want to redefine some methods of the visualisation classes within the control
classes in order to take into account the end-user interactions.

The main drawback of this multiple inheritance comes from diamond inheritance, so we have to
use C++ virtual inheritance, which is sometimes cumbersome.

Another solution is to use C++ template inheritance to create only one control class for all the
bugs, as shown figure 10. The added parameter of this class is the bug type, and this class inherits
also from this parameter.

ABug

Bug

ABasic

AErratic

ASniffer

BugView

Bug2D Bug3D

CBugT

Abstraction View

Figure 10. Template inheritance solution to control an existing hierarchy

This solution is particularly powerful as it enables to create only one template control class
which will here be instantiated in six different ways in each of the associatedCFactory2D or
CFactory3D classes.

7: Conclusion

We have shown here that it is possible to transform efficiently an existing simulation application
into an interactive one. This transformation has been realized using the PAC-Amodeus model by
combining two design patterns: the creational ‘Abstract Factory’ pattern and the structural ‘Proxy’
pattern.

The main interest of our method is that the initial simulation application is absolutely not modi-
fied by our transformation process. In fact, this initial application has been written as an independent
Java package, namedApplication , which is used by aControl package, also using aPre-
sentation package. There are even two more packages:GenericControl andApplet ,
both use some features of theApplication , Control andPresentation packages.



The main limitation of our approach is about the transformations needed to be repeated in case
of inheritance of some classes of the initial simulation, because of Java simple inheritance. This
problem does not arise with C++ or Eiffel, because they offer multiple inheritance and they are able
to manage diamond inheritance. C++ even offers template inheritance, which reduces greatly the
code to be written in our case of bugs inheritance. So, with Java, in the case of our example, it
would be possible to use the ‘Strategy’ pattern (Gof315) in order to decouple the bugs strategies
from the visualisation problems: the inheritance would then only concern the behaviour, this would
not have to be adapted for the interactive simulation. But we are not sure that this pattern could
always resolve that kind of problem with different simulation applications.

Another possibility with Java would be to be able to declare dynamically that a class can inherit
from one subclass of a particular class: according to the name of this class, a controller could
then declare that it inherits from it, and then its code would be as light as theCBasic one, and
as powerful as theCGenericBug one, as it can be with C++ template inheritance. As template
inheritance modelling is possible with UML, such a solution could also be offered using an UML
case tool with appropriate code generation.
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