
HAL Id: hal-00534373
https://hal.archives-ouvertes.fr/hal-00534373

Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Model Driven Tool Interoperability: Bridging
Eclipse and Microsoft Modeling Tools

Hugo Bruneliere, Jordi Cabot, Caue Clasen, Frédéric Jouault, Jean Bézivin

To cite this version:
Hugo Bruneliere, Jordi Cabot, Caue Clasen, Frédéric Jouault, Jean Bézivin. Towards Model Driven
Tool Interoperability: Bridging Eclipse and Microsoft Modeling Tools. 6th European Conference
on Modeling Foundations and Applications (ECMFA 2010), Jun 2010, Paris, France. pp.32–47,
�10.1007/978-3-642-13595-8_5�. �hal-00534373�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50042021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00534373
https://hal.archives-ouvertes.fr


Towards Model Driven Tool Interoperability:
Bridging Eclipse and Microsoft Modeling Tools

Hugo Brunelière, Jordi Cabot, Cauê Clasen, Frédéric Jouault, and Jean Bézivin

AtlanMod (INRIA - École des Mines de Nantes) – France
{hugo.bruneliere, jordi.cabot, caue.avila clasen, frederic.jouault,

jean.bezivin}@inria.fr

Abstract. Successful application of model-driven engineering approaches
requires interchanging a lot of relevant data among the tool ecosystem
employed by an engineering team (e.g., requirements elicitation tools,
several kinds of modeling tools, reverse engineering tools, development
platforms and so on). Unfortunately, this is not a trivial task. Poor tool
interoperability makes data interchange a challenge even among tools
with a similar scope. This paper presents a model-based solution to
overcome such interoperability issues. With our approach, the internal
schema/s (i.e., metamodel/s) of each tool are explicited and used as ba-
sis for solving syntactic and semantic differences between the tools. Once
the corresponding metamodels are aligned, model-to-model transforma-
tions are (semi)automatically derived and executed to perform the actual
data interchange. We illustrate our approach by bridging the Eclipse and
Microsoft (DSL Tools and SQL Server Modeling) modeling tools.

1 Introduction

Development of a software system involves the collaboration of many developers
with different roles (managers, analysts, designers, programmers,...) employing
various tools (from project management tools, as Microsoft Project, to tools for
requirements elicitation, as DOORS or even Excel, modeling tools as EMF and
Microsoft DSL Tools, and development IDEs among many others).

Clearly, a key aspect for this collaboration is proper interoperability in the
tool ecosystem. Interoperability is the ability of two (or several) tools to exchange
information and thus to use the exchanged information [11][22]. Interoperability
is required in several scenarios: forward engineering, reverse and round-trip en-
gineering, tool and language evolution (to address backward compatibility with
previous versions) and, for instance, collaborative development, where several
subteams may work on separate views of the system using different tools (e.g.,
modeling tools) that must be later merged.

Unfortunately, interoperability is also a challenging problem that requires
addressing both syntactic and semantic issues since each tool may use a differ-
ent syntactic format to store its information but, more importantly, use its own
internal schema to represent and manipulate such information, most likely differ-
ent from the one expected by other tools. Therefore, trying a manual solution is

Prel
im

ina
ry 

Vers
ion



2

error-prone and very time-consuming, and it is hardly reusable even when using a
similar set of tools. Instead of ad-hoc solutions, a generic set of bridges between
the tools should be provided. Each bridge should ensure data-level interoper-
ability (i.e., metadata/data interchange) and operational-level interoperability
(i.e., behavior interchange) for two or more tools, independently of the specific
project/context in which the tools are used.

In this sense, we propose a model-driven solution for tool interoperability. In
general, model-driven interoperability approaches work by first making explicit
the internal schema (i.e., metamodel) of each tool. Metamodels are then aligned
by matching the related concepts. Finally, model-to-model transformations ex-
ploit this matching information to export data (i.e., models from our point of
view) created with the first tool to data conforming to the second tool’s inter-
nal schema. In this paper, we focus on a more general scenario in which tools
that need to interoperate are able to manipulate data conforming to different
metadata specifications. In this situation, data interoperability needs to inter-
change not only the data but also the metadata between the tools so that the
target tool can correctly interpret the imported information. Therefore, in this
case, alignment is not done at the metamodel level but at the metametamodel
level. Note that tools that support arbitrary metadata specification necessarily
represent metadata using a specific format, or structure, and cannot have fully
hard-coded metadata. This format is what we refer to as the metametamodel of
the tool, whether it is called a metametamodel in the tool terminology or not,
and whether it is explicit in the tool or not. Also note that, in contrast to other
approaches, changes on the internal schema/s used by one of the tools do not
require updating the bridge.

We believe this more generic approach is required to deal with the com-
plexity of current model-driven engineering (MDE) approaches. As an example,
consider the Eclipse Modeling Framework (EMF [3]). When modeling a system
with EMF, designers can use several domain-specific languages, each one repre-
sented by its corresponding metamodel, to specify different views of the system.
When exporting this specification to another tool we need to export both the
models and the metamodels the designers have used. We will use this scenario
to illustrate our interoperability approach. In particular, we will provide a set of
bridges between the Eclipse (EMF) and Microsoft (SQL Server modeling [5] and
DSL Tools [4]) modeling technologies. The bridges will allow to automatically
open and manipulate in Microsoft tools any model and metamodel defined in
EMF and vice-versa.

As we will see, our model-based solution offers several advantages: it is generic
(it can be applied to any metamodel and model independent of the domain),
reusable (all tools using the same underlying framework/platform, e.g., all tools
based on EMF, can reuse the bridges) and extensible (it can be easily adapted to
cover new environments and formats since it addresses separately the syntactic
and semantic issues). Besides, our approach is easier to integrate with current
trends towards the use of modeling in many aspects of the development process.

Prel
im

ina
ry 

Vers
ion



3

The rest of the paper is structured as follows. Next section characterizes
the problem context for our method and comments the current state of the art
in this field. Section 3 introduces the Eclipse-Modeling example. Then, Section
4 presents our approach for data-level interoperability and applies it to create
the Eclipse-DSL Tools bridge. Section 5 repeats the process for the Eclipse-SQL
Server Modeling bridge highlighting how both bridges are built following the
same generic architecture. Operational-level interoperability is commented in
Section 6. Finally, we explain the tool support in Section 7 and the conclusions
and further work in Section 8.

2 Problem Definition

The interoperability problem has been widely addressed in the literature (see
[23, 19] for existing surveys) but it is still far from being solved. For instance,
the OMG has recently created the Architecture Ecosystem Special Interest Group
to discuss this same problem.

Previous approaches tried to handle this problem by connecting the tools’
APIs (e.g., [20]) or interfaces (e.g., [7]). Approaches of this kind, operating at
the API-level, may notably make use of the facade pattern. However, this low-
level view of tools was too limited to achieve real data interoperability. With
the advent of MDE, new proposals have realized about the benefits of looking at
the interoperability problem at a higher abstraction level [10] and now follow a
model-based approach in which interoperability is specified at the (meta)model
level: the internal metamodels of both tools are explicited and aligned and this
information is used to drive the interchange of information between them.

Nevertheless, most of these approaches (including our previous experiments
in this area) focus on an ad hoc solutions for two concrete tools [16, 9, 18, 21, 15,
24]. The exceptions are [17] that proposes some generic patterns that facilitate
a (manual) metamodel alignment based on the use of ontologies (under the
assumption that integration of ontology-annotated metamodels is easier) and [8]
and [6] that focus on the interoperability of modeling tools through the use of a
bus that provides several predefined data interchange and conversion services.

Moreover, all these approaches assume that tools have a fixed metamodel
(e.g., UML modeling tools only accept models conforming to the UML meta-
model). This is not the case anymore. With the rise of MDE, more and more
development tasks involve manipulating models conforming to different meta-
models and created using generic tools able to handle several metamodels at the
same time. Typical examples are the Eclipse and Microsoft modeling tools. As
part of the definition of the working environment, the designer can define the
metamodel to work with and then create models conforming to that metamodel.
Therefore, data interchange for these tools involves bridging both the models
and the metamodels at the same time.

In this sense, our approach provides a more general solution to the tool in-
teroperability problem by allowing data interchange between tools with variable
metamodels. Once the bridge has been built, metamodels and models can be

Prel
im

ina
ry 

Vers
ion



4

automatically interchanged between the tools. Adding new metamodels does
not require extending the bridge. Besides, as we will see our approch is fully
model-driven and separates in different steps the processing of the syntactic
and semantic aspects of the bridge. Instead many existing approaches mix both
transformations which impairs the reusability of the bridge. In addition to this,
many of the interoperability scenarios cited above could be expressed as a spe-
cific instance of our approach (where the variable metamodels would be just the
specific metamodel of the tool) and benefit from (parts of) it.

3 Motivating Example

As a concrete example of the problem previously detailed in Section 2, we con-
sider in this paper bridging the Eclipse Modeling Framework (EMF) [3] with
two different Microsoft modeling environments: Microsoft DSL Tools [4] and
Microsoft SQL Server Modeling [5]. This is actually a quite common interoper-
ability scenario: these three modeling environments overlap in many aspects, in
terms of both concepts and capabilities, and are becoming increasingly popular.
Therefore, it is likely that many projects need to import/export metamodels
(i.e., metadata) and corresponding models (i.e., raw data) from one environ-
ment to the other. This can occur for instance when the base platform has to be
changed and the related legacy (meta)models must be reused. A collaborative
work, in which both environments are being used at the same time and some
specified models need to be merged accordingly, is another potential situation
where such interoperability is required.

More pragmatically, the goal of our bridges is to allow metamodels and mod-
els built or generated in EMF to be manipulated in both Microsoft modeling
environments and vice-versa. We provide here short descriptions of these three
different environments.

The Eclipse Modeling Framework [3] is the well-known reference modeling
infrastructure when developing under and for the Eclipse platform. It provides
an explicit metametamodel, named Ecore, as well as the corresponding standard
runtime, serialization and code generation features for the designed metamodels
and models to be exploited. See, for instance, the PetriNet metamodel along
with a sample model conforming to that metamodel created using EMF (cf. Fig.
1). All the Eclipse modeling tools are based on EMF such as model-to-model
(M2M) transformation tools (e.g., ATL [14] used to implement the bridges),
model-to-text (M2T) transformation tools, graphical or textual model editors,
etc.

The Microsoft DSL Tools [4] are part of the Visual Studio SDK dedicated
to the customization of the Visual Studio platform (largely based on the .NET
framework) for specific needs or domains. DSL Tools aim more particularly at
providing facilities for building graphical Domain-Specific Languages (DSLs) and
corresponding editors, i.e., modeling tools. Contrary to EMF, this environment
is based on an implicit metametamodel which is somehow internally hard-coded

Prel
im

ina
ry 

Vers
ion



5

by APIs and corresponding serialization XML Schema. It also comes with code
generation capabilities from the designed models.

Microsoft SQL Server Modeling (SSM) [5], formerly “Oslo”, is the latest
modeling environment developed by Microsoft and targets the building of data-
driven tools. This environment is based on the ‘M” modeling language whose
MSchema part is a declarative language to design domain models (or meta-
models). The other parts of this language allow defining corresponding textual
concrete syntaxes for DSLs as well as concrete data models (models). SSM also
features a customizable tool, named “Quadrant”, allowing to interact between
the available models and the actual data (i.e., the databases).

In the remainder of this paper, we will focus on the possible bridges between
EMF and these two Microsoft environments. Bridging the Eclipse and Microsoft
worlds opens the door to import/export into/from Microsoft all (meta)models
specified with any modeling tool built on top of EMF: interoperability is thus
possible between many different tools at the same time. We will see the results
of porting our PetriNet metamodel and sample model as an example of the
application of our method.

Fig. 1. Simple PetriNet metamodel in Ecore and corresponding sample model (EMF)

4 Approach Presentation

This section introduces our model-driven approach for tool interoperability.
First, we present the high-level architecture of the method. Then, we clarify
and describe in detail each individual step, showing how to apply the method
to build the bridge between Eclipse Modeling Framework and Microsoft DSL
Tools.

Prel
im

ina
ry 

Vers
ion



6

4.1 Overview

Fig. 2 depicts a bridge to manipulate within Tool B data (i.e., models) created
with Tool A, or vice-versa. Both considered tools are built upon variable meta-
model environments. Therefore, each of these environments defines a metameta-
model: metametamodel A used by Tool A, and metametamodel B used by Tool
B.

With each tool, a given metamodel (e.g., MMX on the figure) may be ex-
pressed in terms of the metametamodel of that particular environment. Then,
models (e.g., M1) may be expressed in terms of MMX . The objective of the
bridge is therefore twofold:

1. At metamodel-level, the bridge must enable the transformation of any meta-
model conforming to metametamodel A into an equivalent metamodel con-
forming to metametamodel B, and vice versa. For instance, if MMX is ini-
tially expressed in terms of metametamodel A, then the bridge must au-
tomatically create the version of MMX that conforms to metametamodel
B.

2. At model-level, the bridge must enable the transformation of any model
defined with Tool A into an equivalent model defined with Tool B, and vice
versa. The metamodel of the original model and that of its derived equivalent
are themselves equivalent.

The bridge is bidirectional and allows the interchange of models and meta-
models in both directions. However, the implementation of the bridge itself must
take place inside one of the two environments (in Fig. 2, this bridge is imple-
mented using the environment A)1. The main selection criteria is that the se-
lected environment must provide a transformation technology to perform the
required adaptations. However, the capabilities of the bridge are independent
from the chosen implementation environment.

As seen in Fig. 2, there are four main steps (plus an optional one) involved
in the process of creating such a bridge. Each step is represented as a circled
number. These steps are:

¬ (Optional) Metametamodel discovery. All variable-metamodel tools
necessarily have a metametamodel, in terms of which metamodels are de-
fined. However, this metametamodel may not be explicitly available. In such
a case, it is necessary to discover that metametamodel from the tool API,
its storage schema, etc. For instance, metamodels defined with the tool can
be analyzed in order to identify the set of concepts and relationships used to
express them. These constitute the metametamodel of the tool. When the
metametamodel is readily available (e.g., as is the case for EMF and SSM),
this step can be skipped.

1 We could also use a third environment as a pivot but presenting the approach in
that way adds unnecessary complexity.

Prel
im

ina
ry 

Vers
ion



7

conformsTo

Legend:

Projection

Transformation

Metametamodel
A

Metametamodel
B

M3
1

MMX MMXMetametamodel
B

M2
2

4 3

M1 M1

MMX

M1
5

A B

Fig. 2. General bridging approach (overview).

 Transcription. This step consists in expressing metametamodel B in terms
of metametamodel A (in environment A). This has first to be done manually.
However, as a metametamodel conforms to itself, the approach may be boot-
strapped and this may be re-generated using the bridge once established.

® Syntactic translation. At this step, the syntactic differences between Tool
A and Tool B are solved by transcribing the elements of B within the same
technical space of A, i.e., by switching from environment B to A in order
to use the same kind of concrete syntax. As seen in Fig. 2, the metamodel
in Tool B is re-expressed as an instance of the metametamodel B rewritten
within Tool A. Therefore, this is a purely syntactic re-expression we call
projection, since the structure of elements of B has not changed.

¯ Semantic alignment. At this step, we cannot yet import models of Tool
B in Tool A (and vice-versa) since we cannot have more modeling levels in
A, according to the OMG metamodeling architecture. Therefore, we need
first to express the metamodel of Tool B as a native metamodel in environ-
ment A, which conforms to the corresponding metametamodel of A. This
implies a semantic adaptation between the metametamodels of A and B,
which is actually realized by transformations. These transformations allow
to import/export any metamodel between A and B. This step may be real-
ized with the assistance of matching tools or not.

° Data interchange. Once this is done, the previous (semantic alignment)
information is used as well to generate the transformations that actually
imports models from B to A and vice-versa. Note that complementary pro-
jections similar to those of the Syntactic Translation step are also required
to allow exchanging models between A and B. This bridge is generic: even if
Tool B changes its metamodel, there is no need to modify the bridge since
the mappings will automatically support importing B models (with the new
metamodel) into Tool A.

Prel
im

ina
ry 

Vers
ion



8

The important characteristics behind the proposed approach are its generic-
ity, extensibility and reusability:

– Genericity because it can be applied on any metamodel and model, in-
dependently of the selected environment and considered domain or field of
application;

– Extensibility because the built transformations and projections can be di-
rectly extended in order to target other environments or any software in
general, specially given the separation of the syntactic and semantic align-
ment steps.

– Reusability because 1 - these transformations, projections (or at least parts
of them) and metamodels can be directly reused as they are for other pur-
poses and 2 - the bridge can be reused by all tools based on the same
metametamodel.

Fig. 3 shows the application of this method to our motivating EMF-DSL
Tools interoperability example. In this case, the environment A is EMF and the
environment B is DSL Tools. EMF has been chosen as the implementation en-
vironment because of the several evolved transformation technologies available,
such as ATL [14] for model-to-model transformation. Fig. 3 also shows that EMF
has an explicit metametamodel named Ecore while DSL Tools has an implicit
one we arbitrarly name DSLMeta. As an example, consider a PetriNet modeling
tool in EMF (Tool A) and its equivalent in DSL Tools (Tool B). Each of these
two tools is based on an explicit PetriNet metamodel, which conforms to its cor-
responding metametamodel. The goal is to be able to automatically exchange
PetriNet models between the PetriNet EMF modeling tool and the similar DSL
Tools one.

Ecore DSLMeta M3

MMX MMXDSLMeta M2

M1 M1

MMX

M1

EMF DSL Tools

Fig. 3. EMF-DSL Tools conceptual bridge (overview).

In the next subsections, we provide more details on the step-by-step appli-
cation of our MDE approach to this concrete example. As we will see, for some
steps, it is useful to split them into substeps that improve the modularity of our
approach and reduce the complexity of each single step. This depends on the

Prel
im

ina
ry 

Vers
ion



9

syntactic and semantic distance between the tools to be bridged and it is op-
tional since it is always possible to built the bridge in just the five steps described
above.

4.2 Metametamodel Discovery

In our scenario, this optional step is required as the metametamodel of DSL Tools
is not explicitly specified. There are currently no fully automated solutions for
discovering it. Thus, this has to be performed manually by using the metamodel
examples we can find, but also the available documentation and APIs.

4.3 Transcription

In our case, this step requires defining metametamodel DSLMeta as a metamodel
which conforms to metametamodel Ecore in EMF, as shown on Fig. 3. This is
a manual step but usually a simple one since many metametamodels share the
same basic conceptual elements.

Ecore DSLMeta M3

MMX MMXDSLMeta M2KM3 XML

M1 M1

MMX

M1

MMX MMX

EMF DSL Tools

Fig. 4. EMF-DSL Tools metamodel-level bridge (overview).

4.4 Syntactic Translation

Then, we need to be able to express our PetriNet metamodel from DSL Tools
as a model conforming to this newly defined DSLMeta metamodel in EMF. As
shown in Fig. 4 (right), this has been implemented using an intermediate substep
to simplify the process. Because the serialization format used by the DSL Tools
is XML, we can first automatically inject the content of the XML document
storing the PetriNet metamodel (in DSL Tools) into a model which conforms
to a standard structural XML metamodel (note that the inverse operation is of
course also possible). At this point, our DSL metamodel is already expressed as a
EMF model but conforming to the XML metamodel. Therefore, the second step
is to define the model transformation that generates the corresponding version
of the model that conforms to the DSLMeta metametamodel in EMF created in
the previous step. Using XML as a pivot metamodel simplifies the projection of
the PetriNet metamodel in EMF.

Prel
im

ina
ry 

Vers
ion



10

4.5 Semantic Alignment

The previously projected PetriNet metamodel can be considered as the precise
representation of the initial PetriNet metamodel in DSL Tools. However, this
metamodel is not yet conforming to Ecore, i.e., it is not a real metamodel from
an EMF point of view (in fact, for EMF, this metamodel is regarded as a simple
terminal model, an instance of the DSL Tools EMF metamodel) and cannot be
used by metamodeling tools using EMF. The objective of this step is to be able
to get a native PetriNet metamodel in Ecore from this model and vice-versa, as
shown in Fig. 4 (left).

Again, this step uses an intermediate representation to reduce the semantic
gap. First, this DSLMeta PetriNet metamodel is transformed into a model which
conforms to the KM3 metamodel. Aligning DSL Tools and KM3 is easier than
directly aligning DSL Tools and EMF. Furthermore, we already have existing
KM3-Ecore converters that take the KM3 model and re-expresses it as a native
Ecore metamodel, and vice versa.

At the end of this step, we have a metamodel-level bridge that may now be
automatically reused to any metamodel specified in DSL Tools in EMF and the
other way round.

4.6 Data Interchange

Now that we have our PetriNet metamodel available in both the EMF and DSL
Tools environments, we want the two associated PetriNet modeling tools to be
able to interoperate exchanging PetriNet models. Fig. 5 presents how this has
been concretely realized.

Ecore DSLMeta M3

MMX MMXDSL Model M2XML

M1 M1M1 M1M1

EMF DSL Tools

Fig. 5. EMF-DSL Tools model-level bridge (overview).

Similarily to the metamodel-level bridge (i.e., because the serialization format
used by the DSL Tools is XML at both levels), the PetriNet sample models in
DSL Tools are converted as first XML and then DSLModel models in EMF
and vice-versa. The DSLModel metamodel is introduced in order to decouple

Prel
im

ina
ry 

Vers
ion



11

concrete syntax (i.e., XML), and metamodel-independant abstract syntax. This
metamodel represents the graph structure used in DSL Tools independently
of any metamodel. This corresponds to the projection phase between the two
different environments.

The transformation phase itself is separated into two distinct parts, which
makes it fully generic (i.e., independent from the used metamodel). First, the
transformation itself is (semi)automatically generated from the alignment infor-
mation used in the previous step. Then, the transformation is added to the overall
transformation chain for effectively building the output terminal model from the
source one. Only parts of the transformation that are metamodel-dependant are
automatically generated. Metamodel-independant parts are written by a devel-
oper once for each bridge. They are then reused for every metamodel to which
the bridge is applied. Generated and manually written transformation parts are
typically composed by chaining them.

This way, we can apply the generated PetriNet-DSLModel mapping transfor-
mations in order to finalize the bridge and interchange PetriNet models (coming
from either EMF or DSL Tools).

In this section, our generic MDE approach for tool interoperability has been
introduced and directly used on our first motivating example. The next section
demonstrates the genericity and applicability of our solution by considering a
second example: bridging EMF and SQL Server Modeling.

5 Bridging Eclipse and SQL Server Modeling

The generic interoperability method presented in the previous section (cf. Sec-
tion 4) can be applied to make interoperate many different platforms and their
corresponding tools. As a second example, we briefly describe in this section how
we can use our method to build an EMF-SQL Server Modeling bridge. To do so,
we follow again the same steps we considered for the creation of the EMF-DSL
Tools bridge.

Ecore MSchema M3

MMX MMXMSchema M2

M1 M1

MMX

M1

EMF SSM

Fig. 6. EMF-SSM theoretical bridge (overview).

Prel
im

ina
ry 

Vers
ion



12

Fig. 6 presents the abstract view of this bridge in this specific case. We
consider here MSchema, i.e., the part of the “M” language dedicated to meta-
modeling (cf. Section 3), as the SSM metametamodel. As the situation is roughly
equivalent to the EMF-DSL Tools bridge one, as shown from Fig. 3, we do not
provide more insights on this overall view.

Fig. 7 gives more concrete details on the metamodel-level bridge. Again,
the architecture is roughly the same as in the EMF-DSL Tools bridge: KM3 is
used as a pivot metamodel which allows directly reusing the available Ecore-
KM3 converters, while the actual mapping between the two metametamodels is
realized by the KM3-to-MSchema transformation. The only difference is that,
for this bridge, we are not using XML for metamodel/model serialization since
the format used by SSM is not XML-based but text-based. The use of the XML
metamodel as an intermediate step is thus not required: a textual modeling tool
can be directly applied to switch between a textual file and the corresponding
metamodel/model, and vice versa. For this purpose, we use the TCS [13] (Textual
Concrete Syntax) tool.

Ecore MSchema M3

MMX MMXMSchema M2KM3

M1 M1

MMX

M1

MMX

EMF SSM

Fig. 7. EMF-SSM metamodel-level bridge (overview).

6 Operational-Level Interoperability

So far, we have focused on the data-interoperability problem. The bridges pre-
sented in the previous section enable sharing models among the tools, including
the interchange of transformation models, i.e., models that define model transfor-
mations between source and target (meta)models. However, the simple exchange
of a transformation model is a necessary but not sufficient condition to achieve
operational-level interoperability. The additional requirement is that the target
tool includes a transformation engine able to process the information contained
in the transformation model and execute the corresponding transformation.

In our scenario, operational-level interoperability between Eclipse and Mi-
crosoft modeling tools requires creating a new version of the ATL virtual machine
(component in charge of executing model-to-model transformations defined us-

Prel
im

ina
ry 

Vers
ion



13

ing the well-known ATL transformation language [14]) adapted to the Microsoft
modeling tools.

The ATL virtual machine is currently written in Java and only accepts
(meta)models defined using EMF, KMF [12] or MDR as modeling frameworks.
Therefore, porting the ATL virtual machine implies two different steps:

1. Migrating ATL VM to the .NET platform to facilitate its execution from
within the Microsoft tools. It would be possible to directly call the Java ATL
VM from .NET but this solution loses in efficiency and elegance, requiring
the use of both Java and .NET Framework virtual machines (and exchanging
data between them) at the same time.

2. Integrating support for the SSM and DSL Tools frameworks.

The first step has been already completed. Regarding the second step, the
virtual machine has been built from the beginning in a layered structure (see Fig.
8) to facilitate its portability. The model adaptation layer decouples the virtual
machine’s core from the modeling framework used to define the (meta)models.
This allows the virtual machine to run on top of new modeling frameworks pro-
viding that an adapter for the framework is available. Therefore, adding support
for SSM and DSL Tools only requires to create the corresponding adaptors.

SSM 

Adapter

Microsoft

(.NET)

Eclipse

(Java)

Model Adaptation Layer

ATL Virtual Machine

DSL Tools 

Adapter

KMF 

Adapter

KMF 

Adapter

Model Adaptation Layer

ATL Virtual Machine

MDR 

Adapter

EMF 

Adapter

Fig. 8. ATL VM structure (overview).

7 Tool Support

Several of the bridges described in the previous sections have been actually
implemented (see Fig. 9) and are available from [2]. As can be seen in the figure,
in some cases, bridges concern both the metamodel and model levels, or just one
of these two categories. We are working on completing the full set of bridges.

However, we would like to remark that, in fact, it is not necessary to im-
plement all bridges to achieve full interoperability between each pair of tools.
Existing bridges can be used, by transitivity, to connect two tools with no direct
bridge between them. For instance, even if the corresponding bridge is not im-
plemented, we can interchange metamodels and models between DSL Tools and

Prel
im

ina
ry 

Vers
ion



14

SSM using EMF as a pivot tool. This is similar to using a metamodel as a pivot
between two other metamodels. However, in this case, we use it for bridges, not
single transformations.

Existing
Legend:

EMF EMF

g

Ongoing work

DSL ToolsSSM DSL ToolsSSM

M2‐level M1‐level

Fig. 9. Existing bridges (overview).

As an example of the use of the bridges, Fig. 10 shows the result of automat-
ically generating, for the DSL Tools, the metamodel and sample model from our
PetriNet EMF example (Fig. 1).

Note that this same PetriNet metamodel is also available in SSM format.
However, the SSM equivalent sample model (in “M”) has not been produced
since the direct bridge has not been yet implemented at the model-level. But, as
commented before, it could be obtained by transtivity of the other bridges.

Fig. 10. PetriNet metamodel and sample model in DSL Tools format.

Prel
im

ina
ry 

Vers
ion



15

As part of our tool support, we have also released a first version of the ATL
Virtual Machine for .NET [1] that allows direct execution of model transforma-
tions within the .NET environment.

8 Conclusions and Future Work

We have presented our approach for tool interoperability, focusing on the most
general scenario: interoperability among tools able to handle data (i.e., mod-
els) conforming to different metadata (i.e., metamodels). Our method follows
a model-driven approach in which the (meta)metamodels of the tools are ex-
plicited, aligned and used to (semi)automatically generate the model-to-model
transformations that effectively bridge the tools.

Our model-driven view of the problem facilitates the reusability, genericity
and extensibility of the bridges in order to cope with the increasing complexity
of tool ecosystems. This model-driven view is also especially useful under the
current model-driven engineering paradigm where most of the tools already use
(meta)models as first-class entities.

There are several directions in which we plan to continue this work. First,
we plan to improve our proof of concept by completing the implementation of
all bridges between Eclipse and Microsoft modeling tools (including a bridge be-
tween the two Microsoft tools themselves) and extending them with full support
for operational-level interoperability as well. Second, we would like to improve
the automation of the interoperability process by advancing, for instance, in
the automatic discovery of metamodels from tool APIs for those tools with no
explicit metamodel. Finally, we plan to study different “instantiations” of our
generic architecture to see how it can be optimized depending on the specific
pair of technical spaces (e.g., XML, grammar-based, modeling-based) of the two
tools to bridge.

Acknowledgments. The present work has been supported by the IST-FP6
MODELPLEX and the ITEA2 OPEES European projects.

References

1. AmmA .NET. http://www.emn.fr/z-info/atlanmod/index.php/AmmADotNet.
2. Eclipse-Microsoft Bridges Implementations. http://docatlanmod.emn.fr/Eclipse-

Microsoft Bridges/Implementations/.
3. Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf/.
4. Microsoft Domain-Specific Language (DSL) Tools. http://msdn.microsoft.com/fr-

fr/library/bb126235.aspx.
5. Microsoft SQL Server Modeling Technologies. http://msdn.microsoft.com/en-

us/data/default.aspx.
6. Open tool Integration Framework. http://www.escherinstitute.org/Plone/frameworks/otif.
7. Y. Bao and E. Horowitz. A new approach to software tool interoperability. In

SAC ’96: Proc. of the 1996 ACM Symposium on Applied Computing, pages 500–
509, New York, NY, USA, 1996. ACM.

Prel
im

ina
ry 

Vers
ion



16

8. X. Blanc, M.-P. Gervais, and P. Sriplakich. Model bus: Towards the interoperability
of modelling tools. In U. Aßmann, M. Aksit, and A. Rensink, editors, MDAFA,
volume 3599 of Lecture Notes in Computer Science, pages 17–32. Springer, 2004.

9. M. Didonet Del Fabro, J. Bézivin, and P. Valduriez. Model-driven tool interop-
erability: An application in bug tracking. In R. Meersman and Z. Tari, editors,
OTM Conferences (1), volume 4275 of Lecture Notes in Computer Science, pages
863–881. Springer, 2006.

10. B. Elvester, A. Hahn, A.-J. Berre, and T. Neple. Towards an interoperability
framework for model-driven development of software systems. In Proc. of the 1st
Int. Conf. on Interoperability of Enterprise Software and Applications, pages 409–
420, San Diego United States, 2005. Springer.

11. A. Geraci. IEEE Standard Computer Dictionary: Compilation of IEEE Standard
Computer Glossaries. Institute of Electrical and Electronics Engineers Inc., The,
1991.

12. F. Jouault, J. Bézivin, and M. Barbero. Towards an advanced model-driven engi-
neering toolbox. ISSE, 5(1):5–12, 2009.

13. F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. In GPCE’06: Proc. of the 5th Int. Conf.
on Generative programming and Component Engineering, pages 249–254, 2006.

14. F. Jouault and I. Kurtev. Transforming Models with ATL. In MoDELS Satellite
Events, pages 128–138, 2005.

15. H. Kern and S. Kuhne. Model interchange between aris and eclipse emf. In 7th
OOPSLA Workshop on Domain-Specific Modeling at OOPSLA 2007, 2007.

16. H. Kern and S. Kuhne. Integration of microsoft visio and eclipse modeling frame-
work using m3-level-based bridges. In Proc. of the 2nd ECMDA Workshop on
Model-Driven Tool and Process Integration, 2009.

17. G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and
W. Schwinger. Towards a semantic infrastructure supporting model-based tool
integration. In GaMMa ’06: Proc. of the 2006 Int. Workshop on Global integrated
model management, pages 43–46, New York, NY, USA, 2006. ACM.

18. N. Moalla, H. Chettaoui, Y. Ouzrout, F. Noel, and A. Bouras. Model-Driven Ar-
chitecture to enhance interoperability between product applications. In Int. Conf.
on Product Lifecycle Management (PLM08), pages –, Séoul Corée, République de,
07 2009.

19. H. Ossher, W. H. Harrison, and P. L. Tarr. Software engineering tools and envi-
ronments: a roadmap. In ICSE - Future of SE Track, pages 261–277, 2000.

20. S. E. Sim. Next generation data interchange: Tool-to-tool application program
interfaces. In WCRE ’00: Proc. of the 7th Working Conf. on Reverse Engineering
(WCRE’00), page 278, Washington, DC, USA, 2000. IEEE Computer Society.

21. Y. Sun, Z. Demirezen, F. Jouault, R. Tairas, and J. Gray. A model engineering
approach to tool interoperability. In D. Gasevic, R. Lämmel, and E. V. Wyk,
editors, SLE, volume 5452 of LNCS, pages 178–187. Springer, 2008.

22. I. Thomas and B. A. Nejmeh. Definitions of tool integration for environments.
IEEE Softw., 9(2):29–35, 1992.

23. M. N. Wicks and R. G. Dewar. Controversy corner: A new research agenda for
tool integration. J. Syst. Softw., 80(9):1569–1585, 2007.

24. T. Zhang, F. Jouault, J. Bézivin, and X. Li. An mde-based method for bridging
different design notations. ISSE, 4(3):203–213, 2008.

Prel
im

ina
ry 

Vers
ion




