archives-ouvertes

Formal verification of numerical programs: from C
annotated programs to Coq proofs
Sylvie Boldo

» To cite this version:

Sylvie Boldo. Formal verification of numerical programs: from C annotated programs to Coq proofs.
NSV-3: Third International Workshop on Numerical Software Verification, Jul 2010, Edinburgh, Scot-
land, United Kingdom. inria-00534400

HAL Id: inria-00534400
https://hal.inria.fr /inria-00534400
Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00534400
https://hal.archives-ouvertes.fr

Formal verification of numerical programs:
from C annotated programs to Coq proofs*

Sylvie Boldo

INRIA Saclay - Ile-de-France, ProVal, Orsay, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405
Sylvie.BoldoQinria.fr

Abstract. Numerical programs may require a high level of guarantee.
This can be achieved by applying formal methods, such as machine-
checked proofs. But these tools handle mathematical theorems while we
are interested in C code. To achieve this high level of confidence on C
programs, we use a chain of tools: Frama-C, its Jessie plugin, Why and
Coq. This requires the C program to be annotated: this means that each
function must be precisely specified, and we will prove the correctness
of the program by proving both that it meets its specifications and that
it does not fail. Examples will be given to illustrate the features of this
approach.

1 Introduction

Given a program using floating-point arithmetic, it is pretty hard to know the fi-
nal rounding error of the result. We are interested in proving numerical programs
with a very high level of guarantee by using formal methods.

Each floating-point result is a correct rounding of the exact real value for
all basic operations (addition, subtraction, multiplication, division and square
root). This property is defined in the IEEE-754 standard [1] and all modern
processors comply with it. Nevertheless, even if each computation is correct, i.e.
the best possible, there is no guarantee that the final result after many such
computations is still accurate.

Static analysis is an approach for checking a program without running it.
Deductive verification techniques which perform static analysis of code, rely on
the ability of theorem provers to check validity of formulas in first-order logic
or even more expressive logics. They usually come with expressive specification
languages such as JML [2, 3] for Java, ACSL [4] for C, Spec# [5] for C#, etc. to
specify the requirements.

For automatic analysis of floating-point codes, there exist several methods
for bounding the final error of a program, including interval arithmetic, forward
and backward analysis [6, 7]. Another approach is abstract interpretation based
static analysis, that includes Astrée [8,9] and Fluctuat [10, 11].

* This work was funded by the F§st (ANR-08-BLAN-0246-01) project of the French
national research organization (ANR).

2 Sylvie Boldo

Floating-point arithmetic has been formalized using deductive formal meth-
ods since 1989 in order to formally prove hardware components or algorithms [12—
14]. We machine-check all proofs using the Coq proof checker [15]. We use a
high-level formalization of floating-point numbers [16, 17].

There exist few works on specifying and proving behavioral properties of
floating-point programs in deductive verification systems. A work on floating-
point in JML for Java is presented in 2006 by Leavens [18]. Another proposal has
been made in 2007 by Boldo and Filliatre [19]. Ayad and Marché extended this
to increase genericity and handle exceptional behaviors [20]. Boldo and Nguyen
extended this to handle multiple architectures and compilers [21].

2 Tools Chain

We start from annotated C programs using ACSL [4]. Each function is anno-
tated with pre-conditions (what the function requires from the inputs) and
post-conditions (what the function ensures at its end). The annotations and re-
quirements (pointer dereferencing for example) are then transformed into proof
obligations that have to be solved by proof assistants or decision procedures.
The Frama-C framework has floating-point annotations based on [19] that
allow to specify numerical programs. More precisely, each floating-point num-
ber has a ghost value called exact which does not suffer from rounding. This
real value is then computed with the same operations as the float value except
that the ghost operation is exact. The macro round_error(f) is then used for

ACSL-annotated C program

~

’ Frama-C/Jessie plug-in ‘

~
’WHY verification condition generator ‘

Verification conditions

Automatic provers Interactive provers
(Alt-Ergo,Gappa,CVC3,etc.) (Coq,PVS,etc.)

Fig. 1. Chain of tools: from the C program to the proof obligations.

Formal verification of numerical programs 3

|f — exact(f)|. For example, to compute a naive exponential by the polynomial
evaluation of 1+x+x*x/2, the corresponding exact value is 1 + z + ””—22 (with
mathematical operations). Inside the annotations, all computations are exact.

We then use the Frama-C platform® associated with the Jessie plugin that
uses Why [22]. This chain is described in Figure 2. The C code is given to the
Jessie plugin of Frama-C, it creates a Why file of proof obligations (theorems
to prove) that can be translated in order to be given to either automatic or
interactive provers.

3 Examples

The full code of all these examples (and more) and their proofs are available on
http://www.lri.fr/~sboldo/research.html.

3.1 Sterbenz subtraction

This function computes the exact subtraction if the inputs are near enough one
to another [23]. Note that the division and multiplication inside the annotations
are exact.

/*@ requires y/2. <= x <= 2.xy;
@ ensures \result — x—y;

@x/

float Sterbenz(float x, float y) {
return x—y;

3.2 Veltkamp/Dekker algorithm

This function computes the exact error of the multiplication [24,25] with only
floating-point operations (and no FMA). There are also underflow restrictions
and overflow restrictions so that no infinity will be created [26].

/*@ requires xy == \round_double(\NearestEven,xxy) &&
(@ \abs(x) <= 0x1.p995 &&
@] \abs(y) <= 0x1.p995 &&
Q@ \abs(x*xy) <= O0x1.pl021;
@ ensures ((xxy — 0 || 0x1.p—969 <= \abs(xxy))
(@] ==> x*y — xy-+\result);
Q@x/

double Dekker(double x, double y, double xy) {

double C,px,qx,hx,py,qy,hy,tx,ty,r2;

int i;

C=1;

/+*@ loop invariant C— \pow(2., i) && 0 <= i <= 27;
@ loop variant (27—i); x/

for (i=0; i<27; i++)
Cx=2;

Ct++;

/+*@ assert C =— \pow(2.,i) + 1. && i==27; %/

! http://frama-c.cea.fr/

4 Sylvie Boldo

px=x*C;
qX=X—pX ;
hx=px+qx;
tx=x—hx;

py=y*C;
qy=y—pY;
hy=py+ay ;
ty=y—hy;

r2=—xy+hxxhy;
r24=hxx*ty;
r24=hy=tx;
r2+=txx*ty;
return r2;

3.3 Kahan algorithm for an accurate discriminant

This function computes an accurate discriminant using Kahan’s algorithm [27].
The result is proved correct within 2 ulps. Overflow and underflow restrictions
are given [28]. We needed an axiomatic to ensure the definition of ulp is the
proper one that is omitted here.

/*@Q requires

Q@ (b==0. [| 0x1.p—916 <= \abs(bxb)) &&

@ (axc==0. || 0x1.p—916 <= \abs(axc)) &&

@ \abs(b) <= 0x1.p510 && \abs(a) <= 0x1.p995 && \abs(c) <= 0x1.p995 &&
Q \abs(axc) <= 0x1.pl1021;

@ ensures \result==0. || \abs(\result —(bxb—axc)) <= 2.xulp(\result);

Q@ x/

double discriminant (double a, double b, double c¢) {
double p,q,d,dp,dq;
p=bxb;
q=ax*c;

if (ptq <= 3xfabs(p—q))
d=p—q;

else
dp=Dekker(b,b,p);
dg=Dekker(a,c,q);
d=(p—q)+(dp—dq);

return d;

3.4 Wave Equation Resolution Scheme

This function is a finite difference numerical scheme for the resolution of the one-
dimensional acoustic wave equation [29, 30]. Its rounding error bound requires
a high-level predicate defined in Coq as containing a property “there exists a
function from Z to R such that...”. For simplicity, initialization functions are
omitted. Note that these proofs are not fully done as they require the scheme
not to diverge.

Formal verification of numerical programs 5

/+*@ axiomatic dirichlet {
@ predicate analytic_error{L}
Q@ (double xx%p, integer ni, integer i, integer k, double a)
Q reads p[..][..]; } =/

/*@ requires ni >= 2 && nk >= 2

&& 1 1= 0

&& dx > 0. && dt > 0. && v > 0.

&& \exact(dx) > 0. && \exact(dt) > 0.

&& \exact (v)==v

&& \abs(\exact(dx) — dx) / dx <= 0x1.p—53
&& \abs(\exact(dt) — dt) / dt <= Ox1l.p—51
&& 3./5. <= \exact(dt)/\exact(dx) * \exact(v) <= 1-0x1.p—50
&& 0x1.p—1000 <= v <= 0x1.pl000

&& ni <= 0x1.p64 && nk <= 4194304

&& \exact(dx) <= 1;

ensures \forall int i; \forall int k;
0 <= i <= ni =—> 0 <= k <= nk =—>
\round error(\result[i][k]) <= 85./2%0x1.p—52x(k+1)*(k+2); */

©ePPPOOPPPROPO®O

double sxforward prop(int ni, int nk, double dx, double dt, double v,
double xs, double 1) {
double xxp;
int i, k;
double al, a, dp;

al = dt/dxx*v;

a = alxal;

/+*@ assert 1./4 <= a <=1 && 0 < \exact(a) <= 1 &&
(@ \round error(a) <= Ox1.p—49; =/

p = array2d alloc(ni+1, nk+1);

p[0][0]=0;

/*@ loop invariant 1 <= i <= ni && analytic error(p,ni,i—1,0,a);
@ loop variant ni—i; =/

for (i=1; i<ni; i++) {
p[i][0] = p_zero(xs, 1, ixdx);

p[ni][0] =0

p[O][1] = 0.;

/+@ loop invariant 1 <= i <= ni && analytic_error(p,ni,i—1,1,a);
@ loop variant ni—i; x/

for (i=1; i<ni; i++) {
dp — pli+1][0] — 2.+p[i][0] + p[i —1][0];
pli][1] = p[i][0] + 0.5*axdp;

p[ni][l] = 0

/* propagation = time loop x/

/+@ loop invariant 1 <= k <= nk && analytic_error(p,ni,ni,k,a);
@ loop variant nk—k; x/

for (k=1; k<nk; k++) {
plO][k+1] = 0.;

/* time iteration = space loop x/

/+#@ loop invariant 1 <= i <= ni && analytic_error(p,ni,i—1,k+1,a);
@ loop variant ni—i; %/

for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.«p[i][k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;
}

return p;

}

6 Sylvie Boldo

4 Conclusion

We have proved that a very high guarantee on numerical programs is achievable.
A given specified program can be proved in its deeper details using Coq and
therefore ascertaining its correctness. We have a usable chain from the anno-
tated program to the mathematical theorems that is able to secure a program
both from its rounding errors and from its other possible failures (pointer deref-
erencing, out-of-bound array accesses. ..). For example, there are 84 safety proof
obligations for the example of Section 3.4 that have to do with memory access,
variant decrease, overflow, and precondition for function call.

This approach suffers from several drawbacks. The first one is that the spec-
ifications must be given. We prove the specifications but we do not infer them at
all. This could be solved by using abstract interpretation or by using any other
tools to infer specifications (for example turned into another Frama-C plugin).
We then have to prove them to ensure their correctness. Therefore, we do not
rely on the correctness of the external tool.

The second drawback is that all those examples need interactive proofs in
Coq. This can be done on small programs, but automatizations is essential to
spread those techniques. A first way is to use Gappa [31,32] as an automatic
prover output of Why. This is quite convenient but it may mean a drop of
guarantee. Hopefully, Gappa is able to produce a Coq proof and we may use a
Gappa tactic inside Coq to benefit from Gappa’s automations inside interactive
proofs [33].

A never-ending perspective is to find cunning techniques to better bound the
rounding errors, especially when they compensate. A technique that states the
analytical error has been developed in [28] for the example of Section 3.4 where
usual methods gave an error proportional to 2¥ that was cut down to k2. This
technique of the analytical error and precise floating-point error cancellation
coming with its formal proof is new. The reason is that it requires very generic
specifications as the loop invariant needs to be logically defined: it states there
exists a function that has such and such property. And ACSL allows us to express
such a high-level property on a C program. We then use Coq as a back-end to
formally check the specifications. This genericity is an advantage compared to
automatic methods that cannot express our loop invariant.

References

1. IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2008 (2008)

: JML-Java Modeling Language www. jmlspecs.org.

3. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer (STTT) 7(3) (June 2005) 212-232

4. Baudin, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. (2008) http://frama-c.cea.fr/acsl.html.

5. Barnett, M., Leino, K.R.M., Rustan, K., Leino, M., Schulte, W.: The Spec#
Programming System: An Overview, Springer (2004) 49-69

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

Formal verification of numerical programs 7

Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice-Hall, Upper
Saddle River, NJ 07458, USA (1963)

Higham, N.J.: Accuracy and stability of numerical algorithms. SIAM (2002)
Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREE analyzer. In: ESOP. Number 3444 in Lecture Notes in Computer
Science (2005) 21-30

Monniaux, D.: Analyse statique : de la théorie a la pratique. Habilitation to direct
research, Université Joseph Fourier, Grenoble, France (June 2009)

Goubault, E., Putot, S.: Static analysis of numerical algorithms. In Yi, K., ed.:
SAS. Volume 4134 of LNCS., Springer (2006) 18-34

Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., VAldrine, F.: Towards
an industrial use of fluctuat on safety-critical avionics software. In: FMICS. Volume
5825 of LNCS., Springer (2009) 53-69

Carrefio, V.A., Miner, P.S.: Specification of the IEEE-854 floating-point standard
in HOL and PVS. In: HOL95: 8th International Workshop on Higher-Order Logic
Theorem Proving and Its Applications, Aspen Grove, UT (September 1995)
Russinoff, D.M.: A mechanically checked proof of IEEE compliance of the floating
point multiplication, division and square root algorithms of the AMD-K7 processor.
LMS Journal of Computation and Mathematics 1 (1998) 148-200

Harrison, J.: Formal verification of floating point trigonometric functions. In: Pro-
ceedings of the Third International Conference on Formal Methods in Computer-
Aided Design, Austin, Texas (2000) 217-233

Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

Daumas, M., Rideau, L., Théry, L.: A generic library of floating-point numbers and
its application to exact computing. In: 14th International Conference on Theorem
Proving in Higher Order Logics, Edinburgh, Scotland (2001) 169-184

Boldo, S.: Preuves formelles en arithmétiques a virgule flottante. PhD thesis, Ecole
Normale Supérieure de Lyon (2004)

Leavens, G.T.: Not a number of floating point problems. Journal of Object Tech-
nology 5(2) (2006) 75-83

Boldo, S., Filliatre, J.C.: Formal Verification of Floating-Point Programs. In:
18th IEEE International Symposium on Computer Arithmetic, Montpellier, France
(June 2007) 187-194

Ayad, A., Marché, C.: Multi-prover verification of floating-point programs. In
Giesl, J., Hahnle, R., eds.: Fifth International Joint Conference on Automated
Reasoning. LNAI, Edinburgh, Scotland, Springer (July 2010)

Boldo, S., Nguyen, T.M.T.: Hardware-independent proofs of numerical programs.
In Muitioz, C., ed.: Proceedings of the Second NASA Formal Methods Symposium.
Number NASA/CP-2010-216215 in NASA Conference Publication, Washington
D.C., USA (April 2010) 14-23

Filliatre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Computer Aided Verification (CAV). Volume 4590 of
LNCS., Springer (July 2007)

Sterbenz, P.H.: Floating point computation. Prentice Hall (1974)

Veltkamp, G.W.: Algolprocedures voor het berekenen van een inwendig product
in dubbele precisie. RC-Informatie 22, Technische Hogeschool Eindhoven (1968)
Dekker, T.J.: A floating point technique for extending the available precision.
Numerische Mathematik 18(3) (1971) 224-242

8

26.

27.

28.

29.

30.

31.

32.

33.

Sylvie Boldo

Boldo, S.: Pitfalls of a full floating-point proof: Example on the formal proof of
the veltkamp/dekker algorithms. In: Proceedings of the third International Joint
Conference on Automated Reasoning (IJCAR), Seattle, USA (August 2006) 52-66
Kahan, W.: On the Cost of Floating-Point Computation Without Extra-Precise
Arithmetic. World-Wide Web document (November 2004)

Boldo, S.: Kahan’s algorithm for a correct discriminant computation at last for-
mally proven. IEEE Transactions on Computers 58(2) (February 2009) 220-225
Boldo, S.: Floats & Ropes: a case study for formal numerical program verification.
In: 36th International Colloquium on Automata, Languages and Programming.
Volume 5556 of Lecture Notes in Computer Science - ARCo0SS., Rhodos, Greece,
Springer (July 2009) 91-102

Boldo, S., Clément, F., Filliatre, J.C., Mayero, M., Melquiond, G., Weis, P.: Formal
Proof of a Wave Equation Resolution Scheme: the Method Error. In: Proceedings
of the first Interactive Theorem Proving Conference. LNCS, Edinburgh, Scotland,
Springer (July 2010)

de Dinechin, F., Lauter, C., Melquiond, G.: Assisted verification of elementary
functions using Gappa. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, Dijon, France (2006) 1318-1322

Daumas, M., Melquiond, G.: Certification of bounds on expressions involving
rounded operators. Transactions on Mathematical Software 37(1) (2009)

Boldo, S., Filliatre, J.C., Melquiond, G.: Combining Coq and Gappa for Certify-
ing Floating-Point Programs. In: 16th Symposium on the Integration of Symbolic
Computation and Mechanised Reasoning. Volume 5625 of Lecture Notes in Artifi-
cial Intelligence., Grand Bend, Canada, Springer (July 2009) 59-74

