
HAL Id: inria-00534686
https://hal.inria.fr/inria-00534686

Submitted on 10 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer Affine Transformations of Parametric
Z-polytopes and Applications to Loop Nest Optimization

Rachid Seghir, Vincent Loechner, Benoit Meister

To cite this version:
Rachid Seghir, Vincent Loechner, Benoit Meister. Integer Affine Transformations of Parametric
Z-polytopes and Applications to Loop Nest Optimization. [Research Report] 2010, pp.30. �inria-
00534686�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50041746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00534686
https://hal.archives-ouvertes.fr

Integer Affine Transformations of Parametric

Z-polytopes and Applications to Loop Nest

Optimization

RACHID SEGHIR

University of Batna, Algeria

VINCENT LOECHNER

INRIA team CAMUS and LSIIT lab, University of Strasbourg, France

BENOÎT MEISTER

Reservoir Labs, New York

November 10, 2010

Abstract

The polyhedral model is a well-known compiler optimization frame-
work for the analysis and transformation of affine loop nests. We present
a new method concerning a difficult geometric operation that is raised by
this model: the integer affine transformation of parametric Z-polytopes.
The result of such a transformation is given by a worst-case exponen-
tial union of Z-polytopes. We also propose a polynomial algorithm (for
fixed dimension), to count points in arbitrary unions of a fixed number of
parametric Z-polytopes. We implemented these algorithms and compared
them to other existing algorithms, for a set of applications to loop nest
analysis and optimization.
Keywords: Polyhedral model, memory hierarchy optimization, paramet-
ric Z-polytopes transformation and enumeration, Ehrhart polynomials,
counting solutions to Presburger formulas.

1 Introduction

Many affine loop nests analyses and optimizations raise the problem of counting
the number of images by an affine integer transformation of the lattice points
contained in a parametric polytope. This problem was raised in this area a
twenty years ago [25, 26]. Since then, many solutions have been proposed, but
none of them conclusively solves it. The problem of counting solutions to a Pres-
burger formula is equivalent to counting points in the image by integer affine
transformations of a union of parametric Z-polytopes. A parametric Z-polytope

1

is the intersection between a parametric polytope (a bounded polyhedron, de-
fined by a set of constraints depending linearly on formal parameters) and an
integer lattice.

Early solutions compute an approximation of this number [38, 29]. Some
solved the subproblem of counting the integer points in a polytope (or equiva-
lently in a single Z-polytope), depending on one [2, 10] or many [7, 35, 36, 1]
parameters. Then, some exact methods to count integer affine images of Z-
polytopes were proposed for the non-parametric case [24, 5, 39]. Some appli-
cations were developed without solving the general-case problem, but many of
them did not reach optimality [38, 29], or were restricted as they did not support
formal parameters [39]. Other applications need the exact solution [21, 32].

Pugh [26] first proposed an algorithm to solve the general-case problem,
based on the Fourier-Motzkin variable elimination [9]. However, it seems that
no implementation is available, probably due to the complexity of this method:
the number of splinters which have to be built is an exponential function of
the coefficients of the formula. Moreover, it is not clear whether it is able to
eliminate more than one existential variable without scanning an exponentially
large number of polytopes.

Verdoolaege et al. [34] proposed to apply simple rewriting rules (removing
existential variables that are unique or redundant, decomposition in indepen-
dent splits) to a disjoint union of parametric sets computed using the Omega
library [25]. If these rewriting rules fail, they solve a parametric integer linear
programming problem (using the PIP library [13]), like Boulet and Redon in
[6]. But the input of their algorithm, the disjoint union of sets computed from
a Presburger formula, is worst-case exponential; and PIP is worst-case expo-
nential. They also do not compute the actual integer affine image of the union
of parametric Z-polytopes, but count the integer points of an equivalent set: if
the application needs not only the number of points, but also the image itself,
it cannot be used.

Another algorithm for computing the integer projection of a polytope was
first proposed by Barvinok and Woods [3], and then extended to parametric
case by Verdoolaege and Woods [37]. Even if this algorithm is theoretically
polynomial-time (for fixed dimension), we believe that it still remains unusable
in practice, because it uses algorithmic flatness theory and iterated Boolean
combinations of rational generating functions. Indeed, this algorithm has fre-
quently been referred to as ”unimplementable” [17]. A first-ever preliminary
implementation of Barvinok-Woods’s algorithm has been reported by Köppe
et al. [17]. But this implementation seems to be rather slow even for simple
examples. The implementation itself is considered a challenge.

More recently, Lasaruk and Sturm [19] proposed a framework consisting in
a generalization of Presburger arithmetic, where the coefficients are arbitrary
polynomials in non-quantified variables. The elimination of the existential vari-
ables may result in a large number of atomic formulas function of the parameters
(even for small examples). Furthermore, the atomic formulas may still contain
bounded quantifiers. In order to expand this result into disjunctions, the pa-
rameters have to be instantiated. Hence the final result could not be given in a

2

symbolic form (as a function of the parameters).
In this paper, we propose a new method handling this problem: (i) a

polynomial-time algorithm to count points in the union of a fixed number of
parametric Z-polytopes of fixed dimension, (ii) an algorithm to compute the
integer affine image of a union of parametric Z-polytopes, in the form of a
worst-case exponential union of parametric Z-polytopes. We also compare our
implementation with other interesting and recent approaches, and show that it
is efficient and can be used to optimize real applications.

We will provide the reader with some references on using our work in com-
piler design and program optimization. The class of parametric affine loop nests
(programs based on affine references to arrays in affine bounded loop nests, con-
taining unknown variables at compile time) has been tackled in the past by many
researchers, since it occurs frequently and is resource-consuming, in applications
like calculation-intensive scientific applications, digital audio/video, graphics,
compression/decompression, radar and DSP, etc. In this context, array lin-
earization for hardware design [32], cache access optimization [14, 8, 21, 31],
memory size computation [38, 39], and data distribution for NUMA-machines
[15], reduce to the problem of computing integer affine images of a union of
parametric Z-polytopes and enumerating them. Other applications have been
reported in economics and in mathematics, in the context of combinatorics, rep-
resentation theory, statistics and discrete optimization (see [10] for references).

The paper is organized as follows: after presenting some basic concepts in
section 2, we describe our algorithm for computing the integer affine image of
a Z-polytope in section 3. Section 4 presents our algorithm for counting points
in arbitrary unions of parametric Z-polytopes. In section 5 we provide a com-
parative study of our implementation with related work and some applications
to loop nest optimization. Finally, the conclusions are given in section 6.

2 Basic concepts

In this section we recall some polyhedral and lattice definitions as well as some
theoretical results on counting lattice points in parametric polytopes.

Definition 2.1 A rational polyhedron P ⊂ Qd is a set of rational d-dimensional
vectors x defined by linear inequalities

P =
{

x ∈ Qd | Ax ≥ c
}

, (1)

with A ∈ Zm×d and c ∈ Zm. The system Ax ≥ c may contain pairs of inequali-
ties that are equivalent to an equality (called implicit equalities). In such a case,
the polyhedron is said non-full-dimensional.

A bounded rational polyhedron is commonly called a rational polytope.

Definition 2.2 The affine hull of a set S ⊂ Qd is the set {λ1x1+ · · ·+λkxk |
{ x1, . . . xk } ⊂ S, λi ∈ Q,

∑

i λi = 1 }.

3

Definition 2.3 The dimension of a rational polyhedron P ⊂ Qd is the dimen-
sion of its affine hull. Equivalently, it is equal to the dimension d of the ambient
space Qd minus the number of linearly independent (implicit) equalities in the
system Ax ≥ c.

Definition 2.4 A rational parametric polytope Pp with n parameters p is
a set of rational d-dimensional vectors x defined by linear inequalities on x and
p

Pp =
{

x ∈ Qd | Ax ≥ Bp+ c
}

, (2)

with A ∈ Zm×d, B ∈ Zm×n and c ∈ Zm, and such that for each fixed value p0

of p, Pp0
defines a (possibly empty) rational polytope in Qd.

Definition 2.5 A d-dimensional integer lattice is a subset of Zd defined
by integer linear combinations of linearly independent integer vectors, called
lattice-generating vectors (or lattice basis), plus an affine part.

L =
{

Ax+ c | x ∈ Zd
}

, (3)

where A is a d × d integer matrix whose column vectors are the generators of
the lattice and c is a constant integer vector. We also denote such a lattice by
L(A, c).

Definition 2.6 A Z-polytope is a regular subset of the integer points con-
tained in a rational polytope. It can also be seen as the intersection between a
rational polytope and an integer lattice of the same dimension.

Definition 2.7 A d-dimensional standard Z-polytope is the intersection be-
tween a rational d-polytope and the standard lattice Zd.

Definition 2.8 An integer affine transformation of a d-dimensional Z-
polytope Z = P ∩ L is the transformation of its points by an integer affine
function:

T : Zd → Zk

x 7→ Ax+ c
(4)

where A is an integer matrix and c an integer vector.

Definition 2.9 A Presburger formula is a set of linear (in)equalities linked
by the logical operators (¬, ∧, ∨), and the universal and existential quantifiers
(∀, ∃).

2.1 Ehrhart Theory

Definition 2.10 A rational n-periodic number U(p) is a function Zn → Q,
such that there exists a period q = (q1, . . . , qn) ∈ N+n

, with U(p) = U(p′)
whenever pi ≡ p′i mod qi, for 1 ≤ i ≤ n.

4

Periodic numbers can be represented by an n-dimensional lookup-table Up

such that U(p) = Up[p1 mod q1, . . . , pn mod qn]. Such lookup-tables are typ-
ically written as a list or matrix of values enclosed in square brackets. E.g.,
UN =

[

1, 34
]

N
is a 1-periodic number with period q1 = 2; UN = 1 ifN mod 2 ≡ 0

and UN = 3
4 if N mod 2 ≡ 1. A 2-periodic number of period (2, 3) can be rep-

resented as

[

a b c
d e f

]

N,M

=
[

[a, b, c]M , [d, e, f]M
]

N
, which is equal to b if

N = 0 and M = 1.
The lookup-table representation of periodic numbers has the advantage that

it can be fully simplified, but it is worst case exponential [35, 36]. Other repre-
sentations avoid representing periodic numbers with an exponential number of
coefficients exist, such as integer parts, modulo and fractional representations.
E.g., the lookup-table periodic number UN =

[

1, 34
]

N
is equivalent to the fol-

lowing functions: 1− N
4 − 1

2

⌈

−N
2

⌉

, 1−N
4 + 1

2

⌊

N
2

⌋

, 1− 1
4 (N mod 2) or 1− 1

2

{

N
2

}

,

where
{

N
2

}

is the fractional part of N
2 .

Definition 2.11 A quasi-polynomial of degree d in n variables p = (p1, p2,
..., pn) is a polynomial expression of degree d in p over the rational n-periodic
numbers

∑

i∈I

Ui(p)p
i, (5)

with I ⊂ Nn, i = (i1, ..., in),
n
∑

k=1

ik ≤ d, Ui periodic numbers and pi = pi11 pi22 ...p
in
n .

The period of a quasi-polynomial is the componentwise least common multiple
(lcm) of the periods of its coefficients Ui.

Definition 2.12 The enumerator E(Pp) of a parametric polytope Pp (or a
parametric standard Z-polytope Z = Pp ∩ Zd) is a function from the set of n-
dimensional integer vectors Zn to the set of natural numbers N. The function
value at p0, denoted E(Pp;p0), is the number of integer points in polytope Pp:

E(Pp) : Zn → N

p0 7→ E(Pp;p0)

E(Pp;p0) = #
({

x ∈ Zd | Ax ≥ Bp0 + c
})

where # denotes the number of elements of the set.

We first consider a special case of parametric polytopes Pp that can be
written as the convex combination of a fixed set of parametric vertices, where
each vertex is an affine function of the parameters, i.e.,

Pp =







x ∈ Qd | x = V (p)λ, 0 ≤ λj ,
∑

j

λj = 1







, (6)

where the columns Vj(p) of V (p) are the vertices of Pp, i.e., Vj(p) = Gjp+ hj

for some Gj ∈ Qd×n and hj ∈ Qd. Ehrhart [11] showed that the enumerator of

5

such a set can be represented as a quasi-polynomial function of p, as defined by
(5). That is to say, a polynomial which coefficients depend periodically on p.

Clauss and Loechner [7] showed that the parameter space of a general para-
metric polytope Pp as defined by (2) can be divided into a set of chambers
(called “validity domain” in their paper: a union of adjacent polytopes covering
the parameter space), such that in each chamber, Pp has a fixed set of paramet-
ric vertices that are affine combinations of the parameters. In each chamber, the
parametric polytope can therefore be written as (6). Using this decomposition,
Clauss and Loechner [7] proved the following theorem.

Theorem 2.13 The enumerator of a d-dimensional parametric polytope Pp is
a quasi-polynomial (commonly known as Ehrhart quasi-polynomial) of degree d
in p on each chamber. The componentwise period of the quasi-polynomial in a
given chamber divides the componentwise lcm of the denominators that appear
in the vertices defined on that chamber.

We recently proposed a polynomial algorithm (for fixed dimension) [35, 36]
that counts lattice points in general parametric polytopes. This algorithm com-
bines Barvinok’s counting method [4] with Clauss and Loechner’s chamber de-
composition [7]. We also use this algorithm to count points in integer affine
transformations of parametric Z-polytopes.

3 Integer affine transformations of parametric

Z-polytopes

This section presents our algorithm for computing the integer affine transfor-
mation of a parametric Z-polytope as a union of Z-polytopes. The calculation
of the number of points in such a union is described in Section 4.

It has been shown that the integer affine transformation of a Z-polytope can
be written as a Presburger formula [26, 18]:

S = {x ∈ Zd | ∃x′ ∈ Zd′

: Ax′ +Bx+Cp+ c = 0, A′x′ +B′x+C′p+ c′ ≥ 0}
(7)

where A,B,C,A′, B′, C′ are integer matrices, c and c′ are integer vectors and
p is a parameter vector.

Example 1 The transformation of the parametric (N ∈ Z is a parameter)
standard Z-polytope

ZN = {(i, j, k) ∈ Z3 | 1 ≤ i ≤ N ∧ 1 ≤ j ≤ N ∧ 1 ≤ k ≤ N}

by the integer affine function T (i, j, k) = (3i+6k, 5i+2j +1) can be written by
adding two variables x = 3i+6k and y = 5i+2j+1, as the Presburger formula:

S = {(x, y) ∈ Z2 | ∃(i, j, k) ∈ Z3 :

1 ≤ i ≤ N ∧ 1 ≤ j ≤ N ∧ 1 ≤ k ≤ N ∧ x = 3i+ 6k ∧ y = 5i+ 2j + 1}.

6

The problem of calculating the integer affine transformation of a Z-polytope
reduces to the elimination of the existential variables from a Presburger formula
(Eq. (7)). In such a formula, the conjunction of the equalities and inequalities
define a non-full-dimensional standard Z-polytope Ẑ in the combined space
Zd′+d (the cartesian product of the Z-polytope space Zd and the existential
variables space Zd′

). A common way to eliminate the existential variables of
the Presburger formula is to project them out of Ẑ. Our algorithm performs
this in two steps. It starts by eliminating a first set of existential variables using
equalities, as described in the next section. Then, our algorithm eliminates the
remaining existential variables using inequalities of Ẑ.

3.1 Non-full-dimensional Z-polytope preprocessing

When removing existential variables using a set of equalities in Z-polytope Ẑ,
one must ensure that there exist integer values of the variables to be eliminated
for each integer value of the other variables. Without loss of generality, we
consider the parameters as regular variables. Indeed, removing equalities from
a parametric Z-polytope is done in the same way as for a non-parametric Z-
polytope: parameters are free variables, and they are never eliminated whatever
the number of equalities. We also assume that the Z-polytope is standard,
since any arbitrary Z-polytope Z = P ∩ L can be transformed into a standard
Z-polytope containing the same number of integer points. This is done by
computing the preimage of polytope P by a matrix defining lattice L. Notice
that it is possible to rewrite the final result as a function of the original variables
by doing the inverse transformation, as explained in section 4.

Consider a (d′ + d)-dimensional standard Z-polytope Ẑ, defined by a non-
redundant system of linear constraints, with d′ existential variables and d free
variables. Let m be the number of equalities implying existential variables.
The system of equalities is upper-triangularized, with the existential variables
on the first columns. Let us denote the set of equalities implying existential
variables by E(y′,y), and the set of remaining constraints by E(y′,y), where
y′ is a vector of m variables chosen among the d′ existential variables, and y is
a vector of the k remaining variables, with k = d′ + d−m.

In order to eliminate the m equalities, it suffices to solve the system of
equalities E(y′,y) in y′ as a function of y, and to substitute the result in the
system of remaining constraints E(y′,y). The resulting standard Z-polytope Y
has then to be intersected with an integer lattice defining the valid values of y.
We call this lattice the validity lattice of Z-polytope Y. The result is a possibly
non-standard Z-polytope Z ′ = Y ∩ L. In the following, we explain how this
validity lattice L is calculated.

The system of equalities E(y′,y) can be written:

Ay′ +By + c = 0, (8)

where A is a full row-rank (m × m) integer matrix, B is an (m × k) integer
matrix and c is an m-vector. We want to derive the valid values of y from

7

equation (8). In other words, we want a necessary and sufficient condition on y

for an integer solution y′ to exist.

Lemma 3.1 The integer values of y for which the system of equalities (8) ad-
mits an integer solution in y′, if it exists, are given by a k-dimensional integer
lattice L(G,y0). We call L(G,y0) the validity lattice over y induced by (8).

Theorem 1 The proof of lemma (3.1) is based on the lattice intersection com-
putation [28]. Indeed, the necessary and sufficient condition on y for the exis-
tence of an integer solution in y′ to (8) is the following:

∃z ∈ Zm, Ay′ = −By− c = z.

or equivalently that there is an integer solution in (y′,y, z) to the system of
equalities:

(

−A 0 Im
0 B Im

)





y′

y

z



 =

(

0

−c

)

, (9)

where Im is the (m×m) identity matrix.
The left hand-side matrix in equation (9) is, by construction, a (2m× (2m+

k)) full row-rank integer matrix. Hence, the integer solution to (9), if it exists,
is given as a function of k free variables:





y′

y

z



 =





E
G
F



 t+





y′

0

y0

z0



 , t ∈ Zk. (10)

The condition on y for the existence of an integer solution to (10) is then:

y = Gt+ y0, t ∈ Zk,

where G is a (k × k) integer matrix and y0 is an integer k-vector. Hence, y
should be part of the k-dimensional lattice L(G,y0).

Example 2 Consider the Presburger formula:

S = {(x, y, z) ∈ Z3 | ∃(i, j) ∈ Z2 : 1 ≤ i ≤ N ∧ 1 ≤ j ≤ N ∧ 1 ≤ x ≤ N ∧

3i+ 6j = y ∧ 5i = −2x+ z − 1}. (11)

In order to eliminate the equalities of this formula it suffices to eliminate
variables i and j (as in the rational case), and to intersect the result with the
validity lattice corresponding to values of x, y, z, and N for which the system of
equalities admits an integer solution for (i, j). The rational elimination of the
equalities results in a full-dimensional standard Z-polytope:

Y = {(x, y, z) ∈ Z3 | 27 ≤ 6x+5y−3z ≤ 30N−3∧6 ≤ −2x+z ≤ 5N+1∧1 ≤ x ≤ N}.

8

However, not all integer values of (x, y, z) in this set correspond to integer values
of (i, j). The validity lattice of this Z-polytope is obtained by solving the system
of equalities:









−3 −6 0 0 0 0 1 0
−5 0 0 0 0 0 0 1
0 0 0 −1 0 0 1 0
0 0 2 0 −1 0 0 1

































i
j
x
y
z
N
z1
z2

























=









0
0
0
−1









.

The solution of this system can be computed as:

























i
j
x
y
z
N
z1
z2

























=

























0 0 1 0
0 0 0 1
1 0 0 0
0 0 3 6
2 0 5 0
0 1 0 0
0 0 3 6
0 0 5 0

































t1
t2
t3
t4









+

























0
0
0
0
1
0
0
0

























.

Hence,








x
y
z
N









=









1 0 0 0
0 0 3 6
2 0 5 0
0 1 0 0

















t1
t2
t3
t4









+









0
0
1
0









,

which defines an integer lattice L(G,y0) = L

















1 0 0 0
0 0 3 6
2 0 5 0
0 1 0 0









,









0
0
1
0

















.

The final result of eliminating equalities of formula (11) is the new Z-polytope
Z ′ = Y ∩ L(G,y0).

To continue the computation, let us call Z ′ = Y∩L the resulting Z-polytope
after eliminating the equalities implying existential variables in a Z-polytope Ẑ.
Two cases can occur.

• There are no remaining existential variables (it occurs when the number
of existential variables is smaller or equal to the number of equalities that
involve them, as in the example presented above). Then, Z ′ is the solution.

• There still remain existential variables to be eliminated in Z ′. In this
case, we first reorganize the lattice so that its basis matrix becomes upper
triangular. We then calculate the compression of Z-polytope Z ′, i.e., the

9

preimage of Y by the matrix defining lattice L. Finally, we eliminate the
remaining existential variables as explained in section 3.3. In order to
preserve the original coordinates, we calculate the transformation of the
resulting Z-polytopes by the submatrix obtained by removing the lines
and columns corresponding to existential variables from the basis matrix
of L. The result is then intersected with the sublattice defined by this
latter submatrix to obtain the desired transformation.

In the following, we consider without loss of generality, that our formulas do
not contain equalities implying existential variables, and we focus on eliminating
the remaining existential variables.

3.2 Existential variable elimination and integer projection

A classical algorithm to eliminate variables from a system of constraints is the
Fourier-Motzkin elimination procedure [9]. It allows the elimination of a rational
existential variable from a system of affine inequalities, defined on the set of
rational numbers. Its main idea consists in rewriting the original system as a
set of lower and upper bounds on the variable to be eliminated. Then, each pair
of lower and upper bounds of the form {l(x,p) ≤ βz, αz ≤ u(x,p)} is to be
replaced by αl(x,p) ≤ βu(x,p), where z is the existential variable chosen to be
eliminated, l(x,p) and u(x,p) are affine functions of variables x and parameters
p independent of z, and α and β are strictly positive integer constants. This
procedure has been extended to integer existential variable elimination by W.
Pugh et al. [25, 26, 27] as follows:

Any pair of lower and upper bounds {l(x,p) ≤ βz, αz ≤ u(x,p)} defines:

• an exact shadow, corresponding to the rational projection of the points
belonging to this pair of constraints. This is given by αl(x,p) ≤ βu(x,p).

• a dark shadow, corresponding to the convex part of the exact shadow in
which any integer point has at least one integer preimage. This is given
by αl(x,p) + (α − 1)(β − 1) ≤ βu(x,p). Notice that if α = 1 or β = 1,
the dark shadow is equal to the exact shadow.

The part of the exact shadow that does not belong to the dark shadow may
contain integer points having integer preimages, and other integer points called
holes having only rational preimages in Pp (see Figure 1).

The Omega test [25] answers the question: “is there an integer point in the
projection having at least an integer preimage?” as follows:

• if the exact shadow does not contain any integer point, the answer is no,

• if the dark shadow contains at least one integer point, the answer is yes,

• otherwise, the answer is not obvious. In this case, we have to know whether
the part of the exact shadow which does not belong to the dark shadow
contains an integer point having integer preimage(s) in Pp.

10

x

y

0

Dark shadow

Exact shadow

hole hole

(1,1)

(13,6)

Figure 1: The integer projection of a Z-polytope.

In order to answer this latter question, Pugh and Wonnacott [27] check whether
the intersection between a certain number (function of α and β) of hyperplanes
and the constraints of the original system contains an integer point (see section
5).

Note 1 The integer projection of a Z-polytope results in a unique dark shadow
(whatever the number of existential variables) and a union of Z-polytopes. Hence,
the challenge is that of computing such a union.

3.3 Our projection method

In this section, we focus on the projection of a single pair of lower and upper
bounds of the existential variable chosen to be eliminated. Indeed, the projection
of the whole Z-polytope is obtained by intersecting the projections of all its pairs
of bounds (like the well-known Fourier-Motzkin algorithm). The result is also
intersected with the constraints that are independent of the eliminated variable.

Consider a pair of lower and upper bounds {l(x,p) ≤ βz, αz ≤ u(x,p)}.
The projection of such a pair is given by the union of its dark shadow (αl(x,p)−
βu(x,p) + (α − 1)(β − 1) ≤ 0) and another set of integer points which can
not be obtained by applying simple rules. The following theorem defines the
hyperplanes on which the integer points lie.

Lemma 3.2 Let x, y be two rational numbers and ⌈x⌉, ⌈y⌉ (resp. ⌊x⌋, ⌊y⌋) be
their upper (resp. lower) integer parts. The following properties are equivalent:

1. ∃n ∈ Z such that x ≤ n ≤ y,

2. ⌈x⌉ ≤ ⌊y⌋,

3. ⌈x⌉ ≤ y,

4. x ≤ ⌊y⌋.

11

Theorem 3.3 Consider the pair of bounds {l(x,p) ≤ βz, αz ≤ u(x,p)} and
let l(x,p) = ll(x,p) + cl and u(x,p) = lu(x,p) + cu, where ll(x,p) and lu(x,p)
are linear functions, cl and cu are integer constants. Let g be the greatest com-
mon divisor (gcd) of the coefficients of variables x and parameters p in the
linear function (αll(x,p)− βlu(x,p)). Then

• the points outside the dark shadow which belong to the integer projection
lie on hyperplanes of the form:

αl(x,p)− βu(x,p) + γ = 0, (12)

with γ ∈ Z, 0 ≤ γ ≤ αβ − α− β and g divides (βcu − αcl − γ).

• the values of γ for which the hyperplane (12) contains the points we are
interested in are those verifying the following inequality:

α(−l(x,p) mod β) ≤ γ, (13)

which is equivalent to:

β(u(x,p) mod α) ≤ γ. (14)

Theorem 2 We recall that the exact and the dark shadows are respectively given
by αl(x,p)− βu(x,p) ≤ 0 and αl(x,p)− βu(x,p) ≤ −(α− 1)(β − 1) [27]. By
definition, the part of the exact shadow containing the points outside the dark
shadow, which belong to the projection (see Figure 1), is given by −(αβ−α−β) ≤
αl(x,p)−βu(x,p) ≤ 0. This is equivalent to αl(x,p)−βu(x,p)+γ = 0, where
γ is an integer constant such that 0 ≤ γ ≤ αβ − α− β.

By substituting the values of l(x,p) = ll(x,p)+cl and u(x,p) = lu(x,p)+cu
in (12) we obtain αll(x,p) − βlu(x,p) = βcu − αcl − γ, where (αll(x,p) −
βlu(x,p)) is a linear function and (βcu − αcl − γ) is an integer constant. A
necessary and sufficient condition for this hyperplane to contain integer points
is that the gcd of the coefficients in the linear function (αll(x,p) − βlu(x,p))
divides the constant (βcu − αcl − γ).

On the other hand, {l(x,p) ≤ βz, αz ≤ u(x,p)} is equivalent to l(x,p)
β

≤

z ≤ u(x,p)
α

(since α, β > 0), where l(x,p)
β

and u(x,p)
α

are rational functions.
According to properties 1 and 2 of Lemma 3.2, there exists an integer z such

that l(x,p)
β

≤ z ≤ u(x,p)
α

if and only if:

⌈

l(x,p)

β

⌉

≤
u(x,p)

α
, (15)

with
⌈

l(x,p)
β

⌉

= 1
β
(l(x,p) + (−l(x,p)) mod β). By simplifying (15), we obtain:

α(−l(x,p) mod β) ≤ βu(x,p)−αl(x,p), with βu(x,p)−αl(x,p) = γ (according
to equality (12)). Hence, inequality (13) is satisfied. Applying Lemma 3.2, we
can similarly prove inequality (14).

12

Note 2 If one of the bounds l(x,p) or u(x,p) is independent of the variables
and the parameters, the elimination of the existential variable results in only

one convex region, because in this case,
⌈

l(x,p)
β

⌉

or
⌊

u(x,p)
α

⌋

is a constant.

Example 3 Consider the pair of bounds {7 ≤ 4z, 3z ≤ 2x + 5p + 1}. That
is to say, l(x,p) = 7 (independant of the variables and parameters), u(x,p) =
2x + 5p + 1, α = 3 and β = 4. The integer elimination of z results, applying
inequality (15), in only one constraint:

⌈

7
4

⌉

≤ 2x+5p+1
3 , which is equivalent to

2x+ 5p+ 1 ≥ 5.

In the following, we describe how to calculate the solutions of inequalities
(13) or (14), in two different ways, depending on whether the coefficients α and
β are coprime or not.

3.3.1 Case of coprime coefficients

Theorem 3.4 Consider the pair of bounds {l(x,p) ≤ βz, αz ≤ u(x,p)}, with
α, β coprime. The calculation of the values of γ for which hyperplane (12)
contains the points, outside the dark shadow, and that belong to the integer
projection does not depend on the variables and the parameters, i.e., it depends
only on the constants α and β. In this case, inequalities (13) and (14) are
respectively equivalent to (16) and (17).

α((c1γ) mod β) ≤ γ, (16)

β((c2γ) mod α) ≤ γ, (17)

where c1 and c2 are integer constants such that c1α+ c2β = 1 (computing these
constants is straightforward from Bezout’s identity theorem).

Theorem 3 Since α and β are coprime, there exists two integer constants c1
and c2 such that (Bezout’s identity theorem):

c1α+ c2β = 1. (18)

Multiplying equality (12) by c1, we obtain c1αl(x,p) − c1βu(x,p) + c1γ = 0.
This is equivalent to (1− c2β)l(x,p)− c1βu(x,p)+ c1γ = 0 (according to (18)).
Hence,

l(x,p) = β(c2l(x,p) + c1u(x,p))− c1γ.

Substituting the value of l(x,p) in inequality (13), we obtain:

α((−β(c2l(x,p) + c1u(x,p)) + c1γ) mod β) ≤ γ ⇔ α(c1γ mod β) ≤ γ.

This proves Eq. (16). In the same way, one can prove (17), starting from
inequality (14).

13

Example 4 Consider the following Presburger formula:

S = {x ∈ Z | ∃y ∈ Z : 2 ≤ 3y − x ≤ 5 ∧ −1 ≤ x− 2y ≤ N − 1},

where N is a positive integer parameter. This set is equivalent to the projection
on x of the Z-polytope Z pictured in Figure 1 for N = 2.

According to the pair of bounds {x−N + 1 ≤ 2y, 3y ≤ x+ 5}, we have:

l(x,N) = x−N + 1, u(x,N) = x+ 5, α = 3, β = 2.

We can choose c1 = 1 and c2 = −1 (c1α+ c2β = 1).
The constraint on the dark shadow corresponding to this pair of bounds is

x ≤ 3N + 5. The points of the projection that do not belong to the dark shadow
are given by:

αl(x,N)− βu(x,N) + γ = 0, 0 ≤ γ ≤ αβ − α− β and α((c1γ) mod β) ≤ γ

⇒ x− 3N − 7 + γ = 0, 0 ≤ γ ≤ 1 and 3(γ mod 2) ≤ γ.

Scanning the values of γ, we find that the only one satisfying these constraints
is γ = 0. The corresponding hyperplane is x = 3N + 7. Similarly, one can
calculate the point x = 1 from the other pair of bounds {x+2 ≤ 3y, 2y ≤ x+1}
generating the constraint x ≥ 3 on the dark shadow.

The integer projection of Z-polytope Z is then obtained by intersecting the
projections of both pairs, i.e., S = {x = 3N+7∨x ≤ 3N+5}∩{x = 1∨x ≥ 3}.
Since N is positive, this set is equal to:

S = {x ∈ Z | x = 1 ∨ 3 ≤ x ≤ 3N + 5 ∨ x = 3N + 7}.

3.3.2 Case of non-coprime coefficients

In the previous subsection, we showed how we calculate the projection of a
pair of bounds when the coefficients α and β are coprime. Let us now consider
the case of non-coprime coefficients. In this case, the calculation of the values
of γ for which the hyperplane (12) contains the points of the projection, and
that are outside the dark shadow, depends not only on α and β, but also on the
variables and the parameters. Let g′ = gcd(α, β), α′ = α/g′, β′ = β/g′ and g be
the gcd of the coefficients of the variables and parameters in the linear function
α′ll(x,p) − β′lu(x,p), with l(x,p) = ll(x,p) + cl and u(x,p) = lu(x,p) + cu
(see Theorem 3.3). One can then rewrite the equation of the hyperplane (12)
as follows:

α′l(x,p)− β′u(x,p) + γ = 0, (19)

with γ ∈ Z, 0 ≤ γ ≤ αβ′ − α′ − β′ and g divides (β′cu − α′cl − γ).
Inequalities (13) and (14) can be respectively rewritten as (20) and (21):

α′(−l(x,p) mod β) ≤ γ, (20)

14

β′(u(x,p) mod α) ≤ γ. (21)

In this case, it may happen that only a subset of the integer points of hyperplane
(19) belongs to the projection. These points are defined by the intersection
between the hyperplane and a union of lattices obtained by solving one of the
following equalities.

−l(x,p) mod β = γ′, with 0 ≤ γ′ ≤ min
(⌊ γ

α′

⌋

, β
)

, (22)

u(x,p) mod α = γ′, with 0 ≤ γ′ ≤ min

(⌊

γ

β′

⌋

, α

)

. (23)

In practice, it is worth considering equality (22) when β < α and equality (23)
otherwise.

The solution to a modulo equality f(x,p) mod a = b is a lattice of the form:

L =

{

(

Ax Ap

)

(

x

p

)

+ c

∣

∣

∣

∣

x ∈ Zd, p ∈ Zn

}

, (24)

where Ax, Ap are integer matrices, c is an integer vector, x is a vector of the
variables space and p is a vector of parameters. We calculate this solution using
the technique presented in section 3.1. Indeed, f(x,p) mod a = b is equivalent
to ∃z ∈ Z : f(x,p) = az + b. It then suffices to calculate the validity lattice
of this latter equation by eliminating existential variable z, or in other words,
all integer values of x and p for which variable z is integer. Of course, only
non-empty lattices and hyperplanes are taken into account.

Example 5 Consider a pair of bounds for which the coefficients of the existen-
tial variable y are not coprime {x−N − 2 ≤ 2y, 4y ≤ x+ 5}. We have:

l(x,N) = x−N − 2, u(x,N) = x+ 5, α = 4, β = 2

⇒ gcd(α, β) = 2, α′ = 2, β′ = 1.

The corresponding constraint on the dark shadow is 2x ≤ 4N+15 ⇔ x ≤ 2N+7.
The points outside the dark shadow and belonging to the projection lie on the
following hyperplane:

x− 2N − 9 + γ = 0, such that 0 ≤ γ ≤ 1 and 2((x−N − 2) mod 2) ≤ γ.

For both values of γ, the solution to the above modulo inequality is a lattice:

L =

{(

2 1
0 1

)(

x
N

)

+

(

−2
0

) ∣

∣

∣

∣

x ∈ Z, N ∈ Z

}

.

Hence, points x = 2N + 9 and x = 2N + 8 (obtained by substituting the values
of γ in equality x − 2N − 9 + γ = 0) belong to the projection only if x and N
belong to lattice L.

The whole projection of the pair of bounds is then given by:

S = {x ∈ Z | (x = 2N+8∧(x,N) ∈ L)∨(x = 2N+9∧(x,N) ∈ L)∨x ≤ 2N+7}.

15

Algorithm 1 Calculating the integer affine transformation of a Z-polytope

Input:
Z: Z-polytope
T : Transformation matrix

Output:
Zu: Union of Z-polytopes

Variables:
F,U : Union of Z-polytopes

F = EliminateEqualities (PresburgerFormula (Z, T))

// Remaining existential variables elimination
For each z in variables to be eliminated

F = ReduceLattice (z, F)
U = Universe (Dim(F) − 1) // U = ZDim(F)−1

For each (αu, βl) in pairs of bounds on z in F
D = DarkShadow (αu, βl)
If α = 1 or β = 1

U = U ∩D
Else

E = ExactShadow (αu, βl)
U = U ∩ (D ∪RemoveHoles(E −D,αu, βl))

End If
End For
F = U

End For
Zu = F

Projecting out a first existential variable from a Z-polytope may result in a
union of non-standard Z-polytopes. Therefore, in order to project out a second
variable, this union has to be projected again, and so on. The projection of each
non-standard Z-polytope is obtained by first transforming it into a standard Z-
polytope, then projecting it as explained before. The result is finally rewritten
as a function of the original variables and parameters. The whole method of
calculating the integer affine transformation of a Z-polytope is summarized in
Algorithm 1.

The result is given as a union of parametric Z-polytopes. In the following
section, we will be interested in counting points in such unions.

16

4 Counting points in unions of Z-polytopes

We will now discuss an algorithm that deals with unions of parametric Z-
polytopes of the form Z = P ∩ L, with:

P =

{

x ∈ Qd,p ∈ Zn

∣

∣

∣

∣

(

Ax Ap

)

(

x

p

)

+ a ≥ 0

}

,

L =

{

(

Bx Bp

)

(

x

p

)

+ b

∣

∣

∣

∣

x ∈ Zd, p ∈ Zn

}

,

where P is a parametric polytope, L is a parametric integer lattice, Ax, Ap, Bx

and Bp are integer matrices, a and b are integer vectors, x is a vector of the
variables space and p is a vector of parameters.

Let Z1 = P1 ∩ L1 and Z2 = P2 ∩ L2 be two Z-polytopes. The number of
points of Z1 is equal to the number of integer points contained in P ′

1, where P
′

1

is the transformation of P1 by the matrix B1 defining lattice L1. In the same
way, the number of points of Z2 is equal to the number of integer points in
P ′

2 = B2P2. Unfortunately, the number of points in Z1 ∪ Z2 is obviously not
equal to that in P ′

1 ∪ P ′

2 since the applied transformations preserve the number
of points in Z1 and Z2 but do not preserve their original coordinates.

Example 6 Consider the two Z-polytopes pictured in Figure 2, Z1 = P1 ∩ L1

and Z2 = P2 ∩L2, where dots belong to Z1, squares belong to Z2 and diamonds
belong to both Z-polytopes:

P1 = {(x, y) ∈ Q2 | 1 ≤ x ≤ 10 ∧ 3 ≤ y ≤ 7},

L1 =

{(

2 0
0 2

)(

x′

y′

)

+

(

1
1

) ∣

∣

∣

∣

(x′, y′) ∈ Z2

}

,

P2 = {(x, y) ∈ Q2 | 3 ≤ x ≤ 12 ∧ 1 ≤ y ≤ 6},

L2 =

{(

3 0
0 2

)(

x′

y′

)

+

(

0
1

) ∣

∣

∣

∣

(x′, y′) ∈ Z2

}

.

Substituting x = 2x′+1 and y = 2y′+1 in P1 (resp. x = 3x′ and y = 2y′+1
in P2) we obtain P ′

1 and P ′

2 in which the numbers of points are respectively 15
and 12:

P ′

1 = {(x′, y′) ∈ Z2 | 0 ≤ 2x′ ≤ 9 ∧ 1 ≤ y′ ≤ 3},

P ′

2 = {(x′, y′) ∈ Z2 | 1 ≤ x′ ≤ 4 ∧ 0 ≤ 2y′ ≤ 5}.

One can check that the number of points in P ′

1∪P
′

2 is 19, whereas that in Z1∪Z2

is 23 as shown in Figure 2.

The previous methods [22, 39] to count points in unions of Z-polytopes are
lattice-union based, which is exponential in the size of lattice generators and
their least common multiple. Furthermore, Zhu et al.’s method [39] only deals
with non-parametric Z-polytopes.

17

(P1)

(P2)

y

0 x

Figure 2: Union of two Z-polytopes

In contrast, our method is lattice-intersection based: its complexity is poly-
nomial, since the intersection between two lattices results in only one lattice,
whatever their generators. Previous algorithms start by calculating a disjoint
union of the input Z-polytopes. It is usually very hard to separate a union of
Z-polytopes into a disjoint union [39], and its complexity may be exponential
even for a fixed number of Z-polytopes.

In our algorithm (Algorithm 2), we start by applying the inclusion-exclusion
principle to the union of Z-polytopes. We therefore process on a set of signed
Z-polytopes: E(Z1 ∪ Z2), the number of integer points in the union of two
Z-polytopes Z1 and Z2, is equal to E(Z1) + E(Z2)− E(Z1 ∩ Z2).

After applying the inclusion-exclusion principle, the number of points in each
resulting Z-polytope Yi = Pi ∩ Li is calculated as follows:

We first transform the matrix generating the lattice:

Li =

{

(

Bx Bp

)

(

x

p

)

+

(

bx

bp

) ∣

∣

∣

∣

x ∈ Zd,p ∈ Zn

}

into a new matrix of

the form: M =

(

Bxx Bxp

0 Bpp

)

. Matrix M generates the same integer points

as the original matrix, and the rows of M defining the lattice in the parameter
space are independent of the variables. This is required to keep the variables
space compressed when rewriting the transformed Z-polytope as a function of its
original parameters. We calculate matrix M from the Hermite normal form [30]
of matrix

(

Bx Bp

)

, with rows and columns exchanged such that parameters
appear first. This is needed to obtain zeroes under Bxx in M . We apply the

affine transformation

(

M

(

bx

bp

))

to Pi to get a polytope P ′. Then,

P ′ is rewritten as a function of the original parameters using the submatrix
(Bpp | bp) and finally, we use our counting algorithm [35, 36] to calculate the
Ehrhart quasi-polynomial corresponding to the number of integer points in the
resulting polytope. Note that when submatrix Bpp is not equal to the identity
matrix, the polytope is valid for only the parameter values generated by lattice

18

Algorithm 2 Counting integer points in a union of parametric Z-polytopes

Input:
F : Union of Z-polytopes

Output:
L: List of (Validity domain, Ehrhart quasi-polynomial)

Variables:
S, S′: List of (sign, Z-polytope)
P : Polytope; I: Z-polytope

// Inclusion-exclusion principle
S = Empty
For each Z in F

S′ = S
For each (s,Y) in S

I = Z ∩ Y
If Not Empty (I)

S′ = S′ + (−1× s, I)
End If

End For
S = S′ + (+1,Z)

End For

// Enumeration of S
L= Empty ()
For each (s,Y) in S

Y.L = NormalizeLattice(Y.L)
P = Transform(Y.P,Y.L),
L = AddAndSimplify (L, s×Enumerate (P))

End For

Lp whose basis is Bpp and affine part is bp. In this case, the resulting Ehrhart
quasi-polynomial is to be multiplied by one if the parameter values are valid
(i.e., if they belong to the points spanned by lattice Lp) and zero otherwise.

Example 7 Consider parametric versions of Z-polytopes Z1 = P1 ∩ L1 and
Z2 = P2 ∩ L2 from Example 6, with

P1 = {(x, y) ∈ Q2 | 1 ≤ x ≤ N + 5 ∧ 3 ≤ y ≤ 7},

L1 =











2 0 3
0 2 0
0 0 1









x′

y′

N ′



+





1
1
0





∣

∣

∣

∣

∣

∣

(x′, y′) ∈ Z2, N ′ ∈ Z







,

19

P2 = {(x, y) ∈ Q2 | 3 ≤ x ≤ 2N + 7 ∧ 1 ≤ y ≤ 6},

L2 =











3 0 0
0 2 0
0 0 3









x′

y′

N ′



+





2
1
0





∣

∣

∣

∣

∣

∣

(x′, y′) ∈ Z2, N ′ ∈ Z







,

where N ∈ Z+ is a parameter. The number of points in the union Z1 ∪ Z2 is
given by:

E(Z1 ∪ Z2) = E(Z1) + E(Z2)− E(Z1 ∩ Z2).

Let (Z1 ∩ Z2) = Z3 = (P3 ∩ L3), with

P3 = P1 ∩ P2 = {(x, y) ∈ Q2 | 3 ≤ x ≤ N + 5 ∧ 3 ≤ y ≤ 6},

L3 = L1 ∩ L2 =











3 0 0
0 2 0
3 0 6









x′

y′

N ′



+





2
1
3





∣

∣

∣

∣

∣

∣

(x′, y′) ∈ Z2, N ′ ∈ Z







.

The number of integer points in Z3 is calculated as follows.

First of all, basis





3 0 0
0 2 0
3 0 6



 of lattice L3 is transformed into a new

basis M =





6 0 3
0 2 0
0 0 3



 in which the variable coefficients in the parameter

row are all equal to zero. The new basis spans the same integer points as the
original one since it is calculated from its Hermite normal form. Z-polytope Z3

is then transformed into a regular polytope P given by the preimage of P3 by

homogeneous matrix









6 0 3 2
0 2 0 1
0 0 3 3
0 0 0 1









:

P = {(x′, y′) ∈ Q2 | −3N ′ + 1 ≤ 6x′ ≤ 6 ∧ 2 ≤ 2y′ ≤ 5}.

Before counting points in P , we need to write it as a function of the original
parameter N . To do this, it suffices to calculate its transformation by matrix

M =









1 0 0 0
0 1 0 0
0 0 3 3
0 0 0 1









, and we obtain:

P ′ = {(x′, y′) ∈ Q2 | −N + 4 ≤ 6x′ ≤ 6 ∧ 2 ≤ 2y′ ≤ 5}.

The number of integer points in this polytope is given (using the algorithm
described in [35, 36]) by:

E(P ′) =
1

3
N +

[

2,
5

3
,
4

3
, 1,

8

3
,
7

3

]

N

,

20

where
[

2, 53 ,
4
3 , 1,

8
3 ,

7
3

]

N
is a periodic number whose value is 2 when N mod 6 =

0, 5
3 when N mod 6 = 1 and so on.
The third row in matrix M states that N = 3N ′ + 3, with N ′ ∈ Z. In

other words, N must be a multiple of 3 (N mod 3 = 0). Therefore the resulting
polynomial is multiplied by a periodic number [1, 0, 0]N which is equal to one
when N mod 3 = 0 and zero otherwise. The result is then:

E(Z3) =

[

1

3
, 0, 0

]

N

N + [2, 0, 0, 1, 0, 0]N

The numbers of points in Z1 and Z2 are obtained in a similar way as:

E(Z1) =
3

2
N +

[

9,
15

2

]

N

,

E(Z2) = [2, 0, 0]NN + [3, 0, 0]N .

Finally, the number of points in Z1 ∪ Z2 is:

E(Z1∪Z2) = E(Z1)+E(Z2)−E(Z3) =

[

19

6
,
3

2
,
3

2

]

N

N+

[

10,
15

2
, 9,

19

2
, 9,

15

2

]

N

.

The complexity of our algorithm (Algorithm 2) depends on the complexity of
the significant polytope and Z-polytope operations, the complexity of counting
integer points in a parametric polytope and the number of the resulting Z-
polytopes after applying the inclusion-exclusion principle:

• The polytope operations rely on PolyLib, which is based on the dual rays
and constraints representations. All the operations that we use, namely
transform and intersection, are polynomial for fixed dimension.

• The only significant Z-polytope operation used in this algorithm is the
intersection, which is polynomial since the intersection between two poly-
topes is a concatenation of their constraints, and the intersection between
two lattices reduces to solving a system of linear equalities [23], which is
polynomial in the input size [30].

• Counting integer points in a parametric polytope is also polynomial in the
input size (for fixed dimension), as we showed in [35, 36].

• Finally, the Z-polytopes to be enumerated are given by the inclusion-
exclusion principle. When the number of input Z-polytopes is fixed, the
inclusion-exclusion principle provides a polynomial number of (non-empty)
Z-polytopes.

Hence, the whole algorithm is polynomial in the input size (for fixed dimension
and fixed number of input Z-polytopes).

21

5 Related work and applications

In this section, we compare our work to some recent and interesting methods
over a set of problems that frequently arise in code optimization techniques. All
the execution times that are given were measured on a 3GHz Intel Pentium 4
with 1GB of RAM running Linux 2.6.23.

5.1 Omega test

We first illustrate the difference between our method and Pugh et al.’s Omega
test [25, 26, 27]. The Omega test answers the question: is there an integer
point in the integer projection of a polytope? as follows: it first computes the
exact shadow (real projection). If it does not contain any integer point, then the
answer is ”no”. Then it computes the dark shadow. If it contains at least an
integer point, then the answer is ”yes”; else Pugh and Wonnacott [27] propose
to check whether the intersection between a certain number of hyperplanes and
the constraints of the original system contains an integer point. Their solution
provides new constraints with possibly extra existential variables (the splinters)
which increases the complexity of further computations, such as:

• counting the number of integer points contained in the integer projection
of the Z-polytope?

• projecting the result along another dimension?

Note that the splinters provided by Pugh’s method are somewhat similar to our
Z-polytopes (when the coefficients of the existential variable are not coprime, see
Section 3.3.2). But it is not clear whether these splinters can be projected along
another dimension without scanning a possibly exponentially growing number
of Z-polytopes. Also, when the coefficients are coprime, Pugh’s method does not
propose a simple solution as we do, and no explanation is given for non-coprime
coefficients nor for the parametric case.

Example 8 Consider the following example (introduced in [27]):

S = {x ∈ Z | ∃y ∈ Z : 0 ≤ 3y − x ≤ 7 ∧ 1 ≤ x− 2y ≤ 5}.

The exact shadow defined by the elimination of y is given by 3 ≤ x ≤ 29 and
the dark shadow by 5 ≤ x ≤ 27.

Pugh and Wonnacott [27] calculate the set of constraints containing the
images which do not belong to the dark shadow as follows:

{x ∈ Z | ∃y ∈ Z : x = 3y ∧ 1 ≤ y ≤ 5 } ∪
{x ∈ Z | ∃y ∈ Z : x = 3y − 1 ∧ 2 ≤ y ≤ 6 } ∪
{x ∈ Z | ∃y ∈ Z : x = 2y + 5 ∧ 5 ≤ y ≤ 12}

which has to be intersected with the difference between the exact shadow and
the dark shadow in order to obtain the solution. While our rules provide these
images directly as {x = 3, x = 29}.

22

5.2 Weak quantifier elimination

A recent and interesting work manipulating Presburger formulas is the one
due to Lasaruk and Sturm [19]. It consists in a generalization of Presburger
arithmetic, where the coefficients are arbitrary polynomials in non-quantified
variables. The authors use the term ”weak” to refer to the fact that the result
may still contain bounded quantifiers. In order to expand this result into dis-
junctions, the parameters have to be instantiated. In the following, we will show
that, at least for a subset of problems1, our method also handles parameters
and can do better, in particular in terms of execution time.

Let us consider an interesting issue raised by the code optimization commu-
nity, which is dependency analysis for automatic parallelization. More precisely,
we consider the example from [19] (section 5.2). The goal is to check whether a
data dependency occurs or not in the following loop nest:

for i = 0 to m do

for j = 0 to m do

A[n*i+j] = i+j

A data dependency for example occurs when two or more different loop
iterations write different values to a same array element. For this loop nest, this
condition can be expressed as the following Presburger formula:

∃i∃j∃i′∃j′(0 ≤ i ≤ m ∧ 0 ≤ j ≤ m ∧ 0 ≤ i′ ≤ m ∧ 0 ≤ j′ ≤ m ∧

(i 6= i′ ∨ j 6= j′) ∧ i+ j 6= i′ + j′ ∧ ni+ j = ni′ + j′).

Lasaruk and Sturm [19] compute in 3.53s that the weak quantifier elimi-
nation over integers from the above formula results in 25441 atomic formulas,
which can not be expanded unless the parameters are substituted. They also
raise the fact that it is more efficient to first plug in values for the parameters m
and n, and then to perform quantifier elimination plus expansion. When they
do so, they obtain ”true” for m = n = 4 in 0.28s and ”false” for m = 4 and
n = 5 in 0.29s.

Let us now see how this problem can efficiently be solved using our method:
When m = n = 4 we obtain ”yes” in 0.01s, and we obtain ”false” when

m = 4 and n = 5 in less than 0.01s.
Better, our method has only to plug in the value of parameter n (since we

do not handle polynomial constraints). In this case, we obtain:

• when n = 4: ”true” if m >= 4 and ”false” otherwise in less than 0.01s,

• when n = 5: ”true” if m >= 5 and ”false” otherwise in 0.01s.

Notice that the authors do not mention what could be the result in this second
case.

1Our method handles only linear constraints (polynomial constraints are not supported).

23

Another information that can be given by our method is the array elements
causing the data dependency and their count. This is done by replacing equality
ni + j = ni′ + j′ by x = ni + j ∧ x = ni′ + j′ in the previous formula, where
x is a free-quantifier variable representing accessed array elements. Again, only
parameter n has to be substituted. For example, when n = 4, the number of
array cells causing a dependency is given as: {4 if m = 4, 10 if m = 5, 18 if m =
6 and 5m− 7 if m ≥ 7}.

5.3 Barvinok-Woods’s integer projection

In 2003, Barvinok and Woods [3] proposed an algorithm for computing the
integer projection of a polytope that is theoretically polynomial-time for fixed
dimension. However, no implementation of this algorithm has been reported
till 2008. Because it contains complicated theory such as algorithmic flatness
theory and iterated Boolean combinations of rational generating functions, this
algorithm has frequently been referred to as ”unimplementable” [17]. In 2008,
Köppe et al. [17] rose to the challenge of proposing the first-ever implementation
of Barvinok-Woods’s algorithm. In their paper, the authors present the results
of preliminary computational experiments. Unfortunately, their implementation
turned out to be rather inefficient, as shown in the experiments they reported,
in particular woods 2.1.7 and scarf 1. The following table summarizes execution
times (in seconds) obtained by Köppe et al.’s implementation.

ex1 woods 2.1.7 pugh scarf 1
parameters 0 1 0 2
free-quantifier variables 0 0 0 0
existentially quantified variables 2 2 2 2
inequalities 4 4 4 5
Köppe’s time without exploiting 0.11 29.2 0.09 126
small gapes in dimension 2
Köppe’s time exploiting small 0.08 2.7 1.1
gapes in dimension 2

For all these examples, our method computes the result in less than 0.01s.
Notice that we did not test our method on the param.pugh example, because
the authors did not make it public.

5.4 Verdoolaege’s integer projection

In this section, we compare our implementation with the one written by Sven
Verdoolaege and distributed in the Barvinok library [33]. This implementation
consists in applying simple rewriting rules to a set of disjoint union of parametric
sets computed using the Omega library [16]. If these rules fail, the PIP library
[12] is used to solve a parametric integer linear programming problem, in the
way of Boulet and Redon [6]. Notice that both tools (Omega and PIP) are
worst-case exponential.

24

The particular advantage of our method over the one of Verdoolaege is its
ability to handle efficiently unions of projections. Indeed, in such a case, our
algorithm computes each projection independently of the others, even if the
original sets are not pairwise disjoint projections. The final result is then easily
obtained by doing the union of the resulting atomic projections. The number of
lattice points contained in this union is computed straightforwardly using the
algorithm proposed in section 4. Verdoolaege’s method could not do so since, in
contrast to our method, it does not compute the actual atomic projections but
equivalent sets having the same number of lattice points. Hence, the original
input sets have to be pairwise disjoint. Furthermore, the equivalent resulting
sets are usually of higher dimension than the actual projections. This, usually,
leads to higher lattice points counting times and results in larger Ehrhart quasi-
polynomials.

Example 9 Consider the following two loop nests accessing a one-dimensional
array:

for i = 1 to n do

for j = i+1 to n do

A[2*i+3*j] = ...

for k = 1 to n do

for l = 1 to k-1 do

A[k+2*l] = ...

Suppose we are interested in the number of array elements that are reached by at
least one of these loop nests iterations. This is useful, for example, to compute
the amount of data being accessed by this piece of program (the cache size used
by this computation could also be computed). This in turn reduces to the problem
of counting the solutions to the following Presburger formula:

∃i∃j(1 ≤ i ≤ n ∧ i+ 1 ≤ j ≤ n ∧ x = 2i+ 3j)∨

∃k∃l(1 ≤ k ≤ n ∧ 1 ≤ l ≤ k − 1 ∧ x = k + 2l).

Verdoolaege’s algorithm first uses the Omega library to compute three disjoint
formulas which still contain existential variables, and then applies the rewriting
rules and/or the PIP library to compute their integer projections, which results
in a set of disjoint polytopes. Applying the lattice points counting algorithm to
this set results in 3-degree Ehrhart quasi-polynomials. The solution is given in
0.12s computation time and the size of the output file is 2475 bytes.

In contrast to this, our method computes the result in only 0.01s and the
output file takes 256 bytes only. The result we obtain is: 2, 6, 11, 16, 22 when
n respectively goes from 2 to 6, and 5n − 7 when n is greater or equal to 7.
Notice that the size of the output file has to be as small as possible, since it
contains Ehrhart quasi-polynomials that are sometimes used in optimizing code
applications.

25

In order to measure the efficiency of our method, we also ran a simulation
through a thousand of pseudo-randomly generated examples that model array
accesses in perfect loop nests. The examples are constructed as follows:

• the depth of loop nests (number of the existential variables) varies from 1
to 6,

• the dimension of arrays (number of free-quantifier variables) varies from
1 to 4,

• the number of parameters varies from 1 to 4,

• the number of equalities equals the array dimension,

• the number of inequalities equals 2 times the depth of the loop nest,

• the coefficients of the variables and parameters are chosen such that they
reflect what could be found in a real program.

Consequently, the number of dimensions of the generated sets2 varies from
3 to 14, and the number of constraints varies from 3 to 16. For these 1000
examples, we get the following execution times:

• For 804 examples, our implementation and Verdoolaege’s compute the
solution in 0.01s or less, and for 7 examples the two implementations have
the same computation time (between 0.02s and 0.10s).

• For 94 examples, our implementation does better than Verdoolaege’s.

• For 46 examples, Verdoolaege’s implementation does better than ours.

• For 49 examples, both implementations do not compute the solution in
less than 30s, which we set as timeout threshold.

Notice that, even if all the generated examples in this simulation are single
sets (no unions of projections have been computed), our method yields to better
results than the one of Verdoolaege.

This simulation was undertaken with the PolyLib library version 5.23 and
the Barvinok library version 0.28. In both implementations, PolyLib is used to
realize polyhedral operations, and the Barvinok library to count integer points
in parametric polytopes. In addition, Verdoolaege uses the PIP library [12] and
the Omega library [16] to simplify the input polytopes. All the computations
have been performed on a 3GHz Intel Pentium 4 with 1GB of RAM.

2We consider only non-empty sets.

26

6 Conclusion

We presented a new algorithm for calculating the integer affine transforma-
tion of parametric Z-polytopes. The solution is given as a union of parametric
Z-polytopes, worst-case exponential but efficient in practical cases, and less
complex compared to other existing methods. A general polynomial algorithm
for computing the exact solution remains a challenge. We also proposed a new
polynomial algorithm to count points in arbitrary unions of a fixed number of
Z-polytopes (of fixed dimension).

These algorithms have been implemented using the PolyLib library [20] and
the Barvinok library [35, 36]. They have many applications, particularly in
compiler design (for example analyzing and optimizing loop nests), and in other
domains such as economics and mathematics (for example in combinatorics,
representation theory, statistics, discrete optimization).

References

[1] M. Welleda Baldoni-Silva, Matthias Beck, Charles Cochet, and Michèle
Vergne. Volume computation for polytopes and partition functions for
classical root systems. Discrete & Computational Geometry, 35(4):551–
595, 2006.

[2] A. I. Barvinok. Computing the Ehrhart polynomial of a convex lattice
polytope. Discrete Comput. Geom., 12:35–48, 1994.

[3] Alexander Barvinok and Kevin Woods. Short rational generating functions
for lattice point problems. Journal of the American Mathematical Society,
16:657–979, 2003.

[4] Alexander I. Barvinok. A polynomial time algorithm for counting inte-
gral points in polyhedra when the dimension is fixed. Math. Oper. Res.,
19(4):769–779, 1994.

[5] B. Boigelot and L. Latour. Counting the solutions of Presburger equations
without enumerating them. Theoretical Computer Science, 313(1):17–29,
Feb. 2004.

[6] Pierre Boulet and Xavier Redon. Communication pre-evaluation in HPF.
In EUROPAR’98, volume 1470 of LNCS, pages 263–272. Springer Verlag,
1998.

[7] Philippe Clauss and Vincent Loechner. Parametric Analysis of Polyhedral
Iteration Spaces. Journal of VLSI Signal Processing, 19(2):179–194, July
1998.

[8] P. D’Alberto, A. Veidembaum, A. Nicolau, and R. Gupta. Static analysis
of parameterized loop nests for energy efficient use of data caches. In

27

Workshop on Compilers and Operating Systems for Low Power (COLP01),
September 2001.

[9] George B. Dantzig and B. Curtis Eaves. Fourier-Motzkin elimination and
its dual. J. Comb. Theory, Ser. A, 14(3):288–297, 1973.

[10] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko
Yoshida. Effective lattice point counting in rational convex polytopes. Jour-
nal of Symbolic Computation, 38(4):1273–1302, 2004.

[11] E. Ehrhart. Polynômes arithmétiques et méthode des polyèdres en combi-
natoire. International Series of Numerical Mathematics, 35, 1977.

[12] P. Feautrier, J. Collard, and C. Bastoul. Solving systems of affine
(in)equalities. Technical report, PRiSM, Versailles University, 2002.

[13] Paul Feautrier. Parametric integer programming. Recherche Opera-
tionnelle/Operations Research, 22(3):243–268, 1988.

[14] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equa-
tions: a compiler framework for analyzing and tuning memory behavior.
ACM Transactions on Programming Languages and Systems, 21(4):703–
746, 1999.

[15] Felix Heine and Adrian Slowik. Volume driven data distribution for NUMA-
machines. In Proceedings from the 6th International Euro-Par Conference
on Parallel Processing, pages 415–424, 2000.

[16] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonna-
cott. The Omega Library. Technical report, Institue for advanced computer
studies, University of Maryland, College Park, 1996.

[17] Matthias Köppe, Sven Verdoolaege, and Kevin Woods. An implementation
of the barvinok–woods integer projection algorithm. In ITSL, pages 53–59,
2008.

[18] G. Kreisel and J. L. Krevine. Elements of Mathematical Logic. The Nether-
lands: North-Holland Publishing, 1967.

[19] Aless Lasaruk and Thomas Sturm. Weak quantifier elimination for the
full linear theory of the integers: A uniform generalization of presburger
arithmetic. Appl. Algebra Eng., Commun. Comput., 18(6):545–574, 2007.

[20] Vincent Loechner. Polylib: A library for manipulating parameterized poly-
hedra. Technical report, LSIIT - ICPS UMR7005 Univ. Louis Pasteur-
CNRS, 1999.

[21] Vincent Loechner, Benôıt Meister, and Philippe Clauss. Precise data local-
ity optimization of nested loops. Journal of Supercomputing, 21(1):37–76,
2002.

28

[22] B. Meister. Projecting periodic polyhedra for loop nest analysis. In Pro-
ceedings of the 11th Workshop on Compilers for Parallel Computers (CPC
04), Kloster Seeon, Germany, pages 13–24, July 2004.

[23] S P K. Nookala and T. Risset. A library for Z-polyhedral operations.
Technical report, 1330, Irisa, 2000.

[24] Erin Parker and Siddhartha Chatterjee. An automata-theoretic algorithm
for counting solutions to Presburger formulas. In Compiler Construction
2004, volume 2985 of Lecture Notes in Computer Science, pages 104–119,
April 2004.

[25] William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 4–13. ACM Press, 1991.

[26] William Pugh. Counting solutions to Presburger formulas: how and why.
In SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’94), pages 121–134, 1994.

[27] William Pugh and David Wonnacott. Experiences with constraint-based
array dependence analysis. In Principles and Practice of Constraint Pro-
gramming, pages 312–325, 1994.

[28] Patrice Quinton, Sanjay Rajopadhye, and Tanguy Risset. On manipulating
Z-polyhedra using a canonical representation. Parallel Processing Letters,
7(2):181–194, 1997.

[29] J. Ramanujam, Jinpyo Hong, Mahmut Kandemir, and A. Narayan. Re-
ducing memory requirements of nested loops for embedded systems. In
DAC ’01: Proceedings of the 38th conference on Design automation, pages
359–364, New York, NY, USA, 2001. ACM Press.

[30] Alexander Schrijver. Theory of linear and integer programming. JohnWiley
& Sons, 1986.

[31] Rachid Seghir and Vincent Loechner. Memory optimization by counting
points in integer transformations of parametric polytopes. In In Proceedings
of International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems, CASES 2006, pages 74–82, October 2006.

[32] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Solving out-of-order
communication in Kahn process networks. J. VLSI Signal Process. Syst.,
40(1):7–18, 2005.

[33] Sven Verdoolaege. Barvinok: user guide, August 2006.
http://www.kotnet.org/˜skimo/barvinok/.

29

[34] Sven Verdoolaege, Kristof Beyls, Maurice Bruynooghe, and Francky
Catthoor. Experiences with enumeration of integer projections of para-
metric polytopes. In R. Bodik, editor, Compiler Construction: 14th Inter-
national Conference, volume 3443, pages 91–105, Edinburgh, March 2005.
Springer.

[35] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. Analytical computation of Ehrhart polynomials: En-
abling more compiler analyses and optimizations. In Proceedings of Interna-
tional Conference on Compilers, Architectures, and Synthesis for Embedded
Systems, Washington D.C., pages 248–258, September 2004.

[36] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. Counting integer points in parametric polytopes
using barvinok’s rational functions. Algorithmica, 48(1):37–66, 2007.

[37] Sven Verdoolaege and Kevin Woods. Counting with rational generating
functions, 2005. http://arxiv.org/abs/math/0504059.

[38] Ying Zhao and Sharad Malik. Exact memory size estimation for array
computations. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 8(5):517–521, October 2000.

[39] Hongwei Zhu, Ilie I. Luican, and Florin Balasa. Memory size computation
for real-time multimedia applications based on polyhedral decomposition.
IEICE Trans. on Fundamentals of Electronics, Communications and Com-
puter Sciences., E89-A(12):3378–3386, 2006.

30

