
HAL Id: inria-00535948
https://hal.inria.fr/inria-00535948

Submitted on 14 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Magically Constraining the Inverse Method Using
Dynamic Polarity Assignment

Kaustuv Chaudhuri

To cite this version:
Kaustuv Chaudhuri. Magically Constraining the Inverse Method Using Dynamic Polarity Assign-
ment. Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), Oct 2010, Yogyakarta,
Indonesia. pp.202–216, �10.1007/978-3-642-16242-8_15�. �inria-00535948�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50040567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00535948
https://hal.archives-ouvertes.fr

Magically Constraining the Inverse Method
Using Dynamic Polarity Assignment

Kaustuv Chaudhuri

INRIA Saclay, France
kaustuv.chaudhuri@inria.fr

Abstract. Given a logic program that is terminating and mode-correct in an
idealized Prolog interpreter (i.e., in a top-down logic programming engine), a
bottom-up logic programming engine can be used to compute exactly the same
set of answers as the top-down engine for a given mode-correct query by rewrit-
ing the program and the query using the Magic Sets Transformation (MST). In
previous work, we have shown that focusing can logically characterize the stan-
dard notion of bottom-up logic programming if atomic formulas are statically
given a certain polarity assignment. In an analogous manner, dynamically assign-
ing polarities can characterize the effect of MST without needing to transform
the program or the query. This gives us a new proof of the completeness of MST
in purely logical terms, by using the general completeness theorem for focusing.
As the dynamic assignment is done in a general logic, the essence of MST can
potentially be generalized to larger fragments of logic.

1 Introduction

It is now well established that two operational “dialects” of logic programming—top-
down (also known as backward chaining or goal-directed) in the style of Prolog, and
bottom-up (or forward chaining or program-directed) in thestyle of hyperresolution—
can be expressed in the uniform lexicon of polarity and focusing in the cut-free sequent
calculus for a general logic such as intuitionistic logic [7]. The difference in these dia-
metrically opposite styles of logic programming amounts toa static and globalpolarity
assignmentto the atomic formulas. Such alogical characterisationallows a general the-
orem proving strategy for the sequent calculus, which mightbe backward (goal sequent
to axioms) as in tableau methods or forward (axioms to goal sequent) like in the inverse
method, to implement either forward or backward chaining (or any combination) for
logic programs by selecting the polarities for the atoms appropriately. Focused inverse
method provers have been built for linear logic [4], intuitionistic logic [15], bunched
logic [9] and several modal logics [10] in recent years.

The crucial ingredient for the characterisation is that polarities and focusing are
sufficiently general that all static polarity assignments are complete [7,1]. The two as-
signments may be freely mixed for different atoms, which will produce hybrid strate-
gies. The proofs are very different: in a standard example with Fibonacci numbers, one
assignment admits exponentially sized derivations, whilethe other has only the linear
proofs. Even more importantly, the search space for proofs is wildly different for dif-
ferent assignments. Which static assignment to pick is not always obvious and very
difficult to perform automatically, as was noted in the experiments in [7,15].

In this paper, we propose to look atdynamic polarity assignmentas a means to do
better than static assignment for certain well-known classes of problems. To our knowl-
edge, dynamic assignment of polarities has been investigated only once before [16];
however, the notion of assignment there is a means of incorporating tables into proof
objects using new atomic cut rules with asymmetric assignments to the cut atoms. Our
proposal, in contrast, retains thesameinference rules as ordinary focusing, but dynam-
ically specializes them based on polarity assignments performed at runtime; this lets
us reuse the strong proof-theoretic results about focusing. Note that “dynamic polarity
assignment” is not a particular algorithm but a general class of approaches for control-
ling search behaviour. It is useful to think of it by analogy with ordering strategies in
resolution theorem proving.

In particular, we give a dynamic assignment strategy that implements the effect of
the so-calledmagic sets transformation[3,18,14], which is a program transformation
that constrains forward chaining to have the same set of answers as backward chaining.
It is difficult to show that the transformation has this intended property. Moreover, since
it is a global transformation on the program, that might even(in the general case) depend
on the query, it is not modular and compositional. Our proposal reconstructs magic
sets and not only avoids the transformation but also characterizes them in the common
lexicon of focusing and polarities. That is, the magic sets approach is just a special
case of dynamic polarity assignment, in much the same way as forward and backward
chaining for Horn clauses are just special cases of static polarity assignment.

We limit our attention in this paper to the focused inverse method [4] as the partic-
ular general search strategy for the sequent calculus. Intuitively (but not precisely; see
sec. 3), this method “compiles” a clause into an inference rule as follows:

sum (s X) Y (s Z) :- sum X Y Z. −→
⊢ sum x y z

⊢ sum (s x) y (s z)

When this inference rule is read from premise to conclusion,the interpretation is of
forward chaining on the corresponding clause. Such rules can be repeatedly applied to
produce an infinite number of new sequents differing only in the number ofss, which
preventssaturationeven for queries with a finite backward chaining search space. With
such clauses, forward chaining cannot appeal tonegation by failure, unlike backward
chaining. We show how to use dynamic polarity assignment to instead produce a new
side condition on such inference rules: the conclusion (sum (s x) y (s z)) must be neg-
atively polarized for the rule to be applicable. The atoms are polarized negatively by
carefully selecting only those atoms that are in thebaseof the logic program.

One important feature of this re-examination of the magic sets approach is that, be-
cause it is performed in a more general setting, we can potentially generalize it to larger
fragments of logic such as the uniform fragment. As it does not change the underlying
proof system, it can potentially co-exist with other strategies. For example, if the dy-
namic assignment algorithm gets stuck, the remaining atomscan be polarized in some
other fashion and the inverse method resumed without losingcompleteness.

The rest of this paper is organized as follows. In sec. 2 the magic sets transformation
is sketched by way of example. Section 3 then summarizes the design of the focused
inverse method and static polarity assignment. Section 4 introduces dynamic polarity
assignment and shows how to use it to implement the magic setsrestriction (sec. 4.2).

Finally, sec. 5 discusses the conclusions and scope of future work on dynamic polarity
assignment.

2 Magic Sets Transformation

This section contains a quick overview of themagic sets transformationfor logic pro-
grams. We use the “core” version presented in [14], which is less general than some
other designs in the literature [3,18] but also easier to explain and reason about. The
logic programs we will consider are made up of Horn clauses and satisfy a globalwell-
modednesscriterion.

Definition 1 (abstract syntax of Horn clauses)A Horn clauseis an iterated implica-
tion of atomic formulas that is implicitly universally closed over all its variables. That
is, Horn clauses (C,D, . . .) satisfy the following grammar:

C,D, . . .F a~t
∣
∣
∣ a~t → C t, s, . . .F x

∣
∣
∣ f ~t

where a ranges over predicate symbols, f over function symbols, and x over variables.
The notation~t stands for a list, possibly empty, of terms.

Note that the clausea :- b, ..., z in a Prolog-like concrete syntax would be writ-
ten asz → · · · → b → a in the above abstract syntax that is, the order of the clauses
in the body is reversed. Many extensions of this definition ofHorn clauses exist in the
literature, but they are all generally equivalent to this fragment. Alogic programis an
unordered collection of Horn clauses where each predicate and function symbol has a
unique arity. (We do not consider particular orderings of the clauses because we are not
interested in the operational semantics of a particular logic programming language.)

Definition 2 (moding) Every predicate symbol of arity n can be assigned amode,
which is a string of length n composed of the charactersi ando, which are mnemonics
for “input” and “output” respectively. A mode assignment toall predicates in a logic
program is called amoding. Theinputsof a predicate with respect to a mode are those
arguments corresponding to the occurrences ofi in the mode; likewise, theoutputsare
the arguments corresponding too in the mode.

Definition 3 (well-modedness)All the following are with respect to a given moding:

– A goal query iswell-modediff its inputs are ground.
– A clause a1 ~t1 → · · · → an ~tn → b ~s iswell-modediff for all i ∈ 1..n, the variables

in the inputs of ai ~ti are contained in the union of the variables in the outputs of
a j ~t j for i < j ≤ n and of the variables in the inputs of b~s .

– A logic program iswell-modediff every clause in it is well-moded.

The definition of well-modedness for non-unit clauses intuitively states that, in a
right-to-left reading of the clause, the inputs of an atomicformula must be defined by
the outputs of earlier atomic formulas and the inputs of the head. Given a well-moded
program and query, every derivation of an instance of the query from the program will
be ground (for the proof, see [2]).

Consider the motivating example from [14]: computing the sum of the elements of
a list of natural numbers. The clauses of the program are as follows in Prolog style.

(* mode lsum = io *)

lsum [] 0.

lsum (X :: Y) K :- lsum Y J, sum X J K.

(* mode sum = iio *)

sum 0 X X.

sum (s X) Y (s Z) :- sum X Y Z.

This program is well-moded because the outputs flow into the inputs from left to right
in the body of the clauses. A query such as?- lsum [1, 2, 3] X is well-moded
because the input is ground, while a query such as?- lsum X 20 is not well-moded.

To prove a well-moded query, thebackward chainingor top-down logic program-
mingapproach matches the goal with the heads of the clauses in theprogram, and for
each successful match, replaces the goal with the matched instance of the body of the
clause as new subgoals. A well-moded program is said to beterminatingif there are no
infinite backward chaining derivations for a well-moded query.

Theforward chainingor bottom-up logic programmingstrategy starts from the unit
clauses in the program, matches the body of a clause with these clauses, and adds the
most general instance of the matched head as a new clause. This is iterated until (a
generalisation of) the goal query is derived. This direction is not quite as obviously
goal-directed as backward chaining, but it has many fundamental merits. It builds a
database of computed facts that are all mutually non-interfering, and therefore requires
no backtracking or global, stateful updates. Moreover, facts and therefore derivations
are implicitly shared, so the loop detection issue that plagues backward chaining does
not apply here.

However, forward chaining suffers from the obvious problem that it over-approximates
the query, performing a lot of wasteful search. Fortunately, it is possible to constrain for-
ward chaining for a given program and query such that the algorithm will saturate, i.e.,
reach a state where no new facts can be generated, iff the query terminates in backward
chaining. This is achieved by rewriting the program and the query so that the forward
algorithm approximates backward search.

The common element of the approaches to constrain forward chaining is the notion
of a magic set, which is an abstract representation of thebaseof the program [14].
We shall illustrate it here with the example above. For each predicatea, a new magic
predicatea′ is added that has the same arity as the input arity of the original predicate.
Then, each clause of the program is transformed to depend on the magic predicate
applied to the inputs of the head. That is, we obtain the following rewritten clauses:

lsum [] 0 :- lsum’ [].

lsum (X :: Y) K :- lsum’ (X :: Y), lsum Y J, sum X J K.

sum 0 X X :- sum’ 0 X.

sum (s X) Y (s Z) :- sum’ (s X) Y, sum X Y Z.

As there are no longer any unit clauses, forward chaining cannot begin without some
additional input. This is provided in the form of the magic version of the goal query as
a new unit clause:lsum’ [1, 2, 3]. Finally, clauses are added for the magic pred-
icates to propagate information about the base. For each non-unit clause, there is one
propagation rule for each predicate in the body of the clause. In this example, they are:

lsum’ Y :- lsum’ (X :: Y).

sum’ X J :- lsum’ (X :: Y), lsum Y J.

sum’ X Y :- sum’ (s X) Y.

Forward chaining on this transformed program will compute the same instances of the
query as backward chaining on the original program and query.

The correctness of thismagic sets transformationis generally quite difficult to
prove. One of the most readable proofs was provided by Mascellani et al [14]; that
paper also contains a fully formal definition of the transformation and a number of
other examples. However, all transformational approachessuffer from the same prob-
lems outlined in the introduction: they are not modular and compositional. In the rest of
the paper we will give a different explanation of the magic sets transformation that does
not suffer from these problems, and is moreover manifestly correct because of general
proof theoretic properties of focused sequent calculi.

3 The Focused Inverse Method

In this section we review the focused inverse method for intuitionistic logic. Most of
the material of this section has already appeared in in [4,7,15,8] and in references there-
from. Like other recent accounts of intuitionistic focusing [15,5], we adopt a polarized
syntax for formulas. Intuitively,positiveformulas (i.e., formulas of the positivepolar-
ity) are those formulas whose left sequent rules are invertibleandnegativeformulas are
those whose right rules are invertible. Every polarized logical connective is unambigu-
ously in one of these two classes. In order to prevent an overlap, we alsoassignthe
atomic formulas individually to one of the two classes. Any polarity assignment for the
atoms is complete [7].

Definition 4 (syntax) We follow this grammar:

P,QF p
∣
∣
∣ P⊗ Q

∣
∣
∣ 1
∣
∣
∣ P⊕ Q

∣
∣
∣ 0
∣
∣
∣ ∃x.P

∣
∣
∣ ↓N N,MF n

∣
∣
∣ N & M

∣
∣
∣ ⊤
∣
∣
∣ P⊸ N

∣
∣
∣ ∀x.N

∣
∣
∣ ↑P

pF
〈

a~t ,+
〉

nF
〈

a~t ,−
〉

P− F P
∣
∣
∣ n N+ F N

∣
∣
∣ p

– Formulas(A, B, . . .) are eitherpositive(P,Q, . . .) or negative(N,M, . . .).
– Atomic formulas(or atoms) (p, q, n,m, . . .) are also polarized. Each atom consists

of an atomic predicate (a, b, . . .) applied to a (possibly empty) list of terms, and a
polarity. We shall generally abuse notation and write

〈

a~t ,±
〉

as a± ~t , even though
it is the atom and not the predicate that carries the polarity.

– Left passive formulas(N+,M+, . . .) and right passive formulas(P−,Q+, . . .) are
used to simplify the presentation of rules.

We use connectives from polarized linear logic instead of the more usual intuition-
istic connectives to make the polarities explicit. The polarity switchingconnectives↓
and↑ are only bureaucratic and do not change the truth value of their operands. Both
⊗ and & have the same truth value as the usual intuitionistic conjunction∧—that is,
A⊗ B ≡ A& B if we ignore polarities and omit the switching connectives↓ and↑—just
different inference rules. In other formulations of polarized intuitionistic logic these two
polarisations of conjunction are sometimes written as∧+ or ∧− [13], but we prefer the

familiar notation from linear logic. Likewise,⊕ has the same truth value as∨ and⊸
the same truth value as→.

The inference system for this logic will be given in the form of focused sequent
calculus rules [1,15]. We have the following kinds of sequents:

Γ ⊢ [P] right-focus onP Γ ; [N] ⊢ Q− left-focus onN

Γ ; Ω ⊢

N ; ·

· ; Q−
︸ ︷︷ ︸

γ

left-active onΩ and right-active onN

where:Γ F ·
∣
∣
∣ Γ,N− is called thepassive contextandΩ F ·

∣
∣
∣ Ω,P is the active

context. Both contexts are interpreted as multisets (admits only exchange). We adopt
the usual convention of denoting multiset union with commas. It will turn out that the
passive context is also a set, but this is an admissible principle and does not depend on
primitive weakening and contraction rules. Note thereforethatΓ1, Γ2 is not the same as
Γ1 ∪ Γ2; if the latter interpretation is needed, it will be written explicitly.

(active)

Γ ; Ω ⊢ · ; n
Γ ; Ω ⊢ n ; ·

nr

Γ ; Ω ⊢ · ; P
Γ ; Ω ⊢ ↑P ; ·

↑r
Γ ; Ω ⊢ N ; · Γ ; Ω ⊢ M ; ·

Γ ; Ω ⊢ N & M ; ·
&r

Γ ; Ω ⊢ ⊤ ; ·
⊤r

Γ ; Ω,P ⊢ N ; ·
Γ ; Ω ⊢ P⊸ N ; ·

⊸r
Γ ; Ω ⊢ N[a/x] ; ·
Γ ; Ω ⊢ ∀x.N ; ·

∀ra

Γ, p~t ; Ω ⊢ γ

Γ ; Ω, p~t ⊢ γ
pl

Γ,N ; Ω ⊢ γ
Γ ; Ω, ↓N ⊢ γ

↓l
Γ ; Ω,P,Q ⊢ γ
Γ ; Ω,P⊗ Q ⊢ γ

⊗l
Γ ; Ω ⊢ γ
Γ ; Ω,1 ⊢ γ 1l

Γ ; Ω,P ⊢ γ Γ ; Ω,Q ⊢ γ
Γ ; Ω,P⊕ Q ⊢ γ

⊕l
Γ ; Ω,0 ⊢ γ 0l

Γ ; Ω,N[a/x] ⊢ γ
Γ ; Ω,∃x.N ⊢ γ

∃la

(right focus)

Γ, p ⊢
[

p
] pr

Γ ; · ⊢ N ; ·
Γ ⊢ [↓N]

↓r

Γ ⊢ [P] Γ ⊢ [Q]
Γ ⊢ [P⊗ Q]

⊗r
Γ ⊢ [1]

1r
Γ ⊢ [Pi]

Γ ⊢ [P1 ⊕ P2]
⊕ri

Γ ; [P[t/x]]
Γ ⊢ [∃x. P]

∃r

(left focus)

Γ ; [n] ⊢ n
nl

Γ ; P ⊢ · ; Q−

Γ ; [↑P] ⊢ Q−
↑l

Γ ; [Ni] ⊢ Q−

Γ ; [N1 & N2] ⊢ Q−
&li

Γ ⊢ [P] Γ ; [N] ⊢ Q−

Γ ; [P⊸ N] ⊢ Q−
⊸l

Γ ; [N[t/x]] ⊢ Q−

Γ ; [∀x.N] ⊢ Q−
∀l

(decision)
Γ ⊢ [P]
Γ ; · ⊢ · ; P

dr

Γ,N ; [N] ⊢ Q−

Γ,N ; · ⊢ · ; Q−
dl

Fig. 1.Focused sequent calculus for polarized first-order intuitionistic logic. In the rules
∃la and∀ra theparameter ais not free in the conclusion.

Γ,N, p ⊢
[
p
] pr

Γ,N, p ⊢
[

p⊕ q
]

Γ,N, p ; · ⊢ · ; l

Γ,N, p ; · ⊢ l ; ·
Γ,N, p ⊢ [↓l] Γ,N, p ; [n] ⊢ n

nl

Γ,N, p ; [↓l⊸ n] ⊢ n

Γ,N, p ; [m& (↓l⊸ n)] ⊢ n
&l2

Γ,N, p ; [N] ⊢ n
Γ,N, p ; · ⊢ · ; n

dl i.e.,
Γ,N, p ; · ⊢ · ; l
Γ,N, p ; · ⊢ · ; n

Fig. 2.One derived inference rule forN.

The focused sequent calculus will be presented in a stylistic variant of Andreoli’s
original formulation [1]. The full set of rules is in fig. 1. Ithas an intensional reading
in terms ofphases. At the boundaries of phases are sequents of the formΓ ; · ⊢ · ; Q−,
which are known asneutral sequents. Proofs of neutral sequents proceed (reading from
conclusion to premises) as follows:

1. Decision: a focusis selected from a neutral sequent, either from the passive context
or from the right. This focused formula is moved to its corresponding focused zone
using one of the rulesdl or dr (d = “decision”, andr/l = “right” /“left”). The left
rule copies the focused formula.

2. Focused phase: for a left or a right focused sequent, left or right focus rules are
applied to the formula under focus. These focused rules are all non-invertible in
the (unfocused) sequent calculus—that is, they can fail to apply—and therefore
depend on essential choices made in the proof. This is familiar from focusing for
linear logic [1,7].

3. Active phase: once the switch rules↓r and↑l are applied, the sequents become
active and active rules are applied. The order of the active rules is immaterial as
all orderings will produce the same list of neutral sequent premises. In Andreoli’s
system the irrelevant non-determinism in the order of theserules was removed by
treating the active contextΩ as ordered; however, we do not fix any particular
ordering.

The soundness of this calculus with respect to an unfocused sequent calculus, such as
Gentzen’s LJ, is obvious. For completeness, we refer the interested reader to a number
of published proofs in the literature [7,12,17,11].

The purpose of starting with a polarized syntax and a focusedcalculus is that we are
able to look at derived inference rules for neutral sequentsas the basic unit ofsteps. For
instance, one of the derived inference rules for the formulaN , p⊕ q⊸m& (↓l⊸ n)
in the passive context is given in fig. 2. The instance ofpr above forcesp to be in the
passive context because that is the only rule that can be applied to contruct a sequent
of the form∆ ⊢

[

p
]

. Likewise, thenl rule forces the right hand side of the conclusion
sequent to be the same as the left focused atomn. Finally, thedl rule requiresN to
already be present in the passive context.

As we observe, focusingcompilesformulas such asN above, which may be clauses
in a program, into (derived) inference rules. Focusing can also produce newfacts, which
are neutral sequents that have no open premises after applying a derived inference rule.
An example would be the case for the derivation above where, instead of &l2 we were
to use &l1. In this case we would obtain the factΓ,N, p ; · ⊢ · ; m. If the goal were of
this form, we would be done.

This property of focusing can be exploited to give a purely proof-theoretic expla-
nation for certaindialectsof proofs. For Horn clauses, consider the case where all the
atoms are negative,i.e.clauses are of the form∀~x . ↓m1⊸ · · ·⊸ ↓mj⊸n. If clause were
namedN, then its derived inference rule is:

Γ,N ; · ⊢ · ; m1[~t /~x] · · · Γ,N ; · ⊢ · ; mj [~t /~x]

Γ,N ; · ⊢ · ; n[~t /~x]

Since the context is the same in all premises and the conclusion, we need only look
at the right hand side. If we read the rule from conclusion to premises, then this rule
implements back-chaining from an instance of the head of this Horn clause to the cor-
responding instances of the body of the clause, where the neutral sequents represent the
current list of sub-goals. Thus, the general top-down logicprogramming strategy (or
backward chaining) consists of performing goal-directed focused proof search on Horn
clauses with negative atoms. If the atoms were all assigned positive polarity instead,
then the same goal-directed focused proof search would perform a kind of bottom-up
logic programming (or forward chaining). Static polarity assignment for the atoms is
therefore alogical characterisationof forward and backward chaining strategies. In-
deed, if the atoms were not uniformly given the same polarities, then the focused proofs
would be a mixture of forward and backward chaining.

3.1 Forward reasoning and the inverse method

An important property of the (cut-free) sequent calculus offig. 1 is that there is a struc-
tural cut-elimination algorithm [7]; as a consequence, thecalculus enjoys the subfor-
mula property. Indeed, it is possible to state the subformula property in a very strong
form that also respects thesignof the subformula (i.e., whether it is principal on the left
or the right of the sequent) and theparametricityof instances (i.e., the subformulas of a
right ∀ or a left∃ can be restricted to generic instances). We omit a detailed definition
and proof here because it is a standard result; seee.g.[6] for the definition.

With the strong subformula property, we can restrict the rules of fig. 1 to subformu-
las of a given fixedgoal sequent. It then becomes possibile to apply the inference rules
in a forward manner, from premises to conclusion. The inputsof such a forward rea-
soning strategy would be the facts that correspond to focusing on the passive formulas
and operands of the switch connectives in the goal sequent, subject to the subformula
restriction. That is, the initial sequents (in the rulespr andnl) correspond to atomic
formulas that are both a left and a right signed subformula ofthe goal sequent. From
these initial sequents we apply the (subformula-restricted) inference rules forward until
we derive (a generalisation of) the goal sequent. In order toimplement the calculus, the
axiomatic rules such as1r are refined to omit the passive context; the additive rules are
turned into multiplicative rules and an explicit rule offactoringadded; and the calculus

is lifted to free variables with identity replaced with unifiability, and only most general
instances are considered. This core “recipe” is outlined intheHandbookarticle on the
inverse method [8] and is not repeated here.

One optimisation not mentioned in [8] but implemented in many inverse method
provers [4,15] isglobalisation: the forward version of thedl rule is specialized into the
following two forms:

Γ ; [N] ⊢ Q− N < Γ0

Γ,N ; · ⊢ · ; Q−
dlf1

Γ ; [N] ⊢ Q− N ∈ Γ0

Γ ; · ⊢ · ; Q−
dlf2

whereΓ0 is the passive context of the goal sequent. This context is present in every
sequent in the backward proof, so there is no need to mention it explicitly in the forward
direction. For logic programs,Γ0 will contain the clauses of the program and it is not
important to distinguish between two computed sequents that differ only in the used
clauses of the program.

Let us revisit the static polarity assignment question in the forward direction. The
forward derived rule for the Horn clause∀~x . ↓m1⊸ · · ·⊸ ↓mj ⊸ n ∈ Γ0, after lifting
to free variables, is:

Γ1 ; · ⊢ · ; m′1 · · · Γ j ; · ⊢ · ; m′j θ = mgu(〈m1, . . . ,mj〉, 〈m′1, . . . ,m
′
j〉)

(Γ1, . . . , Γn ; · ⊢ · ; n)[θ]

For unit clauses, which provide the initial sequents, the passive contextΓ is empty
(because there are no premises remaining after globalisation). Therefore, all neutral
sequents computed by forward reasoning will have empty passive contexts, giving us
the rule:

· ; · ⊢ · ; m′1 · · · · ; · ⊢ · ; m′j θ = mgu(〈m1, . . . ,mj〉, 〈m′1, . . . ,m
′
j〉)

(· ; · ⊢ · ; n)[θ]

Thus, this derived inference rule implements forward chaining for this clause. This sit-
uation is dual to the backward reading of the rules of fig. 1 where a static negative
assignment to the atoms implemented backward chaining. As expected, a static pos-
itive polarity assignment to the atoms implements backwardchaining in the forward
calculus. The technical details of operational adequacy can be found in [7].

4 Dynamic Polarity Assignment

The previous section demonstrates that we can implement forward chaining (or bottom
up logic programming) using the vocabulary of focusing and polarity assignment. For
the rest of this paper we shall limit or attention to forward reasoning as the global
strategy, with negative polarity assignment for the atoms as our means of implementing
forward chaining.

Obviously the benefit of polarity assignment is that completeness is a trivial con-
sequence of the completeness of focusing with respect to anyarbitrary, even hetero-
geneous, polarity assignment for the atoms. Moreover, the completeness of the inverse
method merely requires that the rule application strategy be fair. This minimal require-
ment of fairness does not force us to assign the polarity of all atoms statically, as long

as we can guarantee that every atom that is relevant to the proof is eventually assigned
a polarity (and that the rest of the inverse method engine is fair). Can we do better than
static assignment with dynamic assignment? This section will answer this question af-
firmatively.

4.1 The mechanism of dynamic polarity assignment

Let us write unpolarized atoms (i.e., atoms that haven’t been assigned a polarity) simply
in the forma~t, and allow them to be used as both positive and negative formulas in the
syntax. That is, we extend the syntax as follows:

P,Q, . . .F a~t
∣
∣
∣ p
∣
∣
∣ P⊗ Q

∣
∣
∣ 1
∣
∣
∣ P⊕ Q

∣
∣
∣ 0
∣
∣
∣ ∃x.P

∣
∣
∣ ↓N

N,M, . . .F a~t
∣
∣
∣ n
∣
∣
∣ N & M

∣
∣
∣ ⊤
∣
∣
∣ P⊸ N

∣
∣
∣ ∀x.N

∣
∣
∣ ↑P

For example, A Horn clause with unpolarized atoms have the syntax∀~x. a1 ~t1 ⊸ · · ·⊸
a j ~t j ⊸ b ~s where the~x are the variables that occur in the terms~t1, . . . , ~t j , ~s.

Consider a variant of the focused inverse method where we allow two kinds of
sequents as premises for inference rules: neutral sequents, as before, and sequents that
have a focus on an unpolarized atom which we callproto sequents. An inference rule
with proto sequent premises will be called aproto rule.

Definition 5 Environments(E,F , . . .) are given by the following grammar:

E, . . .F P
∣
∣
∣ Q

P,Q, . . .F �
∣
∣
∣ P ⊗ Q

∣
∣
∣ P⊗ Q

∣
∣
∣ P ⊕ Q

∣
∣
∣ P⊕ Q

∣
∣
∣ ∃x.P

∣
∣
∣ ↓N

N ,M, . . .F �
∣
∣
∣N & M

∣
∣
∣ N & M

∣
∣
∣ P⊸ N

∣
∣
∣ P⊸N

∣
∣
∣ ∀x.N

∣
∣
∣ ↑P

We writeE(A) for the formula formed by replacing the� in E with A, assuming it is
syntactically valid. An environmentE is calledpositive(resp.negative) if E(p) (resp.
E(n)) is syntactically valid for any positive atom p (resp. negative atom n).

Definition 6 (polarity assignment) We write A[a~t ← +] (resp. A[a~t ← −]) to stand
for the positive (resp. negative) polarity assignment to the unpolarized atom a~t in the
formula A. It has the following recursive definition:

– If the unpolarized atom a~t does not occur in A, then A[a~t ← ±] = A.
– If A = E(a~t) andE is positive, then

A[a~t ← +] = (E(a+ ~t))[a~t ← +]

A[a~t ← −] = (E(↓a− ~t))[a~t ← −]

– If A = E(a~t) andE is negative, then

A[a~t ← +] = (E(↑a+ ~t))[a~t ← +]

A[a~t ← −] = (E(a− ~t))[a~t ← −]

This definition is extended in the natural way to contexts, (proto) sequents, and (proto)
rules.

Polarity assignment on proto rules generally has the effect of instantiating certain
schematic meta-variables. For instance, consider the following proto-rule that corre-
sponds to a left focus on the unpolarized Horn clauseC , ∀x, y. a x⊸ b y⊸ c x y:

Γ,C ⊢ [a s] Γ,C ⊢ [b t] Γ,C ; [c s t] ⊢ Q−

Γ,C ; · ⊢ · ; Q−

All the premises of this rule are proto sequents. Suppose we assign a positive polarity
to a s; this will change the proto rule to:

Γ,C ⊢ [a+s] Γ,C ⊢ [b t] Γ,C ; [c s t] ⊢ Q−

Γ,C ; · ⊢ · ; Q−

(whereC′ is C[a s← +]). This proto rule actually corresponds to:

Γ,C′,a+s ⊢ [b t] Γ,C′,a+s ; [c s t] ⊢ Q−

Γ,C′,a+s ; · ⊢ · ; Q−

because the only way to proceed further on the first premise iswith the pr rule. This
instantiatesΓ with Γ, a+s. If we now assign a negative polarity toc s t, we would obtain
the rule:

Γ,C′′, a+s ⊢ [b t]
Γ,C′′,a+s ; · ⊢ · ; c−s t

(whereC′′ = C′[c s t ← −]) which instantiatesQ− to c−s t. Finally, if we assign a
negative polarity tob t, we would obtain the ordinary (non-proto) inference rule with
neutral premise and conclusion:

Γ,C′′′,a+s ; · ⊢ · ; b−t
Γ,C′′′, a+s ; · ⊢ · ; c−s t

(whereC′′′ = C′′[b t← −]).

4.2 Implementing magic sets with dynamic polarity assignment

This sub-section contains the main algorithm of this paper –a dynamic polarity assign-
ment strategy that implements magic sets in the inverse method. The key feature of the
algorithm is that it involves no global rewriting of the program clauses, so soundness
is a trivial property. Completeness is obtained by showing that the algorithm together
with the inverse method performs fairly on well-moded logicprograms and queries.

The algorithm consists of dynamically assigning negative polarity to unpolarized
atoms. Initially, all atoms in the program are unpolarized and the atom in the goal query
is negatively polarized. It maintains the following lists:

– Seeds, which is a collection of the negatively polarized atoms;
– Facts, which is a list of computed facts which are ordinary neutralsequents;
– Rules, which is a list of partially applied, possibly proto, rules.

Whenever a fact is examined by the inner loop of the inverse method, new facts and
partially applied (possibly proto) rules are generated. After the inner loop ends (i.e.,
after all subsumption checks and indexing), the followingseeding stepis repeatedly
performed until quiescence.

Definition 7 (seeding step)For every right-focused proto-sequent in the premise of ev-
ery proto rule, if the focused atom is mode correct—that is, if the input arguments of the
atom are ground—then all instances of that atom for arbitrary outputs are assigned a
negative polarity. These new negatively polarized atoms are added to the Seeds.

For example, if the unpolarized atomsum 3 4 (f (x)) has a right focus in a proto
rule andsum has modeiio, then all atoms of the formsum 3 4 _ are assigned negative
polarity. The seeding step will generate new facts or partially applied rules, which are
then handled as usual by the inverse method.

4.3 Example

Let us revisit the example of sec. 2. LetΠ0 be the collection of unpolarized Horn clauses
representing the program,i.e.:

Π0 = lsum [] 0, (C1)
∀x, y, j, k. lsum y j⊸ sum x j k⊸ lsum (x :: y) k, (C2)
∀x. sum 0 x x, (C3)
∀x, y, z. sum x y z⊸ sum (s x) y (s z) (C4)

As before, let the modes beio for lsum andiio for sum. The above program is termi-
nating and mode-correct for this moding. Consider the querylsum [1, 2, 3] X, i.e., we
are proving the goal sequent:

Π0,∀x. lsum [1,2, 3] x⊸ g
︸ ︷︷ ︸

Γ0

; · ⊢ · ; g

Since there are no switched subformulas, the only availablerules will be for clauses in
Γ0 and the goalg. Using the subformula restriction and globalisation, we would then
obtain the following derived proto rules:

Γ ; [lsum [] 0] ⊢ Q−

Γ ; · ⊢ · ; Q−
(C1)

Γ1 ;
[

lsum (x :: y) k
]

⊢ Q− Γ2 ⊢
[

lsum y j
]

Γ3 ⊢
[

sum x j k
]

Γ1,Γ2,Γ3 ; · ⊢ · ; Q−
(C2)

Γ ; [sum 0 x x] ⊢ Q−

Γ ; · ⊢ · ; Q−
(C3)

Γ1 ;
[
sum (s x) y (s z)

]
⊢ Q− Γ2 ⊢

[
sum x y z

]

Γ1,Γ2 ; · ⊢ · ; Q−
(C4)

Γ1 ; [g] ⊢ Q− Γ2 ⊢ [lsum [1,2, 3] x]
Γ1,Γ2 ; · ⊢ · ; Q−

(g)

There are no initial sequents, so we perform some seeding steps. The initial polarity
assignment is negative for the goalg; this produces the following instance of (g):

Γ2 ⊢ [lsum [1,2, 3] x]
Γ ; · ⊢ · ; g−

(g′)

Now we have a right focus on a well-moded unpolarized atom,viz.lsum [1, 2, 3] x, so
we addlsum− [1, 2, 3] _ to theSeeds. This produces two instances of the proto rule (C2)
depending on the two ways in which the seed can match the protopremises.

Γ1 ⊢
[
lsum [2,3] j

]
Γ2 ⊢
[
sum 1 j k

]

Γ1,Γ2 ; · ⊢ · ; lsum− [1,2, 3] k
(C21)

Γ1 ; [lsum (x :: [1,2, 3]) k] ⊢ Q− Γ2 ; · ⊢ · ; lsum− [1,2, 3] j Γ3 ⊢
[
sum x j k

]

Γ1,Γ2,Γ3 ; · ⊢ · ; Q−
(C22)

The first premise in (C21) is well-moded and will produce further seeds. However, (C22)
produces no seeds as there are no proto premises with a right focus on a well-moded
unpolarized atom. Continuing the seeding steps for (C21) we produce the following new
useful proto rules:

Γ1 ⊢
[
lsum [2] j

]
Γ2 ⊢
[
sum 2 j k

]

Γ1,Γ2 ; · ⊢ · ; lsum− [2,3] k
(C211)

Γ1 ⊢
[
lsum [] j

]
Γ2 ⊢
[
sum 3 j k

]

Γ1,Γ2 ; · ⊢ · ; lsum− [3] k
(C2111)

The rule (C2111) produces a seedlsum− [] _ that matches the premise of (C1) to produce
our first fact:· ; · ⊢ · ; lsum− [] 0. This can now be applied in the premise of (C2111) by
the inverse method loop to produce the following partially applied instance:

Γ ⊢ [sum 3 0 k]

Γ ; · ⊢ · ; lsum− [3] k
(C5)

This finally gives us our first seed forsum, viz. sum− 3 0 _. This seed will, in turn
produce seedssum− 2 0 _,sum− 1 0 _, andsum− 0 0 _ from instances of the rule (C4).
The last of these seeds will instantiate (C3) to give our second fact,· ; · ⊢ · ; sum− 0 0 0.
The inverse method will then be able to use this rule to partially apply the instances of
the (C3) rule to produce, eventually,· ; · ⊢ · ; sum− 3 0 3, which can be matched to (the
instance of) (C5) to give our second derived fact aboutlsum, viz. · ; · ⊢ · ; lsum− [3] 3.
These steps repeat twice more until we eventually derive· ; · ⊢ · ; lsum−[1, 2, 3] 6,
which finally lets us derive the goal sequent using (the instance of) (g).

4.4 Correctness

Crucially, no further inferences are possible in the example of the previous section.
There will never be any facts generated aboutlsum− [5, 1, 2, 3, 4] x, for instance, be-
cause there is never a seed of that form. Thus, as long as thereis a well-founded measure
on the seeds that is strictly decreasing for every new seed, this implementation of the
inverse method will saturate.

Lemma 8 (seeding lemma)All atoms occurring to the right of sequents in the Facts
list are instances of atoms in the Seeds.

Proof. Since the only polarity assignment is to assign an unpolarized atom the negative
polarity, the only effect it has on proto inference rules is to finish left-focused proto
sequent premises withnl, and turn right-focused proto sequent premises into neutral

sequent premises. Finishing the left-focused premises hasthe side effect of instantiat-
ing the right hand side with the newly negatively polarized atom. If there are no neutral
premises as a result of this assignment, then the newly generated fact satisfies the re-
quired criterion. Otherwise, when the conclusion is eventually generated by applying
the rule in the inverse method, the right hand side will be an instance of the negatively
polarized atom. ⊓⊔

The main result of this paper is a simple corollary.

Corollary 9 (saturation) Given a well-moded logic program that terminates on all
well-moded queries—i.e., all derivations of a well-moded query are finite—the inverse
method with the dynamic polarity assignment algorithm of sec. 4.1 saturates for all
well-moded queries.

Proof (Sketch).Instead of giving a fully formal proof, which is doable in thestyle
of [14], we give only the intuition for the proof. Note that ifthe logic program is ter-
minating for all well-moded queries, then there is a boundedmeasure| | that is strictly
decreasing from head to body of all clauses in the program. Weuse this measure to
build a measure on theSeedscollection as follows:

– For each atom inSeeds, pick the element with the smallest| |-measure.
– For each atom not inSeeds, pick greatest lower bound of the| |-measure.
– Pick a strict but arbitrary ordering of all the predicate symbols and arrange the

measures selected in the previous two steps in a tuple according to this ordering.
This tuple will be the measure ofSeeds.

It is easy to see that this measure onSeedshas a lower bound according to the lexico-
graphic ordering. Therefore, all we need to show is that thismeasure is decreasing on
Seedsfor every seeding step and then we can use lem. 8 to guarantee saturation. But
this is easily shown because the| |-measure decreases when going from the conclusion
to the premises of every derived inference rule for the clauses of the logic program (see
the example in sec. 4.3). ⊓⊔

The completeness of the dynamic polarity assignment algorithm follows from the
completeness of focusing with (arbitrary) polarity assignment, the completeness of the
inverse method given a fair strategy, and the observation that Seedscontains a superset
of all predicates that can appear as subgoals in a top-down search of the given logic
program.

5 Conclusion

We have shown how to implement the magic sets constraint on a focused forward search
strategy by dynamically assigning polarities to unpolarized atoms. As one immediate
consequence, our forward engine can respond with the same answer set as traditional
back-chaining for well-moded and terminating programs. The notion of dynamic po-
larity assignment is novel to this work and the last word on itis far from written. The
obvious next step is to see how it generalizes to fragments larger than Horn theories.
More fundamentally, while fairness in the inverse method gives a general external crite-
rion for completeness, an internal criterion for judging when a given dynamic polarity
assignment strategy will be complete is currently missing.

Acknowledgement:We thank Brigitte Pientka for several useful discussions about magic
sets and polarity assignment.

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and
Computation, 2(3):297–347, 1992.

2. K. R. Apt and E. Marchiori. Reasoning about prolog programs from modes through types to
assertions.Formal Aspects of Computing, 6(A):743–764, 1994.

3. C. Beeri and R. Ramakrishnan. On the power of magic.Journal of Logic Programming,
10(1/2/3&4):255–299, 1991.

4. K. Chaudhuri.The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon
University, Dec. 2006. Technical report CMU-CS-06-162.

5. K. Chaudhuri. Classical and intuitionistic subexponential logics are equally expressive. In
A. Dawar and H. Veith, editors,CSL 2010: Computer Science Logic, volume 6247 ofLNCS,
pages 185–199, Brno, Czech Republic, Aug. 2010. Springer.

6. K. Chaudhuri and F. Pfenning. A focusing inverse method theorem prover for first-order lin-
ear logic. InProceedings of the 20th Conference on Automated Deduction (CADE), volume
3632 ofLNCS, pages 69–83, Tallinn, Estonia, July 2005.

7. K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization of forward and backward
chaining in the inverse method.J. of Automated Reasoning, 40(2-3):133–177, Mar. 2008.

8. A. Degtyarev and A. Voronkov. The inverse method. InHandbook of Automated Reasoning,
pages 179–272. Elsevier and MIT Press, 2001.

9. K. Donnelly, T. Gibson, N. Krishnaswami, S. Magill, and S.Park. The inverse method for
the logic of bunched implications. InProceedings of the 11th International Conference on
Programming, Artificial Intelligence, and Reasoning (LPAR), volume 3452 ofLNCS, pages
466–480, Montevideo, Uruguay, Mar. 2004.

10. S. Heilala and B. Pientka. Bidirectional decision procedures for the intuitionistic proposi-
tional modal logic IS4. In F. Pfenning, editor,Proceedings of the 21st International Con-
ference on Automated Deduction (CADE), volume 4603 ofLNAI, pages 116–131, Bremen,
Germany, July 2007. Springer.

11. J. M. Howe.Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of
St Andrews, Dec. 1998. Available as University of St AndrewsResearch Report CS/99/1.

12. C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical
logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

13. C. Liang and D. Miller. A unified sequent calculus for focused proofs. InLICS: 24th Symp.
on Logic in Computer Science, pages 355–364, 2009.

14. P. Mascellani and D. Pedreschi. The declarative side of magic. InComputational Logic:
Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages
83–108, London, UK, 2002. Springer-Verlag.

15. S. McLaughlin and F. Pfenning. Imogen: Focusing the polarized focused inverse method
for intuitionistic propositional logic. In I. Cervesato, H. Veith, and A. Voronkov, editors,
15th International Conference on Logic, Programming, Artificial Intelligence and Reasoning
(LPAR), volume 5330 ofLecture Notes in Computer Science, pages 174–181, Nov. 2008.

16. D. Miller and V. Nigam. Incorporating tables into proofs. In J. Duparc and T. A. Henzinger,
editors,CSL 2007: Computer Science Logic, volume 4646 ofLecture Notes in Computer
Science, pages 466–480. Springer, 2007.

17. D. Miller and A. Saurin. From proofs to focused proofs: a modular proof of focalization in
linear logic. In J. Duparc and T. A. Henzinger, editors,CSL 2007: Computer Science Logic,
volume 4646 ofLecture Notes in Computer Science, pages 405–419. Springer, 2007.

18. J. D. Ullman. Principles of Database and Knowledge-base Systems, VolumeII: The New
Techniques. Principles of Computer Science. Computer Science Press, 1989.

