
HAL Id: hal-00535976
https://hal.archives-ouvertes.fr/hal-00535976

Submitted on 14 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight Hybrid Tableaux
Guillaume Hoffmann

To cite this version:
Guillaume Hoffmann. Lightweight Hybrid Tableaux. Journal of Applied Logic, Elsevier, 2010, 8 (4),
pp.397-408. �10.1016/j.jal.2010.08.003�. �hal-00535976�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50040542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00535976
https://hal.archives-ouvertes.fr

Lightweight Hybrid Tableaux

Guillaume Hoffmann

INRIA Nancy Grand Est
Nancy, France

Abstract

We present a decision procedure for hybrid logic equipped with nominals, the satisfaction operator and
existential, difference, converse, reflexive, symmetric and transitive modalities. This decision procedure is
a prefixed tableau method based on the one introduced by Bolander and Blackburn in [2]. It enhances its
predecessor in terms of computational efficiency and handles more expressive logics. Its way of ensuring
termination enables addition of rules for the difference modality, inspired by Kaminski and Smolka in [5].

Keywords: Hybrid logic, tableau, loop-check, difference modality, converse modality

1 Hybrid Logic

In this article we consider two fragments of the hybrid language H(@,E,D,♦−)

defined with signature Sig = 〈PROP,NOM,REL,R, T ,S〉 where PROP is a set of

ordinary propositional symbols, NOM is a set of nominals and REL is a set of

relational symbols, and R, S, T are subsets of REL. The sets PROP, NOM and REL

are taken to be disjoint.

The hybrid languageH(@,E,D,♦−) with signature Sig is defined by the following

grammar:

ϕ ::= p | a | ¬ϕ | ϕ1 ∧ ϕ2 | ♦iϕ | ♦−

i ϕ | aϕ | Eϕ | Dϕ

where p ∈ PROP, a ∈ NOM and i ∈ REL.

The main difference between hybrid logic and modal logic is the presence of

nominals, which are propositional symbols true at exactly one world in a model;

that is, a nominal “points to a unique world”. Thus the formula aϕ is intended to

express that the formula ϕ is true at the world pointed to by the nominal a. It is

sometimes written @aϕ and is called a satisfaction statement. We write nom(ϕ)

to denote the set of all nominals present in the formula ϕ. We have a fixed set of

unary operators named ♦i for each i ∈ REL with their converses ♦−

i . E is called the

existential modality and D the difference modality.

We interpret these formulas on Kripke models:

Hoffmann

Definition 1.1 (Hybrid Model) A model for H(@,E,D,♦−) with signature Sig

is a tuple (W, (Ri)i∈REL, V) where:

(i) W is a non-empty set of elements usually called worlds or states.

(ii) For all i ∈ REL, Ri is a relation onW of arity 2; each Ri is called an accessibility

relation. When i ∈ R, the relation Ri is reflexive, when i ∈ T it is transitive

and when i ∈ S it is symmetric.

(iii) For each proposition symbol or nominal s, V (s) is a subset of W . If s is a

nominal then V (s) is a singleton set.

The relation M, w |= ϕ is defined inductively, where M = (W, (Ri)i∈REL, V) is

a model, w is an element of W , and ϕ is a formula of our hybrid logic:

M, w |= s iff w ∈ V (s), where s is a propositional symbol or a nominal

M, w |= ¬ϕ iff not M, w |= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= ♦iϕ iff for some v ∈W , (w, v) ∈ Ri and M, v |= ϕ

M, w |= ♦−

i ϕ iff for some v ∈W, (v, w) ∈ Ri and M, v |= ϕ

M, w |= aϕ iff M, v |= ϕ, where V (a) = {v}

M, w |= Eϕ iff for some v ∈W , M, v |= ϕ

M, w |= Dϕ iff for some v ∈W , v 6= w and M, v |= ϕ

In what follows, the metavariables ϕ, ψ, χ, . . . range over formulas, p, q, r, . . .

range over ordinary propositional symbols, and a, b, c, . . . range over nominals.

The modality E can define satisfaction statements, since @aϕ can be replaced

by E(a ∧ ϕ). Also D can define Eϕ by ϕ ∨ Dϕ. As a consequence, we will no

longer write H(@,E,D) and H(@,E,D,♦−), but H(D) and H(D,♦−). Moreover,

we call Sig the full signature 〈PROP,NOM,REL,R, T ,S〉 and Sig′ the signature

〈PROP,NOM,REL,R, T 〉, i.e., a signature that does not specify symmetric relations.

2 A prefixed tableau calculus

We now present a prefixed tableau calculus for the hybrid language H(D,♦−). For-

mulas occurring in the tableau rules are prefixed formulas of the form σϕ, where

ϕ is a formula of H(D,♦−) and σ belongs to some fixed countably infinite set of

symbols PREF called prefixes. This set is disjoint from NOM and PROP and is

well-ordered. Later, we will use the term “smallest prefix” and write σ < τ , where

σ and τ are prefixes, to refer to this well-order. The intended interpretation of a

prefixed formula σϕ is that σ denotes a world at which ϕ holds.

In addition to prefixed formulas, the tableau rules contain accessibility state-

ments of the form σ♦iτ where σ and τ are prefixes. The intended interpretation of

σ♦iτ is that the world denoted by τ is accessible from the world denoted by σ by

the accessibility relation Ri.

2

Hoffmann

A tableau in this calculus is a wellfounded, finitely branching tree in which

each node is labelled by a prefixed formula, and the edges represent applications of

tableau rules in the usual way. In the following we use the term formula to denote

either a formula of H(D,♦−) or a prefixed formula. When a prefixed formula σϕ

occurs in a tableau branch Θ, we write σϕ ∈ Θ, and say that ϕ is true at σ on Θ,

or that σ makes ϕ true on Θ. We call Tab(ϕ) the tableau that initially contains

nodes labelled by the following prefixed formulas:

• σ0ϕ, with σ0 being a fresh prefix

• σ(n)n, with σ(n) being a fresh prefix for each nominal n ∈ nom(ϕ).

σ0ϕ is called the root formula, and σ0, σ(n) (for all n ∈ nom(ϕ)) are called root

prefixes.

A saturated tableau is a tableau in which no more rules can be applied that

satisfy the saturation constraints. A saturated branch is a branch of a saturated

tableau. A branch of a tableau is called closed if it contains formulas σϕ and σ¬ϕ

for some σ and ϕ. Otherwise the branch is called open. A closed tableau is one

in which all branches are closed, and an open tableau is one in which at least one

branch is open.

Figure 1 presents the rules needed to handle the hybrid language H(D,♦−) but

the rules of Figure 2 are also needed to handle reflexive, transitive and symmetric

modalities. In the rest of the article, we consider two subsystems of the calculus

presented on Figure 1 and Figure 2 where only a subset of the rules are allowed to

be applied. In such subsystems, a saturated tableau is a tableau in which none of

the rules in the subset can be applied while satisfying the saturation conditions.

2.1 Tableau rules

Alongside with the definitions of rules given in Figure 1 and Figure 2, we introduce

a few notions to complete the description of the calculus.

The definition of rule (νId) involves local formulas, let us define them:

Definition 2.1 A local formula is a formula of the shape s, ¬s, ♦iϕ, ¬♦iϕ, ♦
−

i ϕ,

¬♦−

i ϕ, with s a propositional symbol or nominal.

The presence of nominals enables hybrid logic to express equality of worlds of

the model. In order to handle this notion of equality, we manipulate equivalence

classes of prefixes and representatives of these classes:

Definition 2.2 We define the binary relation ∼Θ on the prefixes in a branch Θ by

{(σ, τ) | σa, τa ∈ Θ, a ∈ NOM}. Note that this relation is reflexive.

Definition 2.3 Let Θ be a branch of a tableau, and let σ be a prefix occurring in

Θ. The nominal urfather of σ on Θ, written nΘ(σ), is defined to be the smallest

prefix τ in Θ for which τ ∼Θ σ. A prefix σ is called a nominal urfather in Θ if

σ = nΘ(τ) for some prefix τ .

Later, it will come clear that the relation ∼Θ defines an equivalence class of

prefixes, and we will show that the nominal urfather is uniquely defined for a given

class, and serves as its representative.

3

Hoffmann

σ¬¬ϕ
(¬¬)

σϕ

σϕ
(νId)1

nΘ(σ)ϕ

σ♦τ
(bridge)

uΘ(σ)♦uΘ(τ)

σ(ϕ ∧ ψ)
(∧)

σϕ, σψ

σ♦iϕ
(♦)2

σ♦iτ, τϕ

σaϕ
(@)

σ(a)ϕ

σ¬(ϕ ∧ ψ)
(¬∧)

σ¬ϕ | σ¬ψ

σ¬♦iϕ, σ♦iτ
(¬♦)

τ¬ϕ

σ¬aϕ
(¬@)

σ(a)¬ϕ

σEϕ
(E)2

τϕ

σ♦−

i ϕ
(♦−)2

τ♦iσ, τϕ

σDϕ
(D)2,4

σ¬n, τn, τϕ

σ¬Eϕ
(¬E)3

γ¬ϕ

σ¬♦−

i ϕ, τ♦iσ
(¬♦−)

τ¬ϕ

σ¬Dϕ
(¬D)3,4

σn, γn | γϕ

1 ϕ is a local formula or an accessibility statement.
2 The prefix τ is new to the branch.
3 The prefix γ is already in the branch.
4 The nominal n is new to the branch.

Saturation constraints:

• a formula is never added to a tableau branch where it already occurs. Thus, (@)

and (¬@) are never applied to σϕ if they have already been applied to τϕ.

• (♦(−)) can not be applied to σϕ on Θ if it has been applied to τϕ with σ ∼Θ τ

• (E) is never applied to σEϕ if there is a prefix τ such that τϕ.

• (D) is never applied to σDϕ if there is a prefix τ such that τϕ without σ ∼Θ τ .

• (¬D) is never applied to σ¬Dϕ and γ if it has already been applied to τ¬Dϕ and

γ with σ ∼Θ τ .

Fig. 1. Prefixed tableau calculus for the hybrid language H(D,♦−).

We mentioned earlier that the set PREF was well-ordered. Rules that introduce

new prefixes on the branch – i.e. (♦), (♦−), (E), (D) – pick the smallest prefix of

PREF that is not already in the branch. We sometimes call applications of the rules

(♦) and (♦−) diamond expansions.

2.2 Quasi-subformula property

As tableaux systems are about taking apart formulas, they usually manipulate only

subformulas of a given input formula. In the present case we want to show a similar

property, which will later enable us to prove termination.

4

Hoffmann

σ¬♦iϕ
(re), i ∈ R

σ¬ϕ

σ0♦iσ1, σ0¬♦iϕ
(tr), i ∈ T

σ1¬♦iϕ

σ0♦iσ1, σ1¬♦
−

i ϕ
(tr−), i ∈ T

σ0¬♦
−

i ϕ

σ¬♦iϕ
(sy), i ∈ S

σ¬♦−

i ϕ

σ¬♦−

i ϕ
(sy−), i ∈ S

σ¬♦iϕ

Fig. 2. Rules for reflexive, transitive and symmetric modalities.

Definition 2.4 Given a tableau branch Θ and a prefix σ, the set of true formulas

at σ on Θ, written TΘ(σ) is

TΘ(σ) = {ϕ | σϕ ∈ Θ}.

Definition 2.5 A formula ϕ is said to be a quasi-subformula of a formula ψ if one

of the following holds:

• ϕ is a subformula of ψ.

• ϕ has the form ¬χ, where χ is a subformula of ψ.

Lemma 2.6 (Quasi-subformula Property) Let Θ be a branch of a tableau built

with the prefixed formula σ0ϕ0 as root. For any prefixed formula σϕ occurring on

Θ such that ϕ is not a (negated) nominal generated by (D) or (¬D), ϕ is a quasi-

subformula of ϕ0.

Proof. This is easily seen by going through each rule of Figure 1 and Figure 2. ✷

Corollary 2.7 Let Θ be a branch and σ a prefix in Θ. Let TΘ
sub(σ) be T

Θ(σ) without

the (negated) nominals generated by (D) and (¬D). The set TΘ
sub(σ) is finite.

We will now establish soundness and completeness of two subsystems with re-

gards to their semantics, and prove their termination. We let the reader verify that

soundness is preserved, by the usual argument of satisfiability-preserving branch

expansion.

3 Decision procedure for H(D) with reflexive and

transitive modalities

In this section, we consider the language H(D) over the signature Sig′ given by the

following grammar:

ϕ ::= p | a | ¬ϕ | ϕ1 ∧ ϕ2 | ♦iϕ | aϕ | Eϕ | Dϕ

where p ∈ PROP, a ∈ NOM, i ∈ REL and R ⊆ REL and T ⊆ REL.

5

Hoffmann

The expression the calculus of H(D) refers to the calculus consisting of the rules:

(¬¬), (∧), (¬∧), (♦), (¬♦), (re), (tr), (νId), (@), (¬@), (E), (¬E), (D), (¬D)

3.1 Termination

The general idea of the termination proof of this system is that on one hand, the

quasi-subformula property guarantees that a given prefix can only make true finitely

many formulas, and on the other hand, the restriction (or loop-check) that we

introduce guarantees that there can only be finitely many prefixes in a branch. As

a consequence, the number of formulas, and hence of rule applications, can only be

finite, which means that the calculus is guaranteed to terminate.

Definition 3.1 For a prefix σ, let LΘ(σ) be the set of formulas true at nΘ(σ), of

the shape ♦ϕ, ♦−ϕ, ¬♦ϕ, ¬♦−ϕ, s and ¬s, with s being a propositional symbol or

a nominal not introduced by the rule (¬D). We call these formulas model-relevant

local formulas.

Now for the first important result:

Lemma 3.2 Let σ be a prefix occurring in a branch Θ in the calculus of H(D). The

set LΘ(σ) is finite.

Proof. Only a finite number of formulas of the shape Dϕ can appear in a branch,

and (D) can be applied at most twice for each one of them as premise. This and

Corollary 2.7 prove this theorem. ✷

We are going to divide prefixes in two categories: those who “can generate

new prefixes” and those who cannot, or the blocked ones. During the run of the

calculus, prefixes of a branch can pass from one category to the other. Ultimately,

we will see that there can be only a finite number of prefixes belonging to the first

category, which will imply termination of the calculus. A prefix σ will belong to the

blocked category when its LΘ set is included in the LΘ set of a smaller prefix. As

a consequence, diamond expansions of formulas σ♦ϕ are forbidden.

Definition 3.3 We define the inclusion urfather of a prefix σ in a branch Θ, written

iΘ(σ), to be the smallest prefix τ for which: LΘ(σ) ⊆ LΘ(τ). A prefix σ is called

an inclusion urfather in Θ if σ = iΘ(τ) for some prefix τ .

Definition 3.4 (Loop-check (I)) The rule (♦) is only applied to a formula σϕ

on a branch if σ is an inclusion urfather on that branch.

One consequence of this loop-check is that a formula ♦ϕ has to be copied to the

nominal urfather of its prefix before being expanded.

Lemma 3.5 Let Θ be a branch in the calculus of H(D) with finitely many prefixes

in it, and σ a prefix occurring in it. TΘ(σ) is finite.

Proof. Note that according to our tableau conventions, all prefixed formulas oc-

curring in the infinite branch Θ are distinct.

As seen in Lemma 2.6, we know that there are finitely many quasi-subformulas

of the input formula in the branch. So, by the quasi-subformula property, we know

6

Hoffmann

that a calculus that does not involve (D) nor (¬D) generates finitely many formulas

for a given prefix.

Now let us see whether there are also finitely many formulas generated by the

rules (D) and (¬D). Since there are finitely many prefixes in Θ, and by the quasi-

subformula property, there are finitely many formulas of the shape σDϕ or σ¬Dϕ in

the branch. Moreover, as (D) can at most be fired twice for a given premise Dϕ, there

are finitely many formulas generated by (D). Similarly, by the saturation condition

of (¬D), and as the number of prefixes in the branch is finite, there are finitely many

applications of (¬D) rules for a given formula σ¬Dϕ. This also means that there

are finitely many formulas generated by (¬D). Since all the formulas generated

by (D) and (¬D) are either (negated) nominals or quasi-subformulas of the input

formula, there is also a finite number of rule applications caused by conclusions of

these rules. ✷

Theorem 3.6 Any tableau in the calculus of H(D) constructed under restriction

(I) is finite.

Proof. The prefixes present in a branch are either root prefixes, prefixes introduced

by (E) and (D), or prefixes introduced by (♦). We already know that there are

finitely many root prefixes. Moreover, as only a finite number of subformulas of the

input formula are of the shape Eϕ or Dϕ, the saturation condition of (E) and (D)

ensure that only a finite number of prefixes can be generated by these rules. Let us

now consider the number of diamond expansions:

• because of Lemma 3.2 and the loop-check (I), the maximal number of equivalence

classes in which prefixes are allowed to expand diamonds is 2N , where N = |{ϕ | ϕ

model-relevant local formula }|

• because of saturation of (♦), the maximal number of diamond expansions in a

given equivalence class is M = |{♦ϕ | ϕ quasi-subformula of the input formula}|

Thus the number of prefixes generated by (♦) in a branch is bounded by M × 2N .

As there can be only finitely many prefixes in a branch, the result follows by

Lemma 3.5. ✷

3.2 Completeness

We will now prove that the calculus of H(D) is complete. For this, we need a

certain amount of properties about nominal urfathers and inclusion urfathers, so

that a saturated open branch has the desirable properties. We first need to take

care of nominal urfathers, which are privileged prefixes because of the (νId) rule,

and then we focus on inclusion urfathers, given that they are used to build a model

from a saturated open branch. Let us start by some properties of nominal urfathers:

Lemma 3.7 (Nominal Urfather Equality) Let Θ be a saturated branch in a

calculus containing at least (νId). If σ ∼Θ τ then nΘ(σ) = nΘ(τ).

Proof. Assume σ ∼Θ τ . Then there is a nominal a such that σa, τa ∈ Θ. By

saturation by the (νId) rule, nΘ(σ)a and nΘ(τ)a hold. Suppose nΘ(σ) 6= nΘ(τ).

Without loss of generality, suppose nΘ(σ) < nΘ(τ). Then, a would be a nominal

7

Hoffmann

true at τ and nΘ(σ), which contradicts the assumption that nΘ(τ) is the smallest

prefix such that there is a nominal true at τ and nΘ(τ). ✷

Note that the root prefix σ0 of a tableau branch is always a nominal urfather

on that branch. More generally, any prefix σ for which nΘ(σ) = σ is a nominal

urfather on Θ. The other direction also holds, as the following lemma shows:

Lemma 3.8 (Nominal Urfather Characterisation) Let Θ be a saturated branch

in a calculus containing at least (νId). Then σ is a nominal urfather on Θ if and

only if nΘ(σ) = σ.

Proof. Let us consider the ‘only if’ direction. If σ is a nominal urfather then

nΘ(τ) = σ for some prefix τ . If τ = σ then the proof is complete. Otherwise σ ∼Θ τ ,

by definition of nΘ. Then, by Urfather Equality (Lemma 3.7), nΘ(σ) = nΘ(τ) = σ.✷

We need now to prove some results concerning inclusion urfathers. The first

result enables us to claim in some cases that nominal and inclusion urfather are the

same:

Lemma 3.9 Let Θ be a saturated branch in a calculus containing at least (νId). If

σ is a prefix making at least one model-relevant nominal true on Θ then the nominal

urfather and the inclusion urfather of σ coincide.

Proof. Assume σa ∈ Θ, with a being a model-relevant nominal. We need to

prove nΘ(σ) = iΘ(σ). Closure under the (νId) rule gives us that nΘ(σ)a ∈ Θ,

so a ∈ LΘ(σ). Let τ = iΘ(σ). By definition, τ is the smallest prefix such that

LΘ(σ) ⊆ LΘ(τ), so a ∈ LΘ(τ). Hence nΘ(τ)a ∈ Θ.

Assume τ 6= nΘ(σ). The case τ > nΘ(σ) is impossible, because then nΘ(σ) would

be a candidate inclusion urfather of σ smaller than τ , by closure under (νId). So

let us assume τ < nΘ(σ). As nΘ(τ) ≤ τ , we then have nΘ(τ) < nΘ(σ), but since

nΘ(τ) makes the nominal a true on Θ, this contradicts the fact that nΘ(σ) is the

nominal urfather of σ. ✷

We have proved two basic properties for nominal urfathers: Nominal Urfather

Equality (Lemma 3.7) and Nominal Urfather Characterisation (Lemma 3.8). We

are going to see that these properties also hold for inclusion urfathers.

Lemma 3.10 (Inclusion Urfather Equality) Let Θ be a saturated branch in a

calculus containing at least (νId). If σ ∼Θ τ , then iΘ(σ) = iΘ(τ).

Proof. σ and τ have the same nominal urfather (Lemma 3.7), thus they have the

same inclusion urfather. ✷

Lemma 3.11 (Inclusion Urfather Characterisation) Let Θ be a saturated

branch in a calculus containing at least (νId). Then σ is an inclusion urfather on

Θ if and only if iΘ(σ) = σ.

Proof. For the “only if” direction, suppose σ is an inclusion urfather, i.e., there

exists a prefix τ such that σ = iΘ(τ). Let us show that iΘ(σ) = σ. By definition,

σ is the smallest prefix such that LΘ(τ) ⊆ LΘ(σ) for a prefix τ . Suppose that

there is a prefix γ = iΘ(σ) and γ < σ. Therefore, LΘ(τ) ⊆ LΘ(σ) ⊆ LΘ(γ), which

contradicts the fact that σ is the inclusion urfather of τ . ✷

8

Hoffmann

And a third property is going to be useful:

Lemma 3.12 Given a saturated branch Θ in a calculus containing at least (νId)

and a prefix σ, nΘ(iΘ(σ)) = iΘ(σ).

Proof. Let τ = iΘ(σ). Assume nΘ(τ) 6= τ . Necessarily, nΘ(τ) < τ . Since by nomi-

nal Urfather Characterisation (Lemma 3.8), nΘ(nΘ(τ)) = nΘ(τ), and by saturation

by (νId), nΘ(τ) is also a candidate to be the inclusion urfather of σ, and since it is

smaller than τ , we have a contradiction. ✷

Lemma 3.13 (Inclusion Urfather Closure) Let Θ be a saturated branch in a

calculus containing at least (νId). If Θ contains σϕ with ϕ a model-relevant local

formula, then Θ contains iΘ(σ)ϕ.

Proof. By saturation of (νId) and definition of an inclusion urfather, nΘ(iΘ(σ))ϕ ∈

Θ which gives us iΘϕ ∈ Θ by Lemma 3.12. ✷

We are now ready to build a model from a saturated open branch and prove a

correspondence between formulas in the branch and truth in the model. Given an

open, saturated branch Θ with root σ0ϕ0, we define a model MΘ by

MΘ = (WΘ, (RΘ
i)i<n, V

Θ), where

WΘ = {σ | σ is an inclusion urfather on Θ}

RΘ
i = {(σ, iΘ(τ)) | σ ∈WΘ and σ♦iτ occurs on Θ}

V Θ(s) = {iΘ(σ) | σs occurs on Θ}.

In this definition, s is a propositional symbol or a nominal. Inclusion Urfather

Equality (Lemma 3.10) implies that V Θ(a) is a singleton for any nominal a.

We then define the model MΘ
∗ as MΘ in which the missing links for reflexive

and transitive relations have been added, that is. For every relation Ri in MΘ, we

write Ri∗ for its reflexive closure when i ∈ R, its transitive closure when i ∈ T and

its reflexive-transitive closure when i ∈ R ∩ T . Otherwise Ri∗ is equal to Ri.

Lemma 3.14 Let Θ be a saturated open branch built from the root formula φ in the

calculus of H(D) with restriction (I). For any formula σϕ ∈ Θ such that nom(ϕ)

⊆ nom(φ), we have MΘ
∗ , iΘ(σ) |= ϕ.

Proof. The proof is by induction on the syntactic structure of ϕ.

• ϕ = p. By definition, iΘ(σ) ∈ V Θ(p). This implies MΘ
∗ , iΘ(σ) |= p.

• ϕ = ¬p. By Urfather Closure, iΘ(σ)¬p ∈ Θ. Since Θ is open, iΘ(σ)p 6∈ Θ. Thus

iΘ(σ) 6∈ V Θ(p), which implies MΘ
∗ , iΘ(σ) |= ¬p.

• ϕ = a. By definition V Θ(a) = {iΘ(σ)}, therefore MΘ
∗ , iΘ(σ) |= a.

• ϕ = ¬a. By Urfather Closure, we get iΘ(σ)¬a ∈ Θ. Since Θ contains initially a

formula σaa, we have V Θ(a) = {iΘ(σa)} as a is an input nominal. By Urfather

Closure, we have iΘ(σa)a ∈ Θ. Since Θ is an open branch containing both iΘ(σ)¬a

and iΘ(σa)a, we get iΘ(σ) 6= iΘ(σa). Thus we have iΘ(σ) 6∈ V Θ(a) which implies

MΘ
∗ , iΘ(σ) |= ¬a.

9

Hoffmann

• ϕ = ¬¬ψ, ϕ = ψ ∧ χ and ϕ = ¬(ψ ∧ χ) are trivial, by application of the

corresponding tableau rules and the induction hypothesis.

• ϕ = aψ. By assumption, a can not be a nominal introduced by the calculus. By

closure under the rules (@) and (νId), Θ must also contain τψ, with τ being the

smallest prefix such that τa occurs. Induction hypothesis gives usMΘ, iΘ(τ) |= ψ.

Since τ is the smallest prefix making a nominal true, it is a nominal urfather, and

as it makes one input nominal true, it is also an inclusion urfather (Lemma 3.9),

so it is in the model. By Urfather Characterisation, iΘ(τ) = τ , and since τa ∈ Θ,

we get V Θ(a) = {τ}. Thus, as we have MΘ, τ |= ψ and MΘ, τ |= a, we have that

for all w ∈WΘ, MΘ, w |= aψ, in particular for w = iΘ(σ), as needed.

• ϕ = ¬aψ closure by (¬@) then similar to the previous case.

• ϕ = Eψ. Closure under the (E) rule implies that Θ must also contain a formula

τψ for some prefix τ . The induction hypothesis then gives us MΘ, iΘ(τ) |= ψ

which proves that MΘ, w |= Eψ for all w ∈WΘ, including w = iΘ(σ).

• ϕ = ¬Eψ. We need to prove MΘ, iΘ(σ) |= ¬Eψ, that is, for all τ ∈WΘ, MΘ, τ |=

¬ψ. Choose an arbitrary element τ in WΘ. By closure under the (¬E) rule we

have that τ¬ψ occurs on Θ. The induction hypothesis gives us MΘ, iΘ(τ) |= ¬ψ.

By Urfather Characterisation, we have iΘ(τ) = τ , thus MΘ, τ |= ¬ψ as required.

• ϕ = Dψ. Closure under the (D) rule implies that Θ also contains σ¬n, τn and

τψ. As σ¬n and τn occur, by Urfather Closure we have iΘ(σ)¬n and iΘ(τ)n,

so, as the branch is open, iΘ(σ) 6= iΘ(τ). Moreover, as τψ ∈ Θ, then by in-

duction hypothesis, MΘ, iΘ(τ) |= ψ. With iΘ(σ) 6= iΘ(τ), this means we have

MΘ, iΘ(σ) |= Dψ.

• ϕ = ¬Dψ. If there is no world τ 6= iΘ(σ) then this trivially holds. Otherwise, let

τ be such a world. By saturation of (¬D), we have that either the formulas σn

and τn are in Θ, or τ¬ψ is. In the first case, σ ∼Θ τ , which implies by Urfather

Equality that iΘ(σ) = iΘ(τ). Thus, by Urfather Characterisation, iΘ(σ) = τ ,

which is a contradiction. Now assume τ¬ψ ∈ Θ. Then, by induction hypothesis

and Urfather Characterisation, MΘ, τ |= ¬ψ, which is what we needed.

• ϕ = ♦iψ. By Inclusion Urfather Closure and saturation of (♦), we have:

iΘ(σ)♦iτ, τψ ∈ Θ

Then, by definition of RΘ
i and induction hypothesis:

(iΘ(σ), iΘ(τ)) ∈ RΘ
i , MΘ

∗ , iΘ(τ) |= ψ

Combining this, we obtain as required MΘ
∗ , iΘ(σ) |= ♦iψ.

• ϕ = ¬♦iψ. If there is no world σ1 such that (iΘ(σ), σ1) ∈ RΘ
i∗ then this holds

trivially. Otherwise, let such σ1 be chosen such that (iΘ(σ), σ1) ∈ RΘ
i∗. We need

to consider two subcases:

· (iΘ(σ), σ1) ∈ RΘ
i . By definition of RΘ

i there must be a prefix τ1 such that σ1 =

iΘ(τ1) and iΘ(σ)♦iτ1 ∈ Θ. Then by Urfather Closure, iΘ(σ)¬♦iψ ∈ Θ, and by

closure under (¬♦), τ1¬ψ ∈ Θ. Induction hypothesis entails MΘ, iΘ(τ1) |= ¬ψ,

i.e., MΘ, σ1 |= ¬ψ. From this it follows that MΘ, iΘ(σ) |= ¬♦iψ.

10

Hoffmann

· (iΘ(σ), σ1) ∈ RΘ
i∗ \ R

Θ
i . If i ∈ R and σ1 = iΘ(σ), saturation by the rule (re)

enforces the presence of ¬ψ at the prefix iΘ(σ), thus it follows thatM
Θ, iΘ(σ) |=

¬♦iψ. If i ∈ T , saturation by the rule (tr) gives us σ1¬ψ.

✷

Theorem 3.15 The calculus of H(D) with restriction (I) is complete.

Proof. The prefix σ0 of the root formula is an inclusion urfather. ✷

3.3 Discussion

We would like now to discuss some of the similarities and differences between the

calculus we presented in this article and related work. In particular we will discuss

the work of Bolander and Blackburn, and Kaminski and Smoka on hybrid tableaux

calculi. Bolander and Blackburn introduced in [2], the first terminating tableau

system for the basic hybrid logic H(@). For this language, both a prefixed and an

internalised calculus were introduced. Moreover, they introduced a prefixed calculus

for H(@,E,♦−). Kaminski and Smolka introduced an internalised calculus for H(D)

with reflexive and transitive relations in [4], and later extended it so as to handle

the hybrid logic H(D,♦−) [5].

Kaminski and Smolka’s calculus and the difference modality: Kaminski and

Smolka presented the first decision procedure for hybrid logic with the difference

modality in [4]. Their calculus is internalised, for it is expressed in simple type

theory, and equality and disequality are represented natively in their formalism

with the symbols = and 6=. In contrast, our calculus is prefixed, and we use new

nominals to enforce equality and disequality respectively needed by the rules (¬D)

and (D), which we adapted from their work.

Loop-check: The loop-check we use is also known as “subset blocking” and “any-

where blocking”, notably in description logics tableau systems [1]. It is the same

loop-check used in Bolander and Blackburn’s calculus to handle the languageH(@,E).

We have seen that ignoring the nominals introduced by the rule (¬D) is crucial

to ensure termination. As these nominals only appear as positive literals, their

presence does not interfere with the identification of a world with another one. For

instance, consider the situation where we have two prefixes σ < τ , with their sets

of true formulas being {p,♦q} and {♦q, n} respectively, and n being a new nominal

introduced by (¬D). Here, τ is blocked by σ. It is safe to block like this because it

is guaranteed that ¬n never occurs on the branch.

Handling equivalence classes of prefixes: Bolander and Blackburn used the

following (Id) rule to handle equivalence classes for H(@,E):

σa, τa, τϕ
(Id)

σϕ

The (Id) rule is an unrestricted version of the (νId) rule. It copies all formulas

of an equivalence class to all prefixes of the same equivalence class. This way of

handling classes is correct but costly, as it turns out that (νId) alone suffices. The

approach of (νId), where information is only copied to the representative prefix of

11

Hoffmann

an equivalence class, is equivalent to the classic disjoint-set forest approach to solve

the union-find problem [3].

Kaminski and Smolka do not mention explicitly how to handle equivalence

classes. Instead, they make their rules depend on the equational congruence of

a branch, that is, the closure of a branch obtained by rewriting every formula and

every accessibility statement by replacing every nominal by any other nominal of

its equivalence class. For instance in [5], negation is handled by two rules as follows

(side conditions are written on the right of each rule):

x 6= y
x ∼A y

⊥

(¬̇p)x
px ∈ Ã

⊥

with Ã being the equational congruence of a branch A and ∼A the least equiv-

alence relation on the nominals of a branch.

In our case, we make explicit the handling of equivalence classes by coping the

adequate formulas to representative prefixes, and letting the other rules deal directly

with the prefixed formulas present in the branch. In this way our tableau algorithm

directly handles equivalence classes. Instanciating Kaminski and Smolka’s approach

with a disjoint-set forest should yield a very similar system.

Saturation of (♦) and reusing existing accessibility statements: Equivalence

classes of prefixes and the loop-check (I) enable us to define a stricter saturation

condition for the rule (♦) than in the calculus of Bolander and Blackburn. Indeed,

in their calculus, (♦) could be applied on σ♦ϕ and then on τ♦ϕ, even when σ ∼ τ .

Here, we take into account the history of applications of (♦) in the whole equivalence

class of a given prefix to prevent such redundant diamond expansions. As a conse-

quence, this requires that accessibility statements get copied to the representative

of an equivalence class, which is done by (νId).

This has one unfortunate side-effect: our calculus must rely on the loop-check (I)

to terminate even for the language H(@), while Bolander and Blackburn’s system

doesn’t. This is because copying accessibility statements invalidates the argument

that prefixes make true smaller and smaller formulas as they are further away from

the root prefix. Consider, for instance, the formula

n ∧ (♦⊤) ∧ (�♦⊥) ∧ (�n)

(with � for ¬♦¬), where (♦) is applied systematically before (νId). It does not

terminate without the loop-check, but terminates in the system of Bolander and

Blackburn.

Pattern-based blocking, loop-check and saturation: The calculus of Kamin-

ski and Smolka relies on pattern-based blocking, which is a restriction on diamond

expansions that subsumes both the loop-check (I) and the class-wise saturation

condition of (♦). The idea of pattern-based blocking is to only expand a diamond

formula if there is no previous diamond expansion in the branch where the cre-

ated world makes true at least the same formulas. Then, model building is done

from a saturated open branch by adding all possible accessibility statements, which

includes all those of the blocked diamond formulas.

Pattern-based blocking is a generalisation of the loop-check (I) because it is a

12

Hoffmann

form of anywhere blocking. It is also a generalisation of class-wise saturation, given

that it prevents diamond expansions from happening. For these reasons, it would be

interesting to integrate this kind of loop-check in our calculus. On the other hand,

both pattern-based blocking and (I) fail to ensure termination and completeness

for the hybrid logic H(@,♦−). Thus, class-wise saturation of (♦) and (♦−) remains

useful in the calculus of H(D,♦−).

4 Adding symmetric and converse modalities

We now consider the language introduced in Section 1, that is, the hybrid language

H(D,♦−) with the full signature Sig.

We extend the calculus of H(D) seen in the previous section so that it handles

converse modalities ♦−

i and symmetric modalities. The additional rules are (♦−),

(¬♦−), (bridge), (sy), (sy−) and (tr−). We call the resulting calculus the calculus

of H(D,♦−).

The following example shows that the loop-check (I) pose a problem with con-

verse modalities:

Example 4.1 Consider the unsatisfiable formula p ∧ ¬E¬(♦p ∧ ¬♦−♦−p). Under

restriction (I), a saturated tableau with this formula as root does not close because

the first prefix generated by the rule (♦) is blocked by the root prefix. Without (I),

we could actually close the tableau by continuing the branch.

In other words, restriction (I) compromises completeness in the presence of

converse modalities. We have to define a new restriction that ensures completeness

without sacrificing termination.

4.1 Termination

We will establish termination by an argument on infinite chains of prefixes, as in [2]

and [5]. To be able to refer to chain of prefixes, we introduce the following relation:

Definition 4.2 If a prefix τ has been introduced in a branch Θ by applying one of

the rules (♦) and (♦−) to a premise σϕ then we write σ ⊲Θ τ . We use ⊲∗Θ to denote

the transitive and reflexive closure of the relation ⊲Θ.

Saturation by rules (♦) and (♦−) implies the the following result:

Lemma 4.3 The graph (PΘ, ⊲Θ), where PΘ is the set of prefixes linked by the

relation ⊲Θ, is a forest of finitely branching trees.

We now prepare the definition of the new loop-check:

Definition 4.4 If σ and τ are two prefixes in a branch Θ such that LΘ(σ) = LΘ(τ)

and not σ ∼Θ τ , we call them twins on Θ.

Definition 4.5 A prefix σ in Θ is said to be unblocked if there is no pair of distinct

twins τ and τ ′ such that τ ⊲∗Θ τ
′ ⊲∗Θ σ.

Note that if σ is unblocked on Θ and σ′⊲∗Θσ then σ′ is necessarily also unblocked.

The loop-check is defined as follows:

13

Hoffmann

Definition 4.6 (Loop-check (C)) The rules (♦) and (♦−) are only applied to a

formula σϕ on a branch if σ is unblocked on that branch.

We named this loop-check (C) as in “chain” since this restriction relies on infor-

mation present in the ancestry chain of a given prefix. We now can prove termination

of the calculus of H(D,♦−) with restriction (C):

Theorem 4.7 Any tableau in the calculus of H(D,♦−) constructed under restric-

tion (C) is finite.

Proof. Suppose there is an infinite tableau. By following the same argument as

the one of the proof of Theorem 3.6, we know that there are infinitely many prefixes

in the branch, and at the same time, there can be only finitely many applications

of the rules (D) and (E). This implies that there are infinitely many applications of

(♦) and (♦−).

Given Lemma 4.3 and König’s lemma, there is one infinite chain of prefixes

generated by (♦) or (♦−):

σn ⊲Θ σn+1 ⊲Θ σn+2 ⊲Θ · · · .

Now, there is a maximal number of applications of (♦) and (♦−) in a given equiv-

alence class, by definition of the saturation of these rules and the quasi-subformula

property. Let us call this number d. Moreover, we know from Lemma 3.2 that there

can only be finitely many different sets LΘ(σ) for σ on the branch Θ. Let m be this

number.

Let us consider the prefix σn+d(m+1)+1 of the previous chain. It has been in-

troduced by (♦) or (♦−) applied on prefix of rank n + d(m + 1) on Θ. Because of

restriction (C), σn+d(m+1) must then be unblocked on Θ′. However, there exist two

prefixes σl and σk with l, k < n + d(m + 1), such that LΘ(σl) = LΘ(σk) without

σl ∼Θ σk, that is to say σl and σk are twins. This contradicts σn+d(m+1) being

unblocked on Θ′, which makes the existence of such an infinite chain impossible.✷

4.2 Completeness

In the previous section, inclusion urfathers were used to block other prefixes, and

also as elements of the model built from a saturated open branch. But we have seen

that a loop-check based on inclusion urfathers is not adequate for completeness in

the case of the calculus of H(D,♦−), so we now rely on a weaker loop-check based on

unblocked prefixes. Nonetheless, unblocked prefixes cannot be used as elements of

an extracted model, since two unblocked prefixes can make true the same nominal.

Therefore, we introduce another kind of urfather, the unblocked urfather:

Definition 4.8 Let σ be a prefix occurring in a branch Θ. The unblocked urfather

of σ on Θ, written uΘ(σ), is the smallest prefix τ satisfying:

(i) LΘ(σ) = LΘ(τ)

(ii) τ is unblocked.

Such a prefix does not necessarily exist, thus uΘ is only a partially defined mapping.

A prefix σ is called an unblocked urfather in Θ if σ = uΘ(τ) for some prefix τ .

14

Hoffmann

In other words, the unblocked urfather of a prefix is its smallest unblocked twin.

Note that there is no guarantee that it exists, and if it exists, no guarantee that

it is on the same chain of ancestry. Thus, a prefix can be blocked without being

represented in the possible model.

Note also that the root prefix of a branch Θ will always be an unblocked urfather

on that branch. We express that uΘ(σ) is defined by writing σ ∈ dom(uΘ). We

have the following result:

Lemma 4.9 Let σ be unblocked on a branch Θ. If σ ⊲Θ τ then τ ∈ dom(uΘ).

Proof. Assume σ ⊲Θ τ where σ is unblocked on Θ. If τ is unblocked on Θ then

τ ∈ dom(uΘ). So assume that τ is not unblocked. Then there must exist a pair of

distinct twins γ, γ′ with γ ⊲∗Θ γ′ ⊲∗Θ τ . Since σ is unblocked we can not have both

γ ⊲∗Θ σ and γ′ ⊲∗Θ σ. Since σ ⊲Θ τ this implies γ′ = τ . Thus τ has γ as a twin, and

since necessarily γ ⊲∗Θ σ we get that γ is unblocked. Since γ is a candidate to being

the unblocked urfather of τ , uΘ(τ) is defined. ✷

As in the previous calculus, nominals introduced by (¬D) are not taken into

account when it comes to defining unblocked urfathers. We now prove, as before,

the properties Urfather Closure, Urfather Equality and Urfather Characterisation.

Lemma 4.10 (Unblocked Urfather Closure) Let σ be a prefix in a saturated

branch Θ where (νId) is applied, with σ ∈ dom(uΘ) and ϕ a model-relevant local

formula. If σϕ ∈ Θ, then uΘ(σ)ϕ.

Proof. Proof similar to the one of Lemma 3.13. ✷

Lemma 4.11 (Unblocked Urfather Equality) Let Θ be a saturated branch. If

σ, τ ∈ dom(uΘ) and σ ∼Θ τ , then uΘ(σ) = uΘ(τ).

Proof. By Lemma 3.7, since σ ∼Θ τ , then LΘ(σ) = LΘ(τ), thus uΘ(σ) = uΘ(τ).✷

Lemma 4.12 (Unblocked Urfather Characterisation) Let Θ be a branch. Then

σ is an unblocked urfather if and only if uΘ(σ) = σ.

Proof. For the “only if” direction, suppose σ is an unblocked urfather, i.e., there

exists a prefix τ such that σ = uΘ(τ). That is, σ is the smallest unblocked prefix

such that LΘ(σ) = LΘ(τ). The prefix uΘ(σ) has the property of being the smallest

unblocked prefix such that LΘ(uΘ(σ)) = LΘ(σ). As a consequence, uΘ(σ) is also

the unblocked urfather of τ , which means uΘ(σ) = σ. ✷

We are now ready for the model construction that will establish completeness.

Given an open, saturated branch Θ with root σ0ϕ0 in the calculus of H(D,♦−), we

define a model MΘ by

MΘ = (WΘ, (RΘ
i)i<n, V

Θ), where

WΘ = {σ | σ is an unblocked urfather on Θ}

RΘ
i = {(uΘ(σ), uΘ(τ)) | σ♦iτ occurs on Θ and σ, τ ∈ dom(uΘ)}

V Θ(s) = {uΘ(σ) | σs occurs on Θ and σ ∈ dom(uΘ)}.

15

Hoffmann

Notice how we define WΘ: this is because not all prefixes of the branch have an

unblocked urfather. That V Θ(a) is a singleton for any nominal a follows from

Urfather Equality (Lemma 4.11). As before, MΘ
∗ is the model in which all relations

Ri of MΘ are closed respectively for reflexivity, transitivity and symmetry when

i ∈ R, i ∈ T and i ∈ S. We write Ri∗ for the appropriate closure of Ri. We can

now prove completeness for the calculus of H(D,♦−) with restriction (C).

Lemma 4.13 Let Θ be a saturated open branch in the calculus of H(D,♦−) with

restriction (C) built from the root formula φ. For any formula σϕ ∈ Θ such that

σ ∈ dom(uΘ) and nom(ϕ) ⊆ nom(φ), we have MΘ
∗ , uΘ(σ) |= ϕ.

Proof. As in the previous completeness proof, the proof is by induction on the

syntactic structure of ϕ:

• ϕ has one of the forms p, ¬p, a, ¬¬ψ, ψ ∧ χ, ¬(ψ ∧ χ), ¬Eψ, ¬Bψ or ¬♦iψ

with i possibly in R or T . We can directly reuse the previously given proof by

simply replacing references to iΘ by uΘ and references to “inclusion urfather” by

“unblocked urfather”. This is because we still have the Urfather Characterisation

property (Lemma 4.12).

• ϕ = σ¬♦iψ ∈ Θ with i ∈ S. If (σ1, uΘ(σ)) ∈ RΘ
i∗, then by saturation by (sy),

(bridge) and (¬♦−

i), σ1¬ψ ∈ Θ.

• ϕ is of the form ♦iψ, Eψ or Dψ. We can also reuse the previous proof, adding

that when a prefix generating rule is applied to the premise uΘ(σ)ϕ to produce

a conclusion τχ, then τ ∈ dom(uΘ) (Lemma 4.9), which enables us to use the

induction hypothesis.

• ϕ = ♦−

i ψ. Similar to ϕ = ♦iψ, with adjustments described in the previous case.

• ϕ = ¬♦−

i ψ. If there is no world σ1 such that (σ1, uΘ(σ)) ∈ RΘ
i then the property

holds trivially. Otherwise, let such σ1 be chosen arbitrarily. We need to prove

that MΘ, σ1 |= ¬ψ. By definition of RΘ
i , there exist prefixes τ, τ1 such that

σ1 = uΘ(τ1), uΘ(σ) = uΘ(τ) and τ1♦iτ ∈ Θ. By saturation of the (bridge) rule,

we have uΘ(τ1)♦iuΘ(τ), or in other terms σ1♦iuΘ(σ). By Urfather Closure, Θ

contains uΘ(σ)¬♦
−

i ψ, and by saturation of (¬♦−), it also contains τ¬ψ. Induction

hypothesis then gives MΘ, uΘ(σ1) |= ¬ψ, which, by Urfather Characterisation, is

equivalent to MΘ, σ1 |= ¬ψ.

• ϕ = ¬♦−

i ψ when i ∈ R ∪ T ∪ S is handled as previously, involving the rules

(bridge) and (tr−) and (sy−) when needed.

✷

With a similar argument to the one of Theorem 3.15, we can claim:

Theorem 4.14 The calculus of H(D,♦−) with restriction (C) is complete.

4.3 Differences with the calculus of H(D)

Normalising accessibility statements: For this calculus, the rule (bridge),

which is not present in the calculus of Bolander and Blackburn, is crucial. In-

deed, it is now necessary to normalise accessibility statements so that they only

involve nominal urfathers. Let us use the phrase forward constraints to refer to

16

Hoffmann

formulas of the shape ¬♦ϕ, backwards constraints for formulas of the shape ¬♦−ϕ,

and box constraints for both shapes.

In the calculus of H(D), (bridge) is not needed because no backwards constraint

occur. Forward constraints are propagated along accessibility statements and then

copied to nominal urfathers thanks to (νId), as needed. In the calculus of H(D,♦−)

without the (bridge) rule, a backwards constraint may remain unpropagated. In-

deed, by looking at the premises of (¬♦−), one can see that nothing will happen if

an accessibility statement arrives in the prefix. For instance, the following formula

does not yield a closed tableau without the (bridge) rule:

p ∧ ♦n ∧ n¬♦−p

The calculus of Bolander and Blackburn does not require (bridge) because of

the way formulas are copied to every element of equivalence classes. In that setting,

backwards constraints would first be copied to the adequate prefix before being

propagated. Thus (bridge) enables us to keep a small footprint of copied formulas.

Loop-check: As in the calculus of Bolander and Blackburn, and the one of Kamin-

ski and Smolka, anywhere blocking cannot be used because it interacts badly with

converse modalities. This is why tableaux systems for modal logic and description

logics (see, for instance, [6]) that handle converse modalities use a blocking condition

using information present only in the ancestry of a given node.

Symmetric relations: Symmetric relations cannot be handled in the calculus of

H(D) shown in Section 3, where the loop-check (I) works by subset checking. The

reason lies in the relations that we can build from an open branch, in the presence

of this loop-check:

RΘ
i = {(σ, iΘ(τ)) | σ ∈WΘ and σ♦iτ occurs on Θ}

As iΘ(τ) can make true more formulas than τ , it can have more box constraints,

thus requiring more information to be present at σ, which is not guaranteed. In-

clusion blocking worked well when only forward constraints are present, but here

completeness is clearly broken. We find again that blocking and model building

using twins is essential for a calculus with converse or with symmetric relations.

5 Discussion and future work

We have presented a prefixed calculus for hybrid logic based on the one presented

by Bolander and Blackburn in [2]. We took care of reducing duplication of formu-

las, while adding support for the difference modality, and reflexive, transitive and

symmetric modalities.

Kaminski and Smolka’s calculus in [5] is another take on hybrid tableaus. Their

calculus is internalised and handles formulas expressed in simple type theory, where

equality is natively expressed. Their calculus for H(D) involves patten-based block-

ing, a loop-check that subsumes both our loop-check (I) and our class-wise satu-

ration of (♦(−)). However, in their system and ours, when moving to the language

equipped with converse modalities, a looser loop-check must be used. It seems that

a loop-check based on twin detection on a same chain of prefixes is adequate.

17

Hoffmann

In the future, we will explore the use of positive new nominals in the same manner

that the difference modality is currently handled, in order to handle functional and

injective modalities.

References

[1] F. Baader and U. Sattler. An overview of tableau algorithms for description logics. Studia Logica,
69:2001, 2000.

[2] T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal of Logic and Computation,
17(3):517–554, 2007.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
2001.

[4] M. Kaminski and G. Smolka. Hybrid tableaux for the difference modality. Electron. Notes Theor.
Comput. Sci., 231:241–257, 2009.

[5] M. Kaminski and G. Smolka. Terminating tableau systems for hybrid logic with difference and converse.
Journal of Logic, Language and Information, 18(4):437–464, 2009.

[6] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimizing terminological reasoning for expressive
description logics. J. of Automated Reasoning, 39(3):277–316, 2007.

18

	Hybrid Logic
	A prefixed tableau calculus
	Tableau rules
	Quasi-subformula property

	Decision procedure for H(D) with reflexive and transitive modalities
	Termination
	Completeness
	Discussion

	Adding symmetric and converse modalities
	Termination
	Completeness
	Differences with the calculus of H(D)

	Discussion and future work
	References

