
HAL Id: inria-00536361
https://hal.inria.fr/inria-00536361

Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

[Demo] Social Networking on top of the
WebdamExchange System

Émilien Antoine, Alban Galland, Kristian Lyngbaek, Amélie Marian, Neoklis
Polyzotis

To cite this version:
Émilien Antoine, Alban Galland, Kristian Lyngbaek, Amélie Marian, Neoklis Polyzotis. [Demo] Social
Networking on top of the WebdamExchange System. International Conference on Data Engineering,
Apr 2011, Hannover, Germany. �inria-00536361�

https://hal.inria.fr/inria-00536361
https://hal.archives-ouvertes.fr

Social Networking on top of
the WebdamExchange System 1

Émilien Antoine †, Alban Galland †, Kristian Lyngbaek †, Amélie Marian ‡, Neokis Polyzotis]

†INRIA Saclay & ENS Cachan,
61 av du Président Wilson, 94325 Cachan, France

firstname.lastname@inria.fr
‡Rutgers University,

110 Frelinghuysen Road Piscataway, NJ 08854-8019, US
amelie@cs.rutgers.edu
]U. of California Santa Cruz

1156 High St., Santa Cruz, CA 95064, US
alkis@cs.ucsc.edu

Abstract—The demonstration presents the WebdamExchange
system, a distributed knowledge base management system with
access rights, localization and provenance. This system is based
on the exchange of logical statements that describe documents,
collections, access rights, keys and localization information and
updates of this data.

We illustrate how the model can be used in a social-network
context to help users keep control on their data on the web. In
particular, we show how users within very different schemes of
data-distribution (centralized, dht, unstructured P2P,etc) can still
transparently collaborate while keeping a good control over their
own data.

I. CONTEXT AND MODEL

General usage of the web to publish and share information,
in particular in the context of social networks, stresses the need
to control access to private data in a distributed environment.
Indeed, personal data on the web is typically spread across
different centralized systems (e.g. Facebook, Twitter, Doodle),
on various personal machines (e.g. laptop, smartphones), on
friends machines or on untrusted peers (e.g. Weave servers of
Mozilla Labs). Consequently, the users suffer from the silo-
storage of the data while editing, sharing and navigating their
data. Moreover, personal data is often very sensitive and one
would like to enforce a strong access control on it. The goal of
this demonstration is to introduce a WebdamExchange model
[3] implementation, namely the WebdamExchange system, and
to explain how it is used in a social-networking scenario where
users interact transparently on private data hosted by very
different kinds of data-distribution systems. There have already
been some recent works on distributed social networks, e.g.,
[4], and also on privacy in P2P networks, e.g., [5], which
mostly focus on trust and which are somewhat complementary
to ours. In contrast, we use social networking as a motivating

1This work has been partially funded by the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant Webdam, agreement 226513. http://webdam.inria.fr/

example for a more general system, since the distribution and
access control on the web is not restricted to this setting.

To overcome the problem that the users of today’s web are
facing, a general model to describe data-management on the
web is needed. This model has to simplify the distribution of
the data of the users, the access-control on the data, and its
integration while allowing for larger flexibility for reasoning
on this knowledge. Some systems have already been presented
in this direction, e.g., [6,7], which are focused on special
kinds of distributed systems and enforce access control using
an external key management system. In contrast with these
approaches, we believe a general model has to cover both data
and key management, and a larger spectrum of distribution
techniques.

The WebdamExchange model [3] is a model of a distributed
knowledge base with access rights, localization and prove-
nance. The main originality of the approach is that logical
statements are used to describe data, access rights, secret keys
and localization information. Hence, all data and meta-data
are represented at the same level and can be used for formal
reasoning. In particular, it can be represented in an extension
of datalog and used to model distribution and security prop-
erties, as shown in [2]. The statements carry most of their
access control, by using cryptographic signatures to enforce
write access and encryption to enforce read access, naturally
leading to robust distributed systems. This knowledge can be
communicated, replicated, queried, updated and monitored,
while preserving access control properties. We demonstrate
a system implementing the WebdamExchange model, namely
the WebdamExchange system, and illustrate how it is used
with a social network scenario.

The rest of the document is organized as follows. The next
section describes a motivating example, and the corresponding
desired functionality and challenges. Section III discusses how
its features allow our system to overcome these challenges.
Section IV presents the actual setting of our demonstration.

GigiPC

Gigi
Alice

GeorgePC

George
AliceSomeDHT

BobPC

BobAlice

Facebook

Alice

AliceLaptop

Alice George

Friends

AlicePhone

Alice

DHT-Peer1

Alice
DHT-Peer2

DHT-Peer3

Alice
DHT-Peer4 Integration Layer

Alice states profile@Alice isStored@Facebook

Facebook states profile@Alice = T1

Alice states rocherReine@Alice = T2

Alice states
rocherReine@Alice
= (T2 encrypted
for reader@Alice)

Alice states
readKey@roof

Alice states George isWriter@roof

Fig. 1. The distribution of Alice’s data

II. MOTIVATING EXAMPLE AND CHALLENGES

The general setting of our motivating example is a group
of rock-climbers who want to organize regular outings in the
Fontainebleau forest. The users of the group use different
schemes to host their data: their own computers, a centralized
trusted peer (Facebook), an untrusted DHT and an unstructured
P2P system of friends. They use the WebdamExchange system
to transparently navigate and integrate their information while
keeping total control on their data.

We now describe the motivating example in more detail.
Alice wants to organize a regular rock-climbing outing in the
Fontainebleau forest. Alice is part of a community of rock-
climbers who use the WebdamExchange model (using directly
the WebdamExchange system itself, or using a system bound
to the model via an integration layer). Each user has a profile,
with personal information (name, birth-date, address, email,
phone number), a list of favorite spots (with location, difficulty
and pictures) and a list of friends. Everyone in the list of
friends can read this information but the user is the only one
who can edit it.

Alice first creates a group “Rock-climbing Organization for
Outing in Fontainebleau” (roof in short). She adds to this
group her friends who are living close to Fontainebleau and
her rock-climbing group of Paris 14th district, Roc14. She
next creates a twitter-like discussion feed for the group, where
users may post and read. She also creates a collaborative
calendar where users may append, remove and read calendar
entries (e.g. using XML representation of iCalendar standard
format), with their availability. Finally, she creates a document
to summarize the organization. She inserts in this document

two XQuery services, one that summarizes the planning and
one that aggregates the different rocks of Fontainebleau from
the profile of the roof members and ranks them by popularity.
She and her friend George are the only ones allowed to edit
this document, but all members of the roof group can read it.

The data of Alice is distributed using different schemes (See
Figure 1). Alice hosts some data on her laptop and on her
smartphone. Of course, the data on her smartphone are usually
not accessible from the web and her laptop is not running all
the time, so she also replicates her data on an untrusted DHT,
SomeDHT. She also has a favorite social network website,
Facebook, and stores her profile information on this trusted
peer. Finally, her friends are interested in some of her data,
that they frequently use, and replicate it locally. Indeed, this
unstructured P2P distribution is natural since people prefer to
store data they care about and to interact only with friends.

The scenario described above raises several difficulties. We
are particularly interested in the following.

Access control The management of access control is the
most important requirement. In order to protect her data, Alice
specifies different kinds of access rights, in particular read,
write, append, remove, grant and revoke rights. The system
should not permit illegal operations on the data. Unfortunately,
it is not possible to prevent people from misbehaving outside
of the system, e.g., a user may illegally send confidential
data to another user. But we want to detect illegal operations
resulting from such kinds of behavior whenever it is possible.
To do so, the system needs to keep a full trace of the
provenance, and support distributed monitoring.

Distribution As already discussed, an important problem

on the web is the wide dispersion of the data. In particular,
the data is spread between different peers, using different
distribution schemes. In our example, Alice uses three different
schemes at the same time. In the first one, Alice stores her data
on a trusted peer. This peer can be her own personal computer
or a trusted server like Facebook. She lets this peer manage
her data on her behalf. In particular this peer has full control
over her data. In the second scheme, Alice stores her data on
an untrusted network of peers, SomeDHT. She does not want
to delegate any right to these peers (nor read neither write),
so her clients (for example her iPhone application) have to
manage the updates themselves, by signing and encrypting
all her information. In this context, granting rights amount
to publishing keys encrypted for other users. Redundancy of
the network is used to avoid denial of services (because of
failure or out of malevolence). Finally, in the third scheme,
Alice stores her data on a network of friends peers. She does
not want to delegate more rights to her friends than what they
already have. The data is replicated in clear on trusted friends,
who are then in charge of enforcing access control.

A real system may even be more complex. Alice may have
data on several social network websites (Facebook, Linked-In,
MySpace). She may have several personal computers (at home,
at work) and several mobile devices (smartphone, tablet). In
such a highly distributed setting, the system has to provide an
unified view of the access control and the localization of the
data.

Data manipulation In this setting, providing a way to edit,
navigate and query data is clearly necessary. The user should
be able to localize all the data she has access to and to
ask global structured queries to the system. Most of these
queries are presented to the users as applications. For example,
an application corresponding to a polling like doodle helps
the user to deploy the corresponding data structures and to
set the access control, and provides widgets to display the
results. In our example, Alice installs typical applications like
a collaborative calendar, a discussion feed and a domain-
specific application to aggregate rocks preferences.

We next describe the main features of our system and
explain how it solve these problems.

III. MAIN SYSTEM FEATURES

Representation of data and meta-data The system manip-
ulates a large variety of data, actual data (documents, lists)
and meta-data (keys, localization information, access control),
all as first class citizens. This is the subject of [3] and we
will only briefly introduce it here. The actual data, e.g., the
profile of Alice, a rock description or a discussion entry in
the motivating example, is represented by XML documents.
An unstructured document such as a picture is represented as
a byte stream document.The result of a data update request is
represented as a data statement of the form:

Alice states rocherReine@Alice = T

meaning that Alice replaced the content of her document
rocherReine, describing her favorite rock, by the XML tree

T. This statement is signed with the “write” signature of the
roof group in order to enforce edit access control and by the
signature of Alice to keep a trusted trace of provenance.

A list, e.g., the lists of favorites rocks, the discussion feed
and the collaborative calendar in our example, is represented
as a collection, that is a set of references to documents of the
form:

Alice states rocks@roof += rocherReine@Alice

meaning that Alice added her document rocherReine to the
rocks collection of the group roof.

The meta-data is similarly represented by special logical
statements that can be manipulated like other data. These
statements are used to define access control, to support key
distribution used to enforce access control and to publish
where information is localized. For example,

Alice states George isWriter@roof
Alice states readKey@roof

Alice states profile@Alice isStored@Facebook

meaning that Alice added George has a writer of the group
roof, created a read key for the group and stored her profile
on Facebook.

Control and monitoring As previously explained, all the
statements and messages are authenticated by signature. The
content of the statement may be encrypted if necessary, e.g. if
it will transit through a participant that does not have the right
to read it. Signature and encryption use the asymmetric keys
distributed via the key statements. Statements and messages
also keep traces of provenance, in order to avoid illegal
operations and detect misuses. Provenance is recorded by the
messages themselves when they are exchanged by piling-up
signatures while statements record when and why they have
been created.

The system guarantees that it prevents illegal operations
and that every participant can successfully perform (directly
or indirectly) any operation they are entitled to do. This is
enforced by imposing restrictions on the manipulation of data.
In particular, a participant of the system should check access
rights before creating a statement on behalf of another user or
sending an information in clear. It is discussed more precisely
in [3].

Of course, no system can prevent illegal operations outside
of the system. So our system has to enable a participant,
who behaves legally, to detect illegal behaviors as soon as
an illegal piece of information reaches her. Our system allows
her to check authenticity and provenance of any fact and, if
a fact is not valid, to determine when the misuses happened.
More generally, the information of the knowledge base can be
queried to solve interesting questions such as “How did Bob
get access to the data of the roof group?”.

Distribution schemes Section II introduced three basic
schemes of distribution. The important notions are that the
system provides localization statements to index which peers
store the data. It also provides authentication and encryption
to store data on untrusted peers. Replication and some special

techniques like time to live and mutual certification are also
used to avoid denial of services by malevolent peers. Thanks
to the underlying model, these three schemes can be described
using the same data model, which enables interoperability
without losing the access control properties.

IV. DEMONSTRATION

Setting The demonstration will be based on the RockClimb-
ing example of Section II. We will show how Alice can
control and publish her data from different devices (iPhone,
laptop) and how Alice’s friends can access and manipulate
the data based on their access rights. The demonstration relies
on four components: a server-peer, deployed as an untrusted
host, which stores encrypted data of any user in a persistent
database, a client-peer and an iPhone-client, deployed as
trusted hosts, which stores data of one user in memory and a
Facebook-peer which binds the Facebook Graph API to our
system.

For this demonstration, a web application has been designed
to support a rock-climbing social network in a user-friendly
manner on top of the WebdamExchange system. In particular,
the user is able to create accounts, add friends, create groups,
documents and collections and manage access rights easily.
Building from the WebdamExchange peer, these kinds of web
applications mostly consist in some interface to display and
edit the documents. It would be similarly simple to build
a personal information manager (such as Lotus Notes or
Microsoft Exchange) or a synchronization tool with remote
storage (such as Apple MobileMe or Microsoft Live Mesh). Of
course, to be used as a commercial product, the system would
need to be optimized to fit a huge volume of exchanges and to
check security issues linked to web application deployment.
Nevertheless, the core of the system and in particular the
underlying model has already been designed with heavy usage
in mind.

Peer Architecture The system is implemented in Java (or
objective C for the iPhone client) and supports the fundamental
parts of our model (notably authenticated and encrypted state-
ments, query and update requests). A WebdamExchange peer
(server-peer, client-peer, iPhone-client or Facebook-peer) is
composed of four interacting classes, as illustrated in Figure 2.
The Store class is in charge of local data management. The
clients use an in-memory statement representation. On the
server peer, storage and query processing are supported by an
embedded native XML database, namely eXist. Statements are
represented as objects with authenticated XML serialization.
On the Facebook peer, Facebook is used as a trusted storage
server. The Security class manages the key knowledge of the
peer and all the encryption and signature operations. We use
standard security libraries for that. This class isolates all the
security operations from the rest of the code, making it easier
to control this most sensitive part of the system (e.g., by
supporting it in a separate smartcard). The Communication
class handles communications between peers around standard
SSL-secured Web services. It allows interactions between
the different peers. Finally the Manager class is in charge

of driving the system strategies. Different versions of the
Manager class are used for the different peer roles in the
scenario (client, server...).

Manager Module

Communication
Module

Web Interface

Store Module

profile@George?

AlicePeer

GeorgePeer

profile@George?

Alice getRequest
profile@George

Security Module

Data and provenance

AXML Module

Encryption
Signature

Data storage
and query

George says
profile@George=T

George says
profile@George=T

T

TAlice getRequest
profile@George

Alice

Fig. 2. WebdamExchange Peer Architecture

A WebdamExchange peer (with the exception of the iPhone
client) is deployed as part of a Tomcat Apache server. It is
integrated to an AXML peer, in order to support intensional
data [1]. The precise description of the interaction with AXML
is beyond the scope of this demonstration proposal. The iPhone
client is deployed as an iPhone application on the App Store.

V. CONCLUSION

We demonstrate the use of a distributed knowledge base
with access rights, localization and provenance, towards man-
aging the sharing of information in a distributed context.
The system supports transparent interaction of users with
distributed data while preserving access control.

REFERENCES

[1] S. Abiteboul, O. Benjelloun, and T. Milo. The active xml project: an
overview. VLDB J., 17(5):1019–1040, 2008.

[2] S. Abiteboul, M. Bienvenu, A. Galland, and M.-C. Rousset. Distributed
datalog revisited. Datalog 2.0 Workshop, 2010 (To appear).

[3] S. Abiteboul, A. Galland, A. Marian, and A. Polyzotis. A model for web
information management with access control. In preparation, draft on
http://webdam.inria.fr/drafts/WebdamExchange.pdf.

[4] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta. PeerSoN: P2P social
networking - early experiences and insights. In 2nd ACM Workshop on
Social Network Systems, 2009.

[5] M. Jawad, P. Serrano-Alvarado, and P. Valduriez. Protecting Data Privacy
in Structured P2P Networks. In Globe, page 98, 2009.

[6] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubia-
towicz. Pond: the OceanStore prototype. In 2nd USENIX Conference on
File and Storage Technologies, pages 1–14, 2003.

[7] A. Rowstron and P. Druschel. Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility. ACM SIGOPS
Operating Systems Review, 35(5):188–201, 2001.

