
HAL Id: inria-00536603
https://hal.inria.fr/inria-00536603

Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing Data Access on Clouds: A Generic
Framework for Enforcing Security Policies

Cristina Basescu, Alexandra Carpen-Amarie, Catalin Leordeanu, Alexandru
Costan, Gabriel Antoniu

To cite this version:
Cristina Basescu, Alexandra Carpen-Amarie, Catalin Leordeanu, Alexandru Costan, Gabriel Anto-
niu. Managing Data Access on Clouds: A Generic Framework for Enforcing Security Policies. The
25th International Conference on Advanced Information Networking and Applications (AINA-2011),
Institute for Infocomm Research (I2R) in cooperation with the Singapore Chapter of ACM, Mar 2011,
Singapore, Singapore. pp.459-466, �10.1109/AINA.2011.61�. �inria-00536603�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50039973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00536603
https://hal.archives-ouvertes.fr

Managing Data Access on Clouds: A Generic Framework for Enforcing
Security Policies

Cristina Băsescu,
Cătălin Leordeanu, Alexandru Costan

Department of Computer Science,

University Politehnica of Bucharest

cristina.basescu@cti.pub.ro,

{catalin.leordeanu, alexandru.costan}@cs.pub.ro

Alexandra Carpen-Amarie,
Gabriel Antoniu

Centre Rennes - Bretagne Atlantique,

INRIA/IRISA, France

{alexandra.carpen-amarie,

gabriel.antoniu}@inria.fr

Abstract—Recently there has been a great need to pro-
vide an adequate security level in Cloud Environments, as
they are vulnerable to various attacks. Malicious behaviors
such as Denial of Service attacks, especially when targeting
large-scale data management systems, cannot be detected
by typical authentication mechanisms and are responsible
for drastically degrading the overall performance of such
systems. In this paper we propose a generic security
management framework allowing providers of Cloud data
management systems to define and enforce complex se-
curity policies. This security framework is designed to
detect and stop a large array of attacks defined through an
expressive policy description language and to be easily in-
terfaced with various data management systems. We show
that we can efficiently protect a data storage system, by
evaluating our security framework on top of the BlobSeer
data management platform. We evaluate the benefits of
preventing a DoS attack targeted towards BlobSeer through
experiments performed on the Grid’5000 testbed.

Keywords-Cloud computing; Cloud storage service; se-
curity; policy enforcement; Denial of Service;

I. INTRODUCTION

As Cloud computing [1] is emerging as a good
means to leverage available remote resources in a flex-
ible, scalable and cost-effective way thanks to a usage-
based cost model, one of the critical concerns that di-
rectly impacts the adoption rate of the Cloud paradigm
is security [2]. This currently motivates a large number
of research efforts and collaborative projects on this
subject. Even though Cloud computing is a relatively
new field, some security mechanisms are already in
place, most of which have been imported from the
Grid computing area. However, simply translating
Grid techniques into Clouds may not be enough, as
Clouds introduce new assumptions and requirements:
Cloud environments rely on virtualization and isolation
of resources, which introduce a need for a different
approach.

Let us consider the of case the Nimbus Cloud-
Kit [3], which inherited the Grid Security Infrastructure

(GSI) [4], widely used in Grids to ensure message
integrity and authentication of the communicating en-
tities. In this case, once mutual authentication is per-
formed, a potential threat is that authenticated clients
may behave in a malicious way, attempting to damage
the system, consume bandwidth or decrease its overall
performance by means of operations that they have
the appropriate access rights to do. The focus of our
research is the detection of such malicious clients that
may be performing attacks [5] such as Denial of Service
(DoS) attacks, flooding attacks or crawling, despite the
typical security mechanisms.

Addressing such security vulnerabilities proves to
be non-trivial. In order to minimize management costs
and increase efficiency, Cloud providers could benefit
from generic security management systems that meet
two essential requirements: (1) they can be interfaced
with any of the various Cloud systems that exhibit this
type of security vulnerabilities and (2) they can handle
and detect not only predefined attacks, but also those
corresponding to customized security policies. This
paper proposes such a generic security management
framework, targeted at Cloud data storage systems,
which allows providers of Cloud data management
systems to define and enforce complex security poli-
cies. The generality of this approach comes from the
flexibility both in terms of supporting custom security
scenarios and interfacing with different Cloud storage
systems.

In Section II we discuss the main security mecha-
nisms used in current Cloud data management ser-
vices. Section III describes two sample scenarios il-
lustrating possible behaviors of malicious clients and
presents a global overview of the generic security
framework proposed in this paper. Section IV explains
how a Cloud data service provider can use our frame-
work to define a security policy and enforce it. As a
case study, we show in Section V how the proposed
framework has been applied to BlobSeer, a BLOB-

based data management system currently subject to
integration efforts in existing Cloud environments.
Some experiments are discussed in Section VI. Finally,
Section VII concludes the paper and discusses future
directions.

II. RELATED WORK

Whereas resource control in Grid environments is
enforced by system administrators, the situation is
different in the context of Clouds [6], where users
have the control of the remote virtual resources. This
raises some additional security concerns about control
policies, as clients have to rely on the security tools of
the Cloud service providers.

To take the example of Nimbus [3] again, GSI
mechanisms are used to authenticate and authorize
client requests, VM image files, resource requests,
reservation and usage times for users. Authorization
is done based on the role information contained in
the issuer’s Virtual Organization Membership Service
credentials and attributes. This mechanism allows for
simple group management, identity assignment, poli-
cies enforcement, setting reservation limits and path
checks. Moreover, in [7], the authors extend this ap-
proach by encrypting the VM images on the client
side, allowing the user to retain data control. However,
the proposed remedy is only suitable for the storage
of VMs, as their transfer is secured through GSI and
the start-up relies on the not-always true assumption
that involved systems can be trusted. More security
mechanisms (e.g., intrusion detectors) are needed to
protect the virtual host from attacks. From a more
general perspective, there is a need to detect different
types of malicious behavior through custom policy
enforcement mechanisms.

Hadoop Distributed File System (HDFS) [8], the
default back end for the Hadoop Map/Reduce frame-
work [9], implements security as a rudimentary file
and directory permission mechanism. Concerning au-
thorization, the permission model is similar to other
platforms such as Linux, each file and directory be-
ing associated with an owner and a group. Since
both clients and servers need to be authenticated for
keeping data secure from unauthorized access, HDFS
relies on Kerberos [10] as the underlying authentication
system. In contrast to Nimbus, which relies on the
powerful features of GSI, the main security threats in
HDFS arise from the lack of user-to-service authenti-
cation, service-to-service authentication and the lack of
encryption when sending and storing data. Moreover,
even if a typical user does not have full access to the
filesystem, HDFS is vulnerable to various attacks that
it cannot detect, such as Denial of Service.

In Amazon Simple Storage Service (S3) [11], the data

storage and management infrastructure for Amazon’s
Elastic Compute Cloud [12], the users can decide how,
when and to whom the information stored in Amazon
Web Services is accessible. Amazon S3 API provides
access control lists (ACLs) for write and delete per-
missions on both objects and objects containers, de-
noted buckets. Regarding data transfers, data in transit
is protected from being intercepted, as the access is
allowed only via SSL encrypted endpoints. Although
S3 does not encrypt data when it is stored, as in
the Nimbus approach, users may encrypt them before
uploading so as to make sure the data are not tampered
with. However, no high-level security mechanism is
available to protect the environment from complex
attacks, such as the ones that cannot be prevented by
authentication mechanisms.

While all the projects described above rely heavily
on authentication and authorization mechanisms, none
of them is able to identify users who attempt to harm
the system or to detect specific patterns of malicious
behavior. We address precisely this goal: we propose
a generic policy management system to protect Cloud
services from complex attacks that may otherwise re-
main undetected and affect the overall performance
perceived by the clients.

III. OVERVIEW

We aim to provide high-level security mechanisms
for Cloud storage services, as data access operations
are vulnerable against a wide range of security attacks
prone to damage the system and to affect its overall
data access performance and response time.

A. Detecting malicious access in Cloud storage systems:
motivating scenarios

The following scenarios illustrate some representa-
tive applications for a Cloud storage platform and ex-
amine the inherent security threats of their usage pat-
terns. These motivating scenarios highlight the benefits
of complementing the typical Cloud security mech-
anisms with a security management framework that
allows service providers to supervise user actions and
restrict activities that fall outside the normal usage.

Cloud storage for video surveillance: Video surveil-
lance cameras typically generate a continuous data
flow that requires a large amount of storage space.
The data will not be written to a single file, as video
surveillance cameras usually store the recordings to
different files according to their timestamps. A suitable
storage system has to be able to scale to a large number
of cameras, each of them concurrently writing huge
amounts of data to different files. To leverage these
needs for storage capacity, the data can be hosted
directly on the Cloud.

In this scenario, an attacker might try a DoS attack
on some of the storage nodes by sending a large num-
ber of write requests. This would lower the response
time of the attacked data storage nodes, thus affecting
the rate at which the data can be stored for the entire
system. In order to maintain the overall performance
at an acceptable level, these attackers must be quickly
identified and blocked.

Storing medical records in the Cloud: In this sce-
nario we consider a medical center which stores all
the medical records for its patients in the Cloud. The
employees have access to all the files, but each of them
is supposed to access just the documents related to
his work. The main security concern in this case is
that we must protect the data from being accessed
by unauthorized users. An attacker can impersonate
an authorized user by stealing its credentials and then
attempt to read all the stored files (crawling). This kind
of unexpected behavior (reading all records in a short
period of time) has to be detected as being suspect,
since it can expose a compromised user. However, this
is not a clear indication of an attack since an authorized
user may also perform those actions. As a result, this
behavior has to be labeled as suspicious, yet it will
not result in a punishment for the client until it is
correlated with other detected attacks.

Such threat scenarios represent complex attacks that
are difficult to detect because they can take different
forms, depending on each individual attack. To be able
to identify any threat scenario, we have designed a
flexible and extensible language to describe the access
patterns specific for each type of attack. Moreover, we
have developed a security management framework to
detect and also block any client attempting an attack
described by these patterns.

B. Global Architecture

In order to provide a high-level security mechanism
for Cloud systems, we propose a generic framework
for both security policies definition and enforcement.
Figure 1 illustrates the modular architecture of our
framework and the interactions between the compo-
nents.

The Policy Management module represents the core
of the framework, where security policies definition
and enforcement takes place. This module is com-
pletely independent of the Cloud system, as its input
only consists in user activity events monitored from
the system.

The User Activity History module is a container
for monitoring information describing users’ actions.
It collects data by employing monitoring mechanisms
specific to each storage system and makes them avail-
able for the Policy Management module.

Cloud System

User
Activity
History

Security Vioation
Detection Engine

Policy
Definition

User

Policy Enforcement

Policy Management

Trust Management

Figure 1. High-level architecture of the security management
framework.

The Trust Management module incorporates data
about the state of the Cloud system and provides a
trust value for each user based on his past actions.
The trust value identifies a user as a fair or a malicious
one. Furthermore, the trust values enable the system to
take custom actions for each detected policy violation,
by taking into account the history of each user.

This paper focuses on the policy management core.
In order to have an adequate malicious client detection
level, we first have to define what kind of behavior is
considered inappropriate or dangerous for the system.
This is done through the Policy Definition component,
which provides a generic and easily extensible frame-
work for defining various types of security policies.
This step is usually performed before the system starts,
however the framework supports the addition of secu-
rity policies on the fly. The Security Violation Detection
Engine scans the User Activity History in order to find
the malicious behavior patterns defined by the security
policies. When such an attack is detected, the Policy
enforcement component is notified and a set of possible
feedback actions are forwarded to it. The Policy enforce-
ment component is responsible for making a decision
based on the state of the system and on the impact of
the attempted attack on the typical performance of the
system. Such decisions range from preventing the user
from further accessing the system to logging the illegal
usage into the activity history and decreasing the trust
value corresponding to that user.

IV. ZOOM: MANAGING SECURITY POLICIES

In this section we show how we define templates for
various attacks and how we map them into security
policies and we give an insight on the mechanisms we
designed to detect such attacks.

(a) High level representation of a security policy. (b) Structure of an event.

Figure 2. Defining security policies

A. Defining security policies

In order to detect the various types of attacks that
the user actions can expose, our policy management
module has to meet a set of requirements:

• the format used to describe the security policies
has to be flexible and expressive enough to allow
the system administrator to translate any type of
attack into a policy that can be understood by the
Policy Management Module.

• the extensibility is an essential feature of the secu-
rity policies, as specific attacks need an enriched
policy format according to particular events col-
lected by the user activity history.

• since writing policies is a tedious and error-prone
task for administrators, this process has to be auto-
mated by means of an API that allows a straight-
forward definition of security policies compliant
with our format.

We defined a hierarchical format for the security
policies, so as to comply with the above requirements.
On the one hand, each policy contains a set of template
user actions that make up a pattern corresponding to
a particular security attack. In addition, the policy can
specify a set of thresholds that draw the limits between
normal behavior that exhibits the same activity pattern
and malicious user actions. In order for an attack to
be detected, the policy has to be instantiated for a
specific user, that is, the activity history of that user
has to include recorded actions that match the template
sequence provided by the policy. As an example, a DoS
attack can be defined by a series of write operations
that take place in a short period of time and are initi-
ated by the same client. Therefore, the corresponding
policy will describe a write operation as the needed
pattern and will specify a duration and the maximum
number of write operations considered normal for that
duration.

On the other hand, a security policy has to specify
a set of actions that are forwarded to the Policy En-
forcement module when the policy is instantiated and
thus a malicious user is identified. These actions range
from feedback specific for the Cloud system used to
recording the policy violation into the User Activity
History.

Figure 2(a) illustrates the tree structure of a security
policy, which consists of four elements:

The template set of user actions. The Preconditions
element encloses the list of user actions that describe
the pattern of an attack. Each user action is modeled
by an Event, described through a set of attributes that
identify a particular type of records in the User Activity
History. To take the example of the DoS attack again,
the Preconditions will contain only one event, whose
Type attribute points to the list the recorded write
operations in the User Activity History.

General Parameters. They are used to differentiate
the policies (e.g., Active, Priority) and to enable the
detection module to interpret the events describing the
policy by specifying the Start and the End event.

Actions suggested when the policy is instantiated.
The element Actions contains several actions made
up of Constraints and Advices. When the sequence of
events defined by the policy is matched, the Security
Violation Detection module will select the Action whose
Constraints are satisfied and propose the associated
Advices to the Policy Enforcement module, which will
be in charge of executing them. This approach allows
us to define flexible policies that result in a customized
feedback that depends on some given constraints.

Interaction with external modules. The element Ex-
ternal Data allows the current policy to receive auxiliary
input data from external modules, in addition to the
User Activity History. For instance, a policy may need
the user’s ACL information to make a decision, but
this data would be present in an external ACL module

and not in the User Activity History. This element en-
hances the extensibility of the policy format, allowing
administrators to plug specific system building blocks
to the Policy management module.

Figure 2(b) shows the structure of an Event. It in-
cludes a Timestamp that allows for the event’s posi-
tioning in time with respect to one or more events
in the same policy. To this end, the event includes as
well PrecededBy or FollowedBy elements, which enclose
references to other events’ ID field. Moreover, in order
to have a more flexible policy definition language, the
referenced events can be grouped by means of logical
operations such as AND, OR or NOT. In addition, the
structure of an Event contains an element that models
a sequence of user actions that have the same type;
for instance, the Continuous attribute is used when
modeling DoS attacks, for which the detection module
has to look for a large number of similar write oper-
ations. Aside from these basic attributes, each event
can be enriched with attributes containing specific
information recorded in the User Activity History and
with associated thresholds, which are enforced when
the policy is instantiated.

B. Security Violation Detection Engine

The detection engine is able to handle any type of
policy described using the format above, regardless
of their complexity or targeted attacks. Its main goal
is to search for recorded user actions that match the
template events defined by the policy. The attributes
are specific to each type of event and they allow the
detection engine to identify the required user actions
within the user history.

Until now we have described security policies from
a static point of view. The Security Violation Detection
Engine introduces the notion of partially matched policy
as a policy for which some of the template events are
instantiated with real attribute values found in the User
Activity History.

The detection algorithm receives as input a list of
static policies, each having a specific priority. The algo-
rithm attempts to periodically detect attacks, according
to the priority of each policy. For each static or partially
matched policy, it builds a query to the User Activity
History, attempting to instantiate the next template
event in the policy’s Preconditions. It adds to the list
of partially instantiated policies all the possibilities for
continuing the match, according to the query’s results.
The detection process is complete when all the events
in a policy are instantiated, that is the history of the
user’s actions reflects a chain of events that are specific
to the security attack described by the matched policy.

Figure 3. The architecture of the introspective BlobSeer.

V. CASE STUDY: MALICIOUS CLIENT DETECTION IN

BLOBSEER

To validate our approach we needed to see how
it performs in large scale Cloud environments. Data-
intensive applications can benefit from being executed
in Cloud environments if the back-end storage services
provide several important features, such as a scalable
architecture, handling of massive unstructured data,
high throughput for data accesses or data-location
transparency.

We integrated the proposed Security Management
Framework into BlobSeer [13], a data-management
system designed for large-scale infrastructures, which
addresses these requirements. To fully fit the prereq-
uisites of a standalone storage service within a Cloud
infrastructure, BlobSeer has to be able to handle mali-
cious attacks and to isolate users that initialize them.
Hence the need for configurable security policies,
which can identify the malicious users that attempt
to compromise the system, while sustaining the same
level of performance for accesses to the stored data.

A. The introspective BlobSeer

BlobSeer is a data-sharing system that addresses the
problem of efficiently storing massive data in large-
scale distributed environments. It deals with large,
unstructured data blocks called BLOBs. They are com-
posed of flat sequences of bytes split into equally-
sized strings referred to as chunks further in this paper.
The design of the BlobSeer system enables two critical
features for data-intensive applications. First, it allows
fine-grained access to each BLOB’s chunks and second,
it provides an efficient versioning support that enables
highly-concurrent access to data.

The architecture of BlobSeer is based on five actors.
The data providers store the data chunks in a distributed
manner, thus enhancing the support for a large number
of concurrent operations. Each BLOB chunk is associ-
ated with some metadata, which are stored in a dis-

tributed fashion on the metadata providers. The provider
manager keeps track of the existing data providers
and implements the allocation strategies that map new
chunks to available data providers. The version manager
deals with the serialization of the concurrent requests
and publishes a new BLOB version for each write
operation.

The BlobSeer entity that exposes an interface to
user applications is the client. It implements the client-
side operations for each type of interaction with the
BlobSeer system: create BLOBs, read a range of chunks
from a BLOB, write or append data to a BLOB.

In [14], we proposed an introspection architecture
on top of BlobSeer, which generates and analyses
BlobSeer-specific data obtained by monitoring the ac-
tivity of each of its actors. It was designed to provide
support for a self-adaptive behavior of the BlobSeer
system, so as to improve its performance and data
availability. Its goal was to yield relevant data that
can be fed to various self-* components, comprising
informations about the state of the system, the state
of the physical nodes where the storage providers
are deployed and about BlobSeer-specific data that
characterizes the stored BLOBs.

In order to provide security mechanisms specifically
tuned for BlobSeer, we used the introspection layer to
generate the User Activity History. The user actions are
recorded into a database that includes both the clients’
past activity and the information monitored from their
current operations. The database represents the input
data for the Policy Management module, as it exposes
each event that occurs in the system, such as writing a
chunk on a data provider or requesting the metadata
associated with a BLOB.

B. Security Policies

In this section we present a sample security policy,
which was represented through an XML language,
using tags that follow the structure introduced in
Figure 2. For this example we considered the Cloud
storage for video surveillance scenario that we proposed
in Section III.

A typical write operation in BlobSeer consists in
(1) splitting the data to be written into chunks, (2)
writing the chunks to the data providers and then (3)
publishing the write as a new version of the BLOB
on the version manager. Therefore, a security policy
that detects DoS attacks involves limiting the amount
of written data for each client before publishing it as
a new version. Basically, the policy has to capture all
writes on data providers that were performed in a
specific time interval and that were not published by
the end of the interval.

According to the structure, the top level XML el-
ement contains the General Parameters, in this case
stating that this policy has a high priority, is active
and will be applied to a certain client, identified at
runtime. The Preconditions tag encloses a list of three
event types that play a role in a DoS attack. We identify
the start event w1 that models a write operation, the
event p2 that denotes a publish operation (i.e. a write
on the version manager, as indicated by its type) and
the final event c1, which concludes the event sequence
to be matched.

<securityPolicy id="1_25">
<clientID rvalue="c" value="c"/>
<active value="true"/>
<priority value="1"/>
<start value="w1"/>
<end value="c1"/>
<preconditions>

<event id="w1" type="prov_write_summary">
...
</event>
...
<event id="p2" type="vman_write">
...
</event>
<event id="c1" type="check">
...
</event>

</preconditions>
...
</securityPolicy>

The listing below shows the contents of the start
event w1, the one that identifies the write operations
on the data providers.

<event id="w1" type="prov_write_summary">
<blobId id="bId" rvalue="" value="b"/>
<clientID rvalue="" value="c"/>
<NoWritesCount id="wsc" rvalue=""/>
<thresholdNoWrites id="tws" value="100"/>
<supThresholdNoWrites id="stws" value="200"/>
<firstDate id="fd" rvalue=""/>
<lastDate id="ld" rvalue=""/>
<distance id="dist" value="7000"/>
<continuous>

<refEvent value="bId"/>
<refEvent value="wsc"/>
<refEvent value="ld"/>

</continuous>
...
<neg>

<followedBy>
<refEvent value="p2"/>
<count value="1"/>
<distance value="<= fd + dist"/>

</followedBy>
</neg>

</event>

Event w1 verifies the number of written data chunks
by defining a specific counter (i.e. NoWritesCount) and
thresholds (thresholdNoWrites) that set limits to the
number of writes that can be recorded in a given
period of time. In addition, the event specifies two
time constraints using the firstDate and lastDate tags,
and the maximum duration accepted between them. As
the policy has to capture all client actions that match

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

Av
er

ag
e

th
ro

ug
hp

ut
 (M

B/
s)

Time (s)

30 Clients

Figure 4. The evolution of the average throughput when 15 clients
out of 30 perform malicious writes.

this event, the continuous tag is employed in the event’s
structure to specify which parameters may vary among
the matched writes: the BLOB ID, the total write size
and last event’s timestamp. Moreover, the event listing
clarifies the sequence needed for a match: it states that
the write event must not be followed by a publish
operation (modeled by the p2 event) by the end of the
time interval defined in the event parameters.

VI. RESULTS

We evaluated the impact of enforcing security poli-
cies on top of the BlobSeer system and the performance
of the policy management module through a series of
large-scale experiments. They were performed on the
Grid’5000 [15] testbed, an experimental grid platform
comprising 9 geographically-distributed sites.

For all the experiments we employed the same de-
ployment settings for the BlobSeer system. We used a
typical configuration that enables the system to store
massive amounts of data that can reach the order of TB.
It consists of 50 data providers, 15 metadata providers,
one provider manager and one version manager. In
addition, we used 8 nodes for the monitoring services,
which collect the user activity information and are
based on the MonALISA grid monitoring system [16].
The User Activity History is stored on a dedicated node,
which also hosts the Policy Management module. Each
entity is deployed on a dedicated physical machine.
Each experiment is composed of two phases. In the first
phase, all BLOBs required by the experiment are cre-
ated. The second phase of each experiment consists in
write operations executed concurrently by the clients,
each user generating data in a separate BLOB.

We focused on the video surveillance scenario de-
scribed in Section III, in which a Cloud storage service
is needed to host continuous flows of data recorded
by the cameras. The video surveillance cameras are
modeled as BlobSeer clients that perform a sequence of
write operations. All clients run concurrently and each

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

Av
er

ag
e

th
ro

ug
hp

ut
 (M

B/
s)

Clients

Correct Clients
50% Malicious

Detected Malicious

Figure 5. The average throughput under correct and malicious
writes.

of them performs 10 writes to BlobSeer, each written
string having a size of 256 MB. For our experiments, we
assume that each client writes its data in 64 MB chunks,
which ensures a constant sustained throughput by
the storage system. In this context, we define a DoS
attack as a write operation in which the number of
chunks written before publishing is much larger than
the number of chunks generated by a correct client
for the same size of the write. As a consequence, we
simulate the DoS attacks as malicious clients that write
the same amount of data, i.e. 256 MB, but use a much
smaller chunk size: 2 MB.

The first experiment shows the evolution in time of
the average throughput of concurrent clients that write
to BlobSeer when the system is subject to DoS attacks.
For this test we used 30 concurrent clients, each of
them performing 10 writes. Half of the clients behave
as malicious clients that perform DoS attacks. To study
the impact of our security framework, we defined a
security policy that sets a limit on the number of
chunks a client can write before publishing the full
write and we enabled the Policy Management module
for the experiment. Figure 4 shows that the initial
average throughput has a sudden decrease when the
malicious clients start attacking the system. As the Pol-
icy Management module detects the policy violations, it
feeds back this information to BlobSeer, enabling it to
block the malicious clients, when they issue requests
for more data providers to write chunks on. As a con-
sequence, the average throughput for the remaining
clients increases back towards its initial value.

The goal of our second experiment is to assess the
impact of concurrent DoS attacks on the performance
of the storage system. Figure 5 shows the average
throughput of concurrent clients that write to BlobSeer,
when the number of clients ranges from 10 to 40. The
results correspond to three different scenarios: (1) all
the clients perform correct writes, (2) 50% of the clients
have a malicious behavior and no security mechanism

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

Ti
m

e
(s

)

Malicious clients (%)

Write
First Detect
Last Detect

Figure 6. The write duration and the detection delay when 50
concurrent clients write to BlobSeer.

protects the system and (3) 50% of the clients have a
malicious behavior and the Policy Management module
is enabled. When all the concurrent writers act as
correct clients, the system is able to maintain a constant
average throughput for each client. However, when no
security mechanism is employed and half of the clients
attempt a DoS attack, the performance is drastically
lowered for all the clients that access the system.
Further, the results demonstrate that the throughput
increases again, once the attackers are blocked by the
Policy Management framework.

In order to efficiently protect BlobSeer against se-
curity threats, the Policy Management module has to
expose attacks as fast as possible, so as to limit the
damage inflicted to the system and to minimize the
influence on the correct clients. To evaluate the per-
formance of our policy violation detection component,
we measured the detection delay when the percent-
age of malicious clients increases from 10% to 70%
out of a total of 50 clients. For each percentage of
malicious clients, Figure 6 displays the duration of
the writes performed by all the clients (a sequence of
10 write operations of 256 MB each) and the delays
between the beginning of the write operation and the
moments when the first and the last malicious clients
are detected, respectively. The results show that the
time needed to detect and block the malicious clients
is comparable to the time it takes to write the data into
the system. Therefore, the system is able to promptly
react when an attack is initiated and to restore its
performance once the attackers are eliminated.

VII. CONCLUSIONS AND FUTURE WORK

The emergence of Cloud computing brings forward
many challenges that may limit the adoption rate of
the Cloud paradigm. In this paper, we addressed a
series of security issues, which expose important vul-
nerabilities of Cloud platforms, and, more specifically,
of Cloud data management services. We proposed a

generic security management framework that enables
Cloud storage providers to define and enforce flexible
security policies. The Policy Management module we
developed can be adapted to a wide range of Cloud
systems, and can process any kind of policy that fits
a given base format generated through the Policy
Definition module.

As a case study, we applied the proposed framework
to BlobSeer, a data management system that can serve
as a Cloud storage service. We defined a specific policy
to detect DoS attacks in BlobSeer and we evaluated
the performance of our framework through large scale
experiments. The results show that the Policy Manage-
ment module meets the requirements of a data storage
system in a large-scale deployment: it was able to
deal with a large number of simultaneous attacks and
to restore and preserve the performance of the target
system.

Our future work will focus on more in-depth ex-
periments involving the detection of various types of
attacks in the same time. Moreover, we will investigate
the limitations of our Security Management frame-
work, with respect to the accuracy of the detection
in the case of more complex policies, as well as the
probability and the impact of obtaining false positive
or false negative results. Another research direction is
to further develop the Trust Management component
of the security management framework and study the
impact it has on the Policy Enforcement decisions for
complex scenarios.

REFERENCES

[1] K. Keahey, R. Figueiredo, J. Fortes et al., “Science
Clouds: Early experiences in cloud computing for scien-
tific applications,” In Cloud Computing and Its Application
2008 (CCA -08) Chicago, 2008.

[2] L. Vaquero, L. Rodero-Merino, J. Caceres et al., “A break
in the clouds: towards a cloud definition,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2009.

[3] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes,
“Sky computing,” IEEE Internet Computing, vol. 13,
no. 5, pp. 43–51, 2009.

[4] V. Welch, F. Siebenlist, I. Foster et al., “Security for grid
services,” HPDC-12, vol. 0, p. 48, 2003.

[5] M. Jensen, J. Schwenk, N. Gruschka et al., “On technical
security issues in cloud computing,” in CLOUD ’09.
Washington, DC, USA: IEEE Computer Society, 2009,
pp. 109–116.

[6] B. Sotomayor, R. S.Montero, I. M. Llorente et al., “Vir-
tual infrastructure management in private and hybrid
clouds,” IEEE Internet Computing, pp. 13(5):14–22, 2009.

[7] M. Descher, P. Masser, T. Feilhauer et al., “Retaining data
control to the client in infrastructure clouds,” Interna-
tional Conference on Availability, Reliability and Security,
vol. 0, pp. 9–16, 2009.

[8] “HDFS. the Hadoop distributed file system,”
http://hadoop.apache.org/common/docs/r0.20.1/
hdfs_design.html.

[9] D. Borthakur, The Hadoop Distributed File System: Archi-
tecture and Design, The Apache Software Foundation,
2007.

[10] B. C. Neuman and T. Ts’o, “Kerberos: An authentication
service for computer networks,” IEEE Communications,
vol. 32(9), pp. 33–38, September 1994.

[11] Amazon Simple Storage Service (S3). http://aws.
amazon.com/s3/.

[12] Amazon Elastic Compute Cloud (EC2), http://aws.
amazon.com/ec2/.

[13] B. Nicolae, G. Antoniu, and L. Bougé, “BlobSeer: How to
enable efficient versioning for large object storage under
heavy access concurrency,” in Data Management in Peer-
to-Peer Systems, St-Petersburg, Russia, 2009.

[14] A. Carpen-Amarie, J. Cai, A. Costan et al., “Bring-
ing introspection into the BlobSeer data-management
system using the MonALISA distributed monitoring
framework,” in International Workshop on Autonomic Dis-
tributed Systems, Krakow, Poland, 2009.

[15] Y. Jégou, S. Lantéri, J. Leduc et al., “Grid’5000: a
large scale and highly reconfigurable experimental grid
testbed.” Intl. Journal of High Performance Comp. Applica-
tions, vol. 20, no. 4, pp. 481–494, 2006.

[16] I. Legrand, H. Newman, R. Voicu et al., “MonALISA: An
agent based, dynamic service system to monitor, control
and optimize grid based applications,” in Computing for
High Energy Physics, Interlaken, Switzerland, 2004.

