
HAL Id: inria-00536715
https://hal.inria.fr/inria-00536715

Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extraction and Implication of Path Constraints
Yves André, Anne-Cécile Caron, Denis Debarbieux, Yves Roos, Sophie Tison

To cite this version:
Yves André, Anne-Cécile Caron, Denis Debarbieux, Yves Roos, Sophie Tison. Extraction and Im-
plication of Path Constraints. 29th Symposium on Mathematical Foundations of Computer Science,
2004, Prague, Costa Rica. pp.863-875. �inria-00536715�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50039872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00536715
https://hal.archives-ouvertes.fr

Extraction and Implication of Path Constraints ?

Yves André, Anne-Cécile Caron, Denis Debarbieux, Yves Roos, and Sophie Tison

{andre,caronc,debarbie,yroos,tison }@lifl.fr
Laboratoire d’Informatique Fondamentale de Lille,

U.M.R. C.N.R.S. 8022
Université de Lille 1, 59655 Villeneuve d’Ascq Cedex. France.

Abstract. We consider semistructured data as rooted edge-labeled directed graphs, and
path inclusion constraints on these graphs. In this paper, we show that we can extract from
a finite datum D a finite set Cf (D) of word inclusions, which implies exactly every word
inclusion satisfied by D. Then, we give a new decision algorithm for the implication problem
of a constraint p � q by a set of constraints pi � ui where p, q, and the pi’s are regular
path expressions and the ui’s are non empty paths, improving in this particular case, the
more general algorithms of S. Abiteboul and V. Vianu, and Alechina et al. Moreover, in the
case of a set of word equalities ui ≡ vi, we give a more efficient decision algorithm for the
implication of a word equality u ≡ v, improving the more general algorithm of P. Buneman
et al., and we prove that, in this case, the implication problem for non deterministic models
or for (complete) deterministic models are equivalent.

1 Introduction

The development of the World Wide Web has led to the birth of semistructured data models
with languages adapted to these models. A lot of works have been done to define such models
and to extend database techniques to them. In this paper, we see semistructured data as
rooted edge-labeled directed graphs: indeed, we can model HTML pages as a graph (a page is
a node, an hyper-link is an edge) or we can model XML documents as graphs. A presentation
of this model and an overview of works done in this context can be found in [1].
Let us consider the datum figure 1 which represents a journal. This journal contains articles
and each article is written by one or two authors.

0

2

author

3

author

4

journal

6 7

article

article

12

title
writtenBy

writtenBy

5

author

writtenBy

1

author

14
name

9

8
name

name
10

name

11 13
title

title

co-author

co-author

Fig. 1. Example of a semistructured datum

We can remark that some nodes have several outgoing edges with the same label (for exam-
ple, the root has several ”author” edges). In this case, the graph is said non-deterministic.

? This research was partially supported by Inria (MOSTRARE team).

In the deterministic case, the outgoing edges of a given node must have distinct labels. Note
that XML documents are usually non-deterministic.
Path : Query languages proposed for semistructured data and querying the web are based
on path expressions (see for example Lorel [2], UnSQL [6]). In particular, a regular path
expression or regular query is a regular expression on the alphabet of labels appearing in
the data. The result of the regular query q, is the set of nodes reached from the root by a
path labeled by any word u of q. By extension, this word u is called path.
For example, author, author.name, journal.article.title are paths of the datum D

(figure 1). The regular expression author.co-author
∗ is a regular query whose result on D

is {1, 2, 3, 5}.
Path inclusion: To optimize path queries, it can be useful to use structural informations
about the data. Some of these are called path constraints since they give restrictions on the
data paths. Certain kinds of integrity constraints found in object-oriented databases and
also common in semistructured databases can be expressed with path constraints. These
constraints have been introduced by Abiteboul and Vianu in [3]. See for instance [8], [17] or
[5] where different classes of path constraints are analyzed. Here, we study path inclusion
constraints. A path inclusion constraint is written p � q where p and q are regular path
queries, and means that the set of nodes result of p is included in the set of nodes result
of q. Continuing the example, since the result of author.co-author+ is {2, 3} and the
result of journal.article.writtenBy is {2, 3, 5} the path inclusion author.co-author

+ �
journal.article.writtenBy is satisfied. If we denote by p ≡ q the conjunction p � q∧q � p,
the datum D satisfies author.co-author≡ author.co-author.co-author. On this example,
the constraint is of the form u ≡ v where u and v are paths. We call word equality this kind
of constraint. Similarly, the constraint u � v is called word inclusion.
To take advantage of path inclusions, we must be able to reason about them. In this paper,
we study the classical implication problem and the decidability of the boundedness property
which is a decision problem close to the implication.
Implication problem: A set of path inclusions C implies a path inclusion p � q denoted
C |= p � q if every datum model of C is also a model of p � q. Given a set C of path
inclusions, and two regular queries p, q, the implication problem for C, p, q is to decide
whether C |= p � q.
In this paper, we give a decision algorithm for the implication problem of a path inclusion
p � q by a set of path inclusions pi � ui, where p, q, the pi’s are regular path expressions,
and the ui’s are non-empty paths. This problem is shown decidable in EXPSPACE in [3].
The authors of [5] give an EXPTIME decision algorithm and prove that this problem is
PSPACE-hard. We give here a PSPACE algorithm for this decision problem.
In the particular case of deciding if a word equality u ≡ v is implied by a finite set of word
equalities ui ≡ vi we have an ad-hoc decision algorithm. In [7], the authors give a cubic
decision algorithm in the case of the implication for deterministic models (with more general
forward constraints). Here, we prove that, in this very particular case of word equalities,
implication problem for non-deterministic models is equivalent to the implication problem
for (complete and) determistic ones. We build a decision algorithm which complexity is
quasi-linear.
Boundedness property: A regular query p has the boundedness property (strong bound-
edness property) w.r.t a set C of path inclusions if there exists a regular query f such that
C |= p � f (C |= p ≡ f) and L(f), the language described by f , is finite.
On the example, since author.co-author≡ author.co-author.co-author, the regular query
author.co-author

+ has the strong boundedness property. Since it is easier to answer to a
finite query, we can see the strong boundedness property as a query optimization method.
More generally, if a query q has the boundedness property w.r.t C, there exists a finite query
f such that q � f . So it is possible to approximate q with a finite query f since the answer
of f is a superset of the answer of q.
The next section contains formal definitions related to path inclusions. In section 3, we
present an algorithm which computes from a finite datum D a set of word inclusions ; this
set is finite and implies exactly every word inclusion satisfied by D. Another kind of problems
is to study path inclusions independently of the data. In sections 4 and 5 we have a set of
path inclusions and we answer to the implication problem. More precisely, in section 4, we
use rewriting to define a decision algorithm for the implication problem of a constraint p � q

by a set of constraints pi � ui, where p, q, the pi’s are regular path expressions, and the ui’s

are non-empty paths. In section 5, we give a decision algorithm for the implication problem
of a word equality u ≡ v by a set of word equalities ui ≡ vi. This algorithm is based on the
union-find algorithm (see [19]). We conclude this paper in section 6.

2 Preliminaries

In the sequel we use the following notions which were introduced in [3]. Let A be a fixed
finite alphabet of labels.

Definition 1. – A semistructured datum is a triple D =< N, root, T > where N is a
set of nodes, root ∈ N is called the root of datum D and T ⊆ N × A × N is the set of
transitions.

– If N is finite, the datum is said finite.
– if, for all n in N , for all a in A, there is at most one transition (n,a,n’) in T , then the

graph is deterministic.
– if, for all n in N , for all a in A, there is at least one transition (n,a,n’) in T , then the

graph is complete.

We are interested in the set of nodes which are reached by some paths in a datum. Then we
can define the notions of query and result of query.

Definition 2.

– A path is a word over the alphabet A.
– Given D a datum, u ∈ A?, let accD(u) be defined by :

1. if u = ε, then accD(u) = {root}
2. if u = u′a (u′ ∈ A?, a ∈ A) accD(u) = {n ∈ N | ∃n′ ∈ accD(u′), (n′, a, n) ∈ T}

– A regular query p is a regular expression over A. The result of a query p over a datum D

is the set accD(p) = ∪u∈L(p)accD(u) where L(p) denotes the regular language described
by p.

Now, we formally define path inclusions, path equalities, and notions related to implication.

Definition 3.

– A path inclusion is an expression of the form p � q where p, q are regular queries.
– A path equality p ≡ q represents the conjunction (p � q) ∧ (q � p).
– If u and v are paths, u � v is called word inclusion, and u ≡ v is called word equality.
– A datum D satisfies a path inclusion p � q, denoted D |= p � q, if the set of nodes

accD(p) is included in accD(q). D satisfies a set C of path inclusions, denoted D |= C,
if D satisfies each path inclusion of C.

– A set C of path inclusions implies a path inclusion p � q, denoted C |= p � q, if for each
datum D such that D |= C, D |= p � q.

– Given a set C of path inclusions, and two regular queries p, q, the implication problem
for C, p, q is to decide whether C |= p � q.

In [3], the authors prove that in the context of the implication problem we can restrict
ourselvesto finite models, since implication and finite implication of path inclusions are
equivalent. It is stated in the following proposition.

Proposition 1. A set C of path inclusions implies a path inclusion p � q, denoted C |= p �
q, if for each finite datum D such that D |= C, D |= p � q.

The implication of word inclusions is closed under right congruence, transitivity and reflex-
ivity :
for all u, v words, C set of path inclusions, x label,
– C |= u � v ⇒ C |= ux � vx

– C |= u � u

– (C |= u � v) ∧ (C |= v � w) ⇒ C |= u � w

Related to implication, another interesting problem, from a query optimization point of
view, is the decidability of the boundedness property.

Definition 4. A regular query p has the boundedness property (strong boundedness prop-
erty) w.r.t a set C of path inclusions if there exists a regular query f such that C |= p � f

(C |= p ≡ f) and L(f) is finite.

E.g., let C be {a2 � a}; w.r.t. C, the query a? is bounded (by a), whereas the query ba? is
not.

Definition 5. Where |p| is the length of the regular query p, the size of p � q, denoted by
|p � q|, is the sum |p| + |q|, and the size of the set of constraints C, denoted by |C|, is the
sum of the sizes of its constraints.

3 Extraction of a finite set of constraints

Generally, a datum satisfies an infinite number of different path inclusion constraints and,
all the more, an infinite number of word inclusion constraints. The goal of this section is to
show that one can finitely generate the set of all word inclusion constraints that are satisfied
by a given finite datum. More precisely, from a finite datum D =< N, root, T >, we want
to define a finite set of word inclusion constraints Cf (D) such that for any words u and v,
Cf (D) |= u � v if and only if D |= u � v.
First, let us denote by S(D) the set of all results of word queries over D, that is S(D) =
{accD(u) | u ∈ A?} and, for any member s of S(D), let us denote by lex(s) the smallest
element in the lexicographic order of the set {u ∈ A? | accD(u) = s}. By definition, for any
datum D, we always have lex({root}) = ε. Observe that, if we consider a finite datum D

as a finite automaton, the set S(D) corresponds with the set of states of the deterministic
automaton equivalent to D that is obtained by the well known subset construction.
We are now able to define the following set of word inclusion constraints :
Cf (D) = C�(D) ∪ C≡(D) where C�(D) = {lex(s) � lex(s′) | s, s′ ∈ S(D), s (s′} and
C≡(D) = { lex(s)x ≡ lex(s′) | x ∈ A, s′ = {n′ ∈ N | ∃n ∈ s, (n, x, n′) ∈ T},

lex(s)x 6= lex(s′) }.

Example 1. Let us consider the following semistructured datum D with root 0 :

0

1 2

b
b

a

b

a

then S(D) = {{0}, {0, 2}, {0, 1}, {1}, ∅},
lex({0}) = ε, lex({0, 2}) = a, lex({0, 1}) = ab, lex({1}) = b, lex(∅) = ba and
Cf (D) = {aba ≡ a, a ≡ aa, abb ≡ b, bb ≡ ba, ε � a, ε � ab, b � ab, ba � ε, ba � a, ba �
ab, ba � b}

Clearly, for any finite datum D, Cf (D) is finite, since the cardinality of Cf (D) is bounded
by 22n, where n is the number of nodes in datum D. We obtain the following proposition :

Proposition 2. For any datum D , for any words u and v, D |= u � v if and only if
Cf (D) |= u � v. Moreover, if D is finite, then Cf (D) is finite.

The proof of this proposition uses the next lemma, which enounces an interesting property
on the word equalities implied by C≡(D).

Lemma 1. For any datum D, and for any word u, C≡(D) |= u ≡ lex(accD(u)).

Note that Cf (D) is finite does not mean that D is finite. For instance, the set Cf (D) = ∅ is
only satisfied by infinite complete data.

As an other consequence of lemma 1, we obtain :

Proposition 3. For any finite datum D and for any regular query q, q has the strong
boundedness property w.r.t. C≡(D).

The empty word ε, in semistructured data, is a very particular word : by definition, for any
datum D, accD(ε) is never empty since it is equal to the singleton which contains the root
of D. Hence, word constraints involving the empty word ε are particular too : for instance,
if D |= ε � v for some word v then, for any prefix v′ of v, accD(v′) is not empty. When the
empty word appears as the right-hand side of a word inclusion constraint, the consequences
are more surprising: let C be any set of word constraints such that C contains u � ε and
C |= v � w for some words u, v and w. It is easy to see that it follows C |= uv � uw,
since for any datum D, D |= u � ε means accD(u) = ∅ or accD(u) = accD(ε). Conversely,
when a set C of word inclusion constraints does not contain any constraint where ε appears
as the right-hand side, then all constraints implied by C can be obtained simply in term of
reflexive, transitive or right-congruence closure as it is shown in next section. This motivates
the following definition of standard datum which corresponds with the well known definition
of standard finite automaton1 :

Definition 6. A datum D =< N, root, T > is standard if, for any word u ∈ A?, root ∈
accD(u) implies u = ε.

Let us remark that the datum of the figure 1 is standart wheras the datum of the example 1
is not.
Let D =< N, root, T > be a datum, let std(D) =< N ∪ {$}, $, T ∪ {($, x, n) | (root, x, n) ∈
T} > where $ is a new node. Clearly, std(D) is standard and satisfies the following property :

Lemma 2. For any datum D and for any paths u and v in A+, D |= u � v if and only if
std(D) |= u � v.

Observe that in a standard datum D =< N, root, T > there is no path (except ε) to the
root, so in Cf (D) there will be no constraint with ε as left-hand side. Moreover, the constraint
lex(∅) � ε is the only constraint with ε as right-hand side which can appear in Cf (D). Since
this constraint appears only if lex(∅) is defined, that is if the datum D is not complete, we
shall use the following notation :

Definition 7. For any datum D, we denote by C+
f (D) the constraint set Cf (D)\{lex(∅) � ε}

if the datum D is not complete, C+
f (D) = Cf (D) otherwise.

Then we can state :

Lemma 3. Let D be a standard semistructured datum then ∀u, v ∈ A+, D |= u � v if and
only if C+

f (D) |= u � v

From lemma 2 and lemma 3, we finally obtain :

Proposition 4. For any finite datum D over an alphabet A, the finite set of word con-
straints C+

f (std(D)) is included in A+ × A+ and satisfies : for any paths u and v in A+,

D |= u � v if and only if C+
f (std(D)) |= u � v.

4 Solving implication problems with rewriting

In the previous section, we have extracted a set of constraints from a given datum D. From
now, the problem is different : we want to decide the implication problem. So we have a
set C of path constraints and we want to know if any datum satisfying C also satisfies a
constraint p � q (with restriction on C, p, q).
In order to define a decision algorithm for the implication problem, we introduce in this
section a prefix rewrite system built from C such that u rewrites to v, if and only if C models
u � v. These techniques are also used in [3] or in [17]. We explain, in subsection 4.1 the link
between path inclusions and rewriting and we give, in subsection 4.2 our algorithm to solve
the implication problem. As discussed in the previous section, we do not want constraints
with ε as right hand side. For this reason, we will suppose in this section that there is no
path constraint of the form p � ε.

1 In particular, any XML document is a standard datum

4.1 Bounded path constraints and Prefix Rewriting

In this subsection, we summarize some results we have shown in [14]. From now on, we will
only consider the case of a finite set of inclusions of the form p � u where p is a regular
path expression and u is a word: we call such path inclusions bounded path inclusions. In
this case, following and slightly generalizing [3], we associate with a set C of bounded path
inclusions a prefix rewrite system such that u rewrites to v, if and only if C models u � v.

Definition 8. Let C = {p1 � u1, . . . , pn � un} be a finite set of bounded path inclusions
over an alphabet A. We consider the relation on paths defined by u −→

C
v if and only if

there exists i such that u ∈ L(pi) and v = ui. By extension, we denote also −→
C

its right

congruence closure. Then
?

−→
C

denotes the reflexive, transitive closure of −→
C

.

We can remark that this relation is a prefix rewriting relation as defined in [10] based on an
infinite rewrite system. We have the following property:

Proposition 5. Let C be a set of bounded path inclusions. For any paths u, v, u
?

−→
C

v if

and only if C |= u � v.

Moreover, using the hypothesis that C contains only bounded inclusions, we have shown
that :

Proposition 6. Let C be a set of bounded path inclusions, and q a regular query; the fol-
lowing properties are equivalent:
– C |= u � q

– there is some path v in L(q) such that C |= u � v

– there is some path v in L(q) such that u
?

−→
C

v

The following example shows that proposition 6 does not hold when we consider unbounded
path inclusions :

Example 2. The following datum satisfies a � (b + c) but satisfies neither a � b nor a � c.

root

a, c a, b

a

a

The proof of these two propositions uses a kind of (infinite) canonical model GC of C which
is close to the model defined in [3].
So, using these two propositions, some path constraints properties can be reduced to proper-
ties of prefix rewriting relations. We will use extensively this correspondence in the following.
The prefix rewriting relation that we use is defined by infinite rewrite systems whereas most
known decidability results on prefix rewriting relations deal with finite rewrite systems (e.g
see [10]). However our rewrite systems are particular: they are defined by a finite set of
rules where the left hand side are regular languages, the right hand side are words. So one
could simulate them by a finite rewrite system, expressing left hand sides by the finite set
of rules of the corresponding automata. An other approach would be to use ground tree
transducers defined in [13]. Indeed, as this class of transducers is closed under transitive
closure, it is easy to prove that the prefix left-rational rewrite relation can be realized
by such a transducer and so that it is a recognizable relation, as defined in [11]. Then, by
expressing the required properties in the theory of recognizable relations, we can get decision
procedures for implication of constraints or boundedness properties.
We have chosen here a direct approach, even if the spirit of the techniques we use is the
same, mainly computation of right congruence closure. This allows us to get simple and
efficient constructions and to obtain tighter complexity results.

4.2 Solving implication problems

Now, we consider C a set of bounded path inclusions, p, q regular queries, and we study the
implication problem C |= p � q. We obtain different complexity results when p and q are
regular languages or simply paths. The algorithms use the computation of a set of ancestors
by the rewrite system

?
−→
C

. The main result of this section is the following theorem :

Theorem 1. Let C = {p1 � u1, . . . , pn � un} be a finite set of bounded path inclusions,
and p, q two regular queries. The implication problem C |= p � q is PSPACE-complete.

To prove this result, we use the rewrite relation
?

−→
C

. First, we define the set of ancestors of

a regular query q for this rewrite relation.

Definition 9. Let C = {p1 � u1, . . . , pn � un} be a finite set of bounded path inclusions,

and q a regular query. We define the set ancestorC(q) = {u | ∃ wq ∈ L(q), u
?

−→
C

wq}.

Then we can state

Lemma 4. Let C = {p1 � u1, . . . , pn � un} be a finite set of bounded path inclusions, and
p, q two regular queries.

C |= p � q iff p ⊆ ancestorC(q)

n
In order to compute ancestorC(q) for any regular query q, we will use the following construc-
tion, introduced in [14]. We build a finite automaton AC (with ε-moves) which recognizes

the language RC = {v ∈ A? | ∃i, v
+

−→
C

ui}. It is already known that RC is a recognizable

language from [9], [11], [10]. We give here a different construction : For each i with 1 ≤ i ≤ n,
let Mi = (A, Qi, Ii, Fi, δi) be an automaton recognizing the language L(pi). We can assume,
without loss of generality, that for different subscripts i and j, the intersection Qi ∩ Qj is
empty. Then we can define AC = (A,Q, I, F, ∆) where Q = ∪n

i=1Qi, I = ∪n
i=1Ii, F = ∪n

i=1Fi

and ∆ = ∪k∈N∆k where ∆k, for k ∈ N is defined inductively by :
– ∆0 = ∪n

i=1δi

– for k > 0, ∆k = ∆k−1 ∪ {(q, ε, q′) | ∃i ≤ n, q ∈ Fi, q
′ ∈ ∆k−1(I, ui)}

Since ∆ is included in Q× (A∪{ε})×Q, it is clear that there exists an integer K such that
∆K = ∆K+1 = ∆. Since we have K ≤ |Q|2, automaton AC can be built in polynomial time
in |C|.

Example 3. Let C = {ab? � ba, b+ � a, a(aa)?b � a}. Automaton AC is the following :

0 f1

1 f2

2 3 f3

a

b

ba

a

b

b

ε

ε
ε

ε

ε

ε

ε

ε

It is proven in [14] that AC recognizes RC, and it is clear that, from automaton AC , we
easily obtain, for any word ui, an automaton which recognizes ancestorC(ui) in PTIME in
the size of C.
Now, in order to answer to the question p ⊆ ancestorC(q), we have to compute the set of
ancestors of q. Let us consider $q a new letter (i.e. $q 6∈ A). We define a new finite set of
bounded path inclusion Cq = C∪{q � $q}, and we can prove that a word u is in ancestorC(q)
if and only if u is in ancestorCq ($q) ∩ A?. It follows that an automaton Aq

C for ancestorC(q)
can be built in polynomial time in |q| + |C|. In [4] the authors give a decision algorithm for
the inclusion of two regular languages L1 and L2, given by two automata A1 and A2. Using
this result, we can enounce :

Lemma 5. For any set C = {p1 � u1, . . . , pn � un} of bounded path inclusions, and for
any regular expressions p and q, the implication problem C |= p � q is PSPACE.

We are now able to end the proof of theorem 1, which is a consequence of the following
lemma which states that, even when the regular expression q is reduced to a word u, the
implication problem C |= p � u is PSPACE-complete.

Lemma 6. For any set C = {p1 � u1, . . . , pn � un} of bounded path inclusions, for any
regular expressions p and for any word u, the implication problem C |= p � u is PSPACE-
complete.

Nevertheless, for the implication problem of a constraint u � q, we get a polynomial algo-
rithm, since we only check whether u ∈ ancestorC(q) :

Proposition 7. Let C = {p1 � u1, . . . , pn � un} a set of bounded path inclusions, u a word
and q a regular query. We can decide the implication problem C |= u � q in PTIME.

5 Word equality constraints

In this section, we consider the case of a set of word equality constraints of the form u ≡ v

where u and v are paths.
In this case, as in [3], we associate with a set C of word equality constraints a graph GC such
that for any paths u and v, C |= u ≡ v if and only if GC |= u ≡ v.

Definition 10. Let C be a set of word equality constraints over an alphabet A. Clearly, C
is a symmetric binary relation over A?. We denote by ≡C the smallest equivalence relation,
closed by right congruence, which contains C, and, for any path u ∈ A?, we denote by [u]C
the equivalent class of the path u for the relation ≡C.

Let GC =< N, r, T > be the labeled rooted directed graph where N = {[u]C | u ∈ A?},
r = [ε]C and T = {([u]C , x, [ux]C) | u ∈ A?, x ∈ A}. Clearly, GC is deterministic and
complete, and for any path u ∈ A?, we have accGC

(u) = {[u]C}. It follows :

Proposition 8. For any set C of word equality constraints over an alphabet A, the following
properties are equivalent :
1. C |= u ≡ v

2. GC |= u ≡ v

3. u ≡C v

From definition of GC and from equivalence between 1 and 3 of proposition 8, we obtain a
converse of the problem studied in proposition 2 :

Corollary 1. For any set C of word equality constraints over an alphabet A, GC is the
unique (complete) deterministic rooted graph D which satisfies : D |= u ≡ v if and only if
C |= u ≡ v.

Moreover, since GC is a complete deterministic graph, we have the following result :

Proposition 9. For any set C of word equality constraints over an alphabet A, the following
properties are equivalent :
1. C |= u ≡ v.
2. C |= u ≡ v on the family of deterministic data.
3. C |= u ≡ v on the family of complete deterministic data.

Generally, our model GC is an infinite graph. Nevertheless, when C is a finite set of word
equality constraints, it is possible to build a finite deterministic graph in order to decide
implication of word equality constraints. A quite similar construction has been introduced
by Buneman et al. in [7] :
Let C be a finite set of word equality constraints over A. Let us denote by W the set of
all prefixes of {w ∈ A? | ∃w′ ∈ A?, (w ≡ w′) ∈ C}. For any path in W , let us denote
by [w] the equivalence class of w for the restriction of ≡C over W . Let us consider the

ε

bba

c

cb

a

b,c

b

a d

d,e,f

a

Fig. 2. graph G
f
C

finite deterministic graph G
f
C =< N ′, r, T ′ > where N ′ = {[w] | w ∈ W}, r = [ε] and

T ′ = {([w], x, [wx]) | w ∈ W,wx ∈ W,x ∈ A}.
Let us remark that if G

f
C

is a complete graph then it coincides with graph GC and it follows
that C has a finite canonical model if and only if G

f
C is complete.

Then we can use G
f
C to decide if a finite set C of word equality constraints implies a word

equality constraint. First, it is clear that, by construction, G
f
C |= C and, for any w ∈ W ,

acc
G

f
C

(w) = {[w]}. Then, for any path u in A?, acc
G

f
C

(u) = {[w]} if and only if u ≡C w.

Let us consider now the application fC , defined from A? to N ′ × A?, where N ′ is the set
of nodes of G

f
C , by : ∀u ∈ A?, fC(u) = (acc

G
f
C

(u1), u2) where u = u1u2 and u1 is the least

prefix of u such that acc
G

f
C

(u1) 6= ∅.

Example 4. Let A = {a, b, c, d, e, f} and C = {a ≡ bba, b ≡ c, cb ≡ dd, d ≡ e, fa ≡ aa, ed ≡
f, e ≡ f, aa ≡ bba}. Figure 2 gives the graph G

f
C for this set of constraints. On this example,

fC(a3) = (bba, ε), fC(a3c) = (bba, c).

Proposition 10. C |= u ≡ v if and only if fC(u) = fC(v).

Now, denoting by fC(p) the set
S

u∈L(p) fC(u) for any regular path expression p

we can deduce, from the above proposition, proposition 8 and using the fact that GC is
complete and deterministic :

Corollary 2. For any regular path expressions p and q, C |= p ≡ q iff fC(p) = fC(q).

Moreover, from the above corollary, we obtain :

Corollary 3. A regular path expression p has the strong boundedness property w.r.t. a finite
set of word equalities C if and only if fC(p) is finite.

We will now give the complexity of the three decision algorithms which correspond to propo-
sition 10, corollary 2 and corollary 3. We will first give an algorithm which computes the
graph G

f
C

with a lower complexity than the algorithm given in [7].
This algorithm uses the union-find principle to compute the set of equivalent classes, in a
way similar to Shostak algorithm [18]. The union-find principle manages a set of classes
with three primitives: create a new class, compute the union of two classes and find a
representative of a class (in [12] the authors give the data structures and the algorithms). In
the following find(u) will denote a representative of the class of u. We first represent W by
a prefix tree and consider one class by path of W (i.e. one node is one class). We compute
the equivalent classes applying procedure merge, for all (u, v) in C :
– If (u ≡C v) ∈ C then compute the union between the class of u and the class of v
– Compute recursively the union between the class of ux and the class of vx, for x label.

procedure merge(in u,v: Path; out S:SetOfClasses)
% merge the class of u with the class of v .
union(u,v,S)
for each u′ such that find(u′) =find(u) do % i.e. u and u′ are in the same class

for each v′ such that find(v′) =find(v) do
for each x ∈ A do

if u′x ∈ W and v′x ∈ W then merge(u′x,v′x,S) end if
end for end for end for

end

Note that W contains |C| elements, where |C| is the sum of the sizes of the constraints in
C. Merge is an O(|A| × |C|2) algorithm. But we define an appropriate data structure (see
example 4) and we obtain an O(|A|) algorithm. We prove that G

f
C is the graph < N, r, T >

where N = {find(u) | u ∈ W}, r = {find(ε)} and T = {(find(u), x,find(ux)) | ux ∈ W}. In
[4] and [19], it is proved that an algorithm using n − 1 unions and m finds (m ≥ n) is an
O(n + m.α(n, m)) algorithm2. It follows that our algorithm which computes G

f
C is better

than O(|C| × lg∗(|C|)), so is in quasi linear time in |C|.

Example 5. (example 4 continued) The figure 3 shows the data structure G used to compute
the graph G

f
C . We can see the prefix tree (a), some new edges which are helpful to compute

efficiently unions (b) and edges which simulate the classes (c). Since (b ≡ c) ∈ C, b and c are
in the same class. Then bb and cb are in the same class. Since bba ∈ W and cba 6∈ W , we add
an edge from the class of cb to the class of bba labeled by a. It follows from a ≡ bba ≡ cba ≡
dda ≡ eda ≡ fa that accG(a) = accG(fa). Since f ≡ ed ≡ fd, we get accG(fd∗) = accG(f).
Finally, after merging the equivalent nodes, we obtain the graph G

f
C

shown in figure 2.

ε

dcb e f

bb cb dd ed fa

bba
d

b c d e f

b b d d a

a a

u u.x
x

Transition of the prefix tree (a)

find(u) find(u.x)
x

To compute efficiently the merging (b)

u v u and v are in the same class (c)

a

a

aa

a

a

Fig. 3. Steps of the union-find algorithm

Clearly, for any path u, if G
f
C

is given, the computation of fC(u) has a linear complexity in
the length of u. If we compute fC(p) for some regular path expression p, we obtain :

Lemma 7. For any regular path expression p and given the graph G
f
C , the test of finiteness

of fC(p) can be done in PTIME in the sum of the size of G
f
C and the size of p and a

comparison between fC(p) and fC(q) for some regular path expressions p and q can be done
in PSPACE in the sum of the size of G

f
C and the size of the two regular expressions.

Remark 1. For the comparison of fC(p) and fC(q) for some regular path expressions p and
q, we cannot obtain a better complexity, since if we consider an empty set C of word equality

2 α is the inverse of the Ackermann function. The Ackermann function A is defined by A(1, j) = 2j j ≥ 1,
A(i, 1) = A(i − 1, 2) if i ≥ 2, A(i, j) = A(i − 1, A(i, j − 1)) if i, j ≥ 2

constraints, we have C |= p ≡ q if and only if the language described by p is equal to the
language described by q, and it is known from [15] that this problem is PSPACE-complete
in the sum of the size of the two regular expressions p and q. It follows that the problem to
know whether, given a finite set C of word equality constraints, we have C |= p ≡ q for some
regular expressions p and q is PSPACE-complete.

Then, summarizing the complexity results of this section, we obtain :

Proposition 11. For any finite set of word equality constraints C,
– it is decidable to know whether C |= u ≡ v for some paths u and v in quasi-linear time

in the sum of |C| and the size of the constraint u ≡ v.
– the problem to know whether C |= p ≡ q for some regular path expressions p and q is

PSPACE-complete, in the sum of |C| and the size of the constraint p ≡ q.
– it is decidable to know whether some regular path expression p has the strong boundedness

property w.r.t. C in PTIME in the sum |C| + |p|.

We can deduce from proposition 10 :

Corollary 4. For any finite set C of word equality constraints over an alphabet A, and for
any regular path expressions p and q, (C |= p ≡ q) if and only if (C |= p ≡ q on the family
of finite (complete) deterministic data).

It follows from the proposition 11 that it is possible to check if a regular query q has the
strong boundedness property w.r.t C. But we are also able to compute f such that L(f) is
finite and C |= q ≡ f .

Proposition 12. Let C be a non-empty finite set of word equalities over an alphabet A. We
compute, in quasi linear time, a transducer τC such that, for any regular query p over A :
1. C |= p ≡ τC(L(p))
2. τC(L(p)) is finite if and only if p has the strong boundedness property w.r.t. C

To close this section on word equality constraints, we can study this proposition on an
example.

Example 6. (example 4 continued) The transducer τC is :

ε

bba

c

cb

a

b,c

b

a

d

d,e,f

a

Xa |bbaXa Xa,d |cbXa,d

ε | ε Xa |cXa

Xk matches (A \ k)A∗ ∪ {ε}

– τC(a+b) = bbab because fC(a+b) = (bba, b). As L(bbab) is finite, a+b has the strong
boundedness property w.r.t C and C |= a+b ≡ bbab.

– τC(f+) = cbf∗ because fC(f+) = (cb, f∗). As L(cbf∗) is not finite, f+ has not the strong
boundedness property w.r.t. C. Nevertheless, C |= f+ ≡ cbf∗ is true.

6 Conclusion

We have proposed an algorithm extracting from a document D a set Cf of constraints. This
set is finite and implies a path inclusion constraint if and only if D satisfies this constraint.
Then, implication of a path inclusion by a set of bounded path inclusions, implication of a
path equality by a set of word equalities, and the boundedness property in the case of word
equalities have been studied.

We summarize our results :
C = {bounded path inclusions} new results already known

C |= p � q PSPACE (lemma 5) EXPSPACE [3]
EXPTIME,PSPACE hard [5]

C |= p � u PSPACE-complete (lemma 6)

C |= u � q PTIME (proposition 7)

C = {word equality constraints} new results already known

C |= p ≡ q PSPACE-complete (proposition 11)

C |= u ≡ v quasi linear (proposition 11) cubic time [7]

boundedness property PTIME (proposition 11)

When the set of path inclusions C contains unbounded path inclusions, the problem of
deciding whether a regular query p has the boundedness property w.r.t. C is still open.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kaufmann Pub-
lishers, 2000.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The lorel query language
for semistructured data. Journal of Digital Libraries, 1(1):68–88, 1997.

3. S. Abiteboul and V. Vianu. Regular path queries with constraints. In Proc. of ACM
Symposium on Principles of Database Systems, 1997.

4. A. Aho, J. Hopcroft, and J. Ullman. The design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

5. N. Alechina, S. Demri, and M. de Rijke. A modal perspective on path constraints.
Journal of Logic and Computation, to appear, 2004.

6. P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and op-
timization techniques for unstructured data. In SIGMOD, pages 505–516, Montreal,
1996.

7. P. Buneman, W. Fan, and S. Weinstein. Query optimization for semistructured data
using path constraints in a deterministic data model. In Lecture Notes in Computer
Science 1949, pages 208–223. 7th International Workshop on Database Programming
Languages, 1999.

8. P. Buneman, W. Fan, and S. Weinstein. Path constraints in semistructured databases.
Journal of Computer and System Sciences, 61(2), 2000.

9. J. Richard Büchi and W.H. Hosken. Canonical systems which produce periodic sets.
Mathematical Systems Theory, 4(1), 1970.

10. D. Caucal. On the regular structure of prefix rewritings. CAAP, pages 87 – 102, May
1990.

11. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

12. T. Cormen, C. Leiserson, and R.Rivest. Introduction to Algorithms. MIT Press, 1990.
13. M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. pages

242–248. LICS 90, 1990.
14. D. Debarbieux, Y. Roos, S. Tison, Y. Andre, and A.C. Caron. Path rewriting in

semistructured data. In proceedings of words’03: 4th International Conference on Com-
binatorics on Words, pages 358–369, Turkü, Finland, 2003. TUCS General Publication.

15. M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the Theory of
NP-completeness. Freeman, 1978.

16. V.M. Gluskov. the abstract theory of automata. In Russian mathematical survey,
volume 16, pages 1–53, 1961.

17. G. Grahne and A. Thomo. Query containment and rewriting using views for regular
path queries under constraints. In proceedings of PODS’03, pages 111–122. Symposium
on Principles of Database Systems, ACM, 2003.

18. R.E. Shostak. An algorithm for reasoning about equality. Commun. ACM, 21(7):583–
585, 1978.

19. R. Tarjan. Efficiency of a good but non linear set union algorithm. In Journal of the
ACM, volume 22, n◦2, pages 215 – 225, 1975.

7 Appendices

Proof of lemma 1 : Let D = (N, root, T). We prove this lemma by induction on the
length of u
– If u = ε then accD(ε) = root and lex({root}) = ε, then we have C≡(D) |= ε ≡

lex(accD(ε)).
– If u = u′x with x ∈ A, by induction hypothesis we have C≡(D) |= u′ ≡ lex(accD(u′))

and by right congruence we obtain C≡(D) |= u′x ≡ lex(accD(u′))x. Moreover accD(u) =
{n ∈ N | ∃n′ ∈ accD(u′), (n′, x, n) ∈ T}. Now, if lex(accD(u′))x is equal to lex(accD(u)),
then by reflexivity C≡(D) |= lex(accD(u′))x ≡ lex(accD(u)), and if lex(accD(u′))x and
lex(accD(u)) are different, it follows from the definition of C≡(D) that lex(accD(u′))x ≡
lex(accD(u)) is in C≡(D). Finally, by transitivity, C≡(D) |= u ≡ lex(accD(u)). Observe
that, for a member s of S(D), we could have chosen, instead of lex(s), any word of the
set {w ∈ A? | accD(w) = s} to represent s in a canonical way, assuming {root} is
represented by ε.

2

Proof of proposition 2 :
1. Let us suppose first that D |= u � v, then we have accD(u) ⊆ accD(v). From lemma

1, since C≡(D) ⊆ Cf (D), we know that Cf (D) |= u ≡ lex(accD(u)) and Cf (D) |=
v ≡ lex(accD(v)). If accD(u) = accD(v) then lex(accD(u)) is equal to lex(accD(v))
and, by transitivity, it follows Cf (D) |= u ≡ v. If accD(u) and accD(v) are different
then accD(u) (accD(v) and lex(accD(u)) � lex(accD(v)) ∈ Cf (D). By transitivity, we
obtain also Cf |= u � v.

2. Le us suppose now that Cf (D) |= u � v. Clearly, it is sufficient to prove that u � v ∈
Cf (D) implies that accD(u) ⊆ accD(v). Then we have u 6= v. Let us consider two cases:
(a) There are s and s′ in S(D) = {accD(w) | w ∈ A?} and a letter x in A such

that u = lex(s)x, v = lex(s′) and s′ = {n′ | ∃n ∈ s ∧ (n, x, n′) ∈ T}. Then
accD(u) = accD(v) = s′.

(b) There are s and s′ in S(D) such that s (s′, u = lex(s) and v = lex(s′). Then
accD(u) (accD(v) = s′.

2

Proof of proposition 3 : Let F be the set {lex(accD(u)) | u ∈ L(q)}. As S(D) =
{accD(u) | u ∈ A∗} is finite, F is finite. From lemma 1, for any u in L(q), there exists v in
F such that C≡(D) |= u ≡ v and conversely, for any v in F , there exists u in L(q) such that
C≡(D) |= u ≡ v. Hence C≡(D) |= q ≡ F .

2

Proof of lemma 3 : Let u and v be two words in A+. Clearly, if C+
f (D) |= u � v then

Cf (D) |= u � v, and from proposition 2, we have D |= u � v. Conversely, let us suppose that
D |= u � v then accD(u) ⊆ accD(v). Moreover, as C≡(D) is clearly included in C+

f (D), we

obtain from lemma 1 that C+
f (D) |= u ≡ lex(accD(u)) and C+

f (D) |= v ≡ lex(accD(v)). Now,

if lex(accD(u)) = lex(accD(v)), then C+
f (D) |= lex(accD(u)) ≡ lex(accD(v)) by reflexivity,

and if lex(accD(u)) and lex(accD(v)) are different then accD(u) (accD(v), and since v 6= ε,
it follows that lex(accD(u)) � lex(accD(v)) belongs to C+

f (D). Finally, by transitivity, we

obtain C+
f (D) |= u � v. 2

Proof of lemma 4 :

– If p ⊆ ancestorC(q) then ∀up ∈ p,∃uq ∈ q, up
?

−→
C

uq . It follows from proposition 5 that

∀up ∈ p, ∃uq ∈ q, C |= up � uq. So it yields that C |= p � q.
– If C |= p � q then ∀up ∈ p,C |= up � q. From proposition 6 we can say that ∀up ∈

p, ∃uq ∈ q, C |= up � uq. It follows from the same proposition that ∀up ∈ p, ∃uq ∈

q, up
?

−→
C

uq i.e p ⊆ ancestorC(q).

2

Proof of lemma 5 : In [4] the authors give a decision algorithm for the inclusion of
two regular languages L1 and L2, given by two automata A1 and A2. This algorithm is in
PSPACE in the size of the automata. Moreover, we can construct in linear time in |p| a (non
deterministic) automaton Ap which recognizes p (see for instance the Gluskov’s algorithm
[16]), and in polynomial time in |q| + |C| an automaton Aq

C which recognizes ancestorC(q).

2

Proof of lemma 6 : Inclusion problem of two regular languages, given by regular expres-
sions p and q is PSPACE-hard [15]. Let us consider the set C = {q � $} where $ does not
appear in q. In this case, ancestorC(q) = q and p ⊆ q is equivalent to p ⊆ ancestorC($). So
deciding p ⊆ q is equivalent to decide p � $. 2

Proof of proposition 7 : C |= u � q iff u ∈ ancestorC(q). We build an automaton Aq
C

recognizing ancestorC(q) in PTIME and we test the membership of u in ancestorC(q) using
this automaton. 2

Proof of proposition 8 : We shall prove first that 1 implies 2 : Let ui ≡ vi be any word
equality constraint of C. Then ui ≡C vi and accGC

(ui) = [ui]C = [vi]C = accGC
(vi). Then

GC |= ui ≡ vi and it follows that GC |= C : if C |= u ≡ v for some paths u and v, then
GC |= u ≡ v.

Clearly, 2 implies 3.

It remains to prove that 3 implies 1 : let u and v be two paths such that u ≡C v. Let us
consider now any datum D such that D |= C and let us denote by ≡D the equivalence
relation defined over A? by w ≡D w′ if and only if accD(w) = accD(w′). Clearly, ≡D is a
right congruence, and, since D |= C, ≡D contains ≡C which is the smallest congruence which
contains the relation C. Then u ≡C v implies that u ≡D v then C |= u ≡ v. 2

Proof of proposition 9 : Clearly, it is sufficient to prove 3 implies 1. Let u and v be two
paths such that C |= u ≡ v on the family of complete deterministic data. Then GC |= u ≡ v,
since GC |= C and it is complete and deterministic. Now, from proposition 8, we obtain
C |= u ≡ v 2

Proof of proposition 10 : Clearly, if fC(u) = fC(v), then u ≡C v and, from proposition
8, C |= u ≡ v. Conversely, if C |= u ≡ v, then u ≡C v. If we consider the equivalence
relation ≡f defined over A? by u ≡f v if and only if fC(u) = fC(v), then ≡f clearly
contains C. It remains to prove that ≡f is closed by right congruence : let u and v be
two paths such that fC(u) = fC(v) = ([w1], w2) and let us consider fC(ux) and fC(vx) for
some letter x. Then fC(ux) = ([w1], w2x) or fC(ux) = ([w′], ε) with w′ ≡C w1w2x ≡C ux,
and fC(vx) = ([w1], w2x) or fC(vx) = ([w′], ε) with w′ ≡C w1w2x ≡C vx. Clearly, it is
sufficient to prove that, if fC(ux) = ([w′], ε) then fC(vx) = ([w′], ε). if fC(ux) = ([w′], ε)
with w′ ≡C w1w2x ≡C ux. Since, fC(u) = fC(v), it follows that u ≡C v, then ux ≡C vx. It
follows that vx ≡ w′, and then acc

G
f
C

(vx) = [w′] and fC(vx) = ([w′], ε) = fC(ux). 2

Proof of corollary 3 : Clearly, if a regular path expression q describes a finite language,
then fC(q) is finite. Then if p has the strong boundedness property w.r.t. C, there exists a
regular path expression q, describing a finite language such that fC(p) = fC(q), then fC(p)
is finite. Conversely, if fC(p) is finite, then the language L = {v ∈ A? | ∃w ∈ W, ([w], v) ∈
fC(p)} is finite and C |= p ≡ q for some expression q describing a language included in WL

which is finite. 2

Sketch of proof of lemma 7 : We will first show that, for every node n of G
f
C , we can

compute an automaton AC,p(n) in PTIME in the sum of the size of G
f
C

and the size of p

such that the language recognized by AC,p(n) is the language {w ∈ A? | (n, w) ∈ fC(p)} :
let us consider an automaton Ap which recognizes the language described by p, where all
states are accessible and co-accessible, this can be done in time |p|.

Let us complete the graph G
f
C with a hole node ⊥, and with transitions (n, x,⊥) for each

node n and each letter x such that there is no transition labelled by x from n in G
f
C
, this

can be done in size of G
f
C . Let us consider now the Cartesian product of this complete graph

and automaton Ap : in this graph, the transitions are in the form ((n1, s1), x, (n2, s2)) where
n1 and n2 are nodes of G

f
C

or equal to ⊥, s1 and s2 are states of automaton Ap and x is a
letter. Let us remove all transitions ((n1, s1), x, (n2, s2)) where n2 is a node of G

f
C (i.e. not

equal to ⊥), then AC,p(n) can be obtained from this graph setting the set of initial states to
{n} × S where S is the set of states of automaton Ap and final states to {⊥} × F where F

is the set of final states of automaton Ap. The construction can be done in PTIME in the
sum of the sizes of Ap and G

f
C .

Now, to answer the question whether fC(p) is finite, we can check for every node n of G
f
C

if automaton AC,p(n) recognizes a finite language, this leads to a PTIME algorithm in the
sum of the sizes of Ap and G

f
C

At last, in order to compare fC(p) and fC(q) for some regular path expressions p and q, we
can check if, for each node n of G

f
C , the automata AC,p(n) and AC,q(n) are equivalent. This

can be made in PSPACE in the sum of the size of AC,p(n) and AC,q(n). 2

Proof of proposition 12 : Let C be a non empty set of path equalities over an alphabet
A. We can compute G

f
C =< N, r, TG >. N is set of equivalent classes. If [u] ∈ N , find([u])

will denote a representant of the class [u]. From this graph, we can define τC =< A, N ∪
{$}, r,N ∪{$}, T, e > where A is the input and the output alphabet, N ∪{$} is set of states
($ is a new node i.e $ 6∈ N) where r is the initial satate. All the states are finals. T is set
of transition defined by T = {([u], x, ε, [u.x]) | [u.x] ∈ N} ∪ {([u], x, find([u]).x, $) | [u.x] 6∈
N} ∪ {($, x, x, $) | x ∈ A} and e is a output function from the final states (N ∪ {$}) to A∗

defined by: e([u]) = find([u]) and e($) = ε.
It is easy to see that for all path u, fc(u) = ([u1], u2) iff τc(u) = find([u1]).u2. If q is
path expression then tC(q) = ∪

u∈q
tC(u) = ∪

u∈q

fC(u)=([u1],u2)

find([u1]).u2. As fC(τC(q)) = fC(q) it

follows from the corollary 2 that for all q such that L(q) = τC(L(p)), C |= p ≡ q. It follows
from the corollary 3 that τC(L(p)) is finite if and only if p has the strong boundedness
property w.r.t. C As we are able to compute G

f
C in quasi linear time, we can compute τC in

quasi linear time. 2

