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Abstract

System adaptivity is increasingly demanded in high-performance embedded systems, particularly in
multimedia System-on-Chip (SoC), due to growing Quality ofService requirements. This paper presents
a reactive control model that has been introduced in Gaspard, our framework dedicated to SoC
hardware/software co-design. This model aims at expressing adaptivity as well as reconfigurability in
systems performing data-intensive computations. It is generic enough to be used for description in the
different parts of an embedded system, e.g. specification ofhow different data-intensive algorithms can
be chosen according to some computation modes at the functional level; expression of how hardware
components can be selected via the usage of a library of Intellectual Properties (IPs) according to execution
performances. The transformation of this model towards synchronous languages is also presented, in
order to allow an automatic code generation usable for formal verification, based of techniques such as
model checking and controller synthesis as illustrated in the paper. This work, based on Model-Driven
Engineering and the standard UML MARTE profile, has been implemented in Gaspard.

1 Introduction

With the popularization of mobile multimedia devices such as PDA, multimedia cellular phone and MP3
player, high-performance embedded systems (HPES’s) attract increasingly interests in both industry and
academia. These systems feature intensive data processing, including multimedia video codecs, software-
based radio and radar signal processing systems. These applications generally require high-performance
computing resources, where parallel processing is a key feature. In addition, they concentrate on regular
data partitioning, distribution and access.

1.1 Design complexity of High-performance SoCs

The previously mentioned applications are usually developed by using high-performance computing
(HPC) programming languages that provide useful concepts to deal with parallel processing, in order
to meet their real-time requirements. There exist several HPC programming languages and one of the
most successful is High Performance Fortran (High Performance Fortran Forum, 1997). However, these
languages tend to be very specific to users and lack features,which are increasingly required for the
design of modern HPES’s: design of complex hardware topologies comprising multi-core architectures,
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of hardware/software allocations, of intellectual property (IP) deployment enabling reusability, etc. In
addition, they do not necessarily allow system verification, which is important for guaranteeing the
reliability of the systems.

On the other hand, thesystem complexityissue is another major obstacle faced by System-on-Chip
(SoC) designers. As computational power increases for SoCs, more functionality are expected to be
integrated into these systems. Hence, more complex software applications and hardware architectures are
involved. The resulting consequence leads to the disequilibrium in system design, particularly software
design does not progress at the same pace as that of hardware.This has become a critical issue and has
finally led to theproductivity gap(Semiconductor Industry Assoc., 2004).

In order to address the above challenges, many efforts have been recently carried out to better address
the SoC design (Sangiovanni-Vincentelli, 2007). Raising the levels of abstraction is considered as an
effective solution to reduce the overall complexity in the design. High-level modeling approaches have
been developed such as Model-Driven Engineering (MDE) (Object Management Group, 2007a). MDE
also enables high-level system design (of both software andhardware) with the possibility of integrating
heterogeneous components into the system. Furthermore,model transformationsenable generation of
executable code from high level models. MDE is also supported by large number of existing standards
and tools, for instance, UML-based modeling and transformation tools (UML tool list, 2009).

1.2 Adaptivity in multimedia SoCs

Systemadaptivity specification as well asreconfigurablecomputing description are considered to be
critical in current embedded systems design, particularlyin multimedia SoC design. Such systems must
be able to cope with end user requirements and environments.Being adaptive and/or reconfigurable to
the environment is highly demanded due to current flexibility and Quality-of-Service (QoS) requirements.
However, integration of adaptivity and reconfigurability into a system is expected not to affect system
performance, especially regarding real-time constraints.

Mode-based control modeling, as one kind of behavioral specifications, plays an important role in
multimedia systems, as it satisfies the following requirements that are becoming inevitable in mobile
embedded systems: 1) mode changes specified in functionality, for example, color or monochrome
mode for video effects; 2) mode changes due to resource constraints of targeted hardware/platforms,
for instance switching from a high CPU load mode to a smaller one; or 3) mode changes due to other
environmental criteria such as energy consumption constraint. Mode-based control integrates flexibility
in the design. Consequently, it offers better QoS choices todesigners/end users. Thanks to the above
characteristics, mode-based control mechanisms are good candidates for the integration of adaptivity
and/or reconfigurability into the high-performance systems design seamlessly. First, modes of data
processing can be switched due to the requirements of users,platforms and environments. Secondly, data
access, as a critical factor of performance, is kept unchanged so that mode changes have little influence
on performance.

1.3 Contribution and outline

We present a high-level model allowing for the mixed description of data-intensive and control-oriented
behaviors, as a solution to for the design of HPES’s. This model enables to:

• effectively handle issues such as adequate expression of inherent system parallelism both in
functional specification and hardware architecture;

• express control behavior in order to characterize adaptivity and reconfigurability in a system in
consideration of performance influence.

The control model is proposed in Gaspard, which is an MDE-based SoC co-design framework dedicated
to HPES’s (Gamatié et al., 2010), and defined with the UML profile for MARTE (Object Management
Group, 2008).
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A transformation of our model towards synchronous reactivelanguages is also described, in order to
obtain access to their formal validation technologies. It is formalized on the basis of an abstract syntax.
Typical applications of our model for system behavior analysis and hardware synthesis are also briefly
mentioned applications

The rest of this paper is organized as follows. Some related works are discussed in Section 2. Then,
an overview of Gaspard is provided in Section 3. Section 4 concentrates on the extension of Gaspard
with a control model, which includes its abstract syntax, while Section 5 presents the transformation
of this control model into synchronous reactive programs. Section 6 presents the implementation of the
control in the framework of MDE. The application of this control model in functional specification and
IP deployment are briefly described in Section 7. Finally, Section 8 gives the conclusion.

2 Related works

Programming languages for the specification of high-performance systems has already been broadly
studied, for example, Message Passing Interface (MPI) (MPIForum, 2007) and OpenMP (OpenMP API,
2008). More recent languages include StreamIt (Thies et al., 2002) and the DARPA high productivity
languages Chapel (Callahan et al., 2004), Fortress (Allen et al., 2007) and X10 (Charles et al., 2005).
Improving productivity is one of their main objectives, such as reducing specification complexity by
providing suitable macro constructs. Furthermore, they consider specific architecture models. However,
they are not well adapted for SoC design in which one needs to program specialized architectures.

Alpha (Wilde, 1994) and Array-OL (Boulet, 2008) (core formalism adopted in Gaspard), which
manipulates polyhedra and arrays respectively, are interesting high level languages for the data-parallel
formalism. Alpha particularly suits for the specification of systolic architectures while the aim of Gaspard
is to cover embedded systems adopting a wide variety of architectures beyond systolic ones.

In several tools and development environments dedicated todataflow applications, themulti-paradigm
has been proposed to integrate languages in different styles, i.e., dataflow and some imperative features
based on finite state machines. This approach benefits from their different expressivity: dataflow
specification for numerical computation and state machinesfor control behavior. Some examples are
given here:

• SIMULINK and STATEFLOW (The MathWorks, 2009): the former is used for the specification of
block diagrams where some operators of STATEFLOW are used to specify the computation on
dataflow. The results of the computation serve to control thesystem.

• SCADE (Esterel Technologies, 2009) : in the SCADE environment, state machines are embedded
and used to activate dataflow processing specified in Lustre (Halbwachs et al., 1991). Mode
automata (Maraninchi and Rémond, 2003) and polychronous mode automata (Talpin et al., 2006)
derive from the concept ofcombination of formalismsin synchronous languages. It extends the
dataflow language Lustre and Signal respectively with certain imperative style, but without many
modifications of language style and structure. Applications specified in SCADE or with mode
automata and polychronous mode automata can be formally validated using tools associated with
synchronous languages. Although this approach is very similar to our proposition, however, Lustre
and Signal are limited in the expression of large parallel data processing.

• PTOLEMY: the composition of hierarchical finite state machines withsome concurrency models
has also been studied in (Girault et al., 1999). Among them, the composition of state machines with
synchronous dataflow is similar to our proposition, and the latter can be considered as a special case
applied on parallel data-intensive processing specified with Repetitive Structure Modeling(RSM)
package of MARTE. The novelty is exhibited in the compositionality of state machines with data
parallelism and data access performance conservation in case of mode changes.

In comparison with the above mentioned works, our work focuses on embedded systems with high-
performance computing, where the way data-parallelism is dealt with is very important. We adopt mode
automata where the mode concept helps to reduce performanceloss via mode switch during data-intensive



4 H. YU et al.

computations: the interface of data processing is kept the same even if modes are changed, so data access
are not changed allowing one to still benefit from the powerful way of expressing the data-parallelism in
Gaspard.

3 High-performance system design within MARTE

Gaspard (Gamatié et al., 2010) is a MARTE compliant SoC design framework, that enables high-level
modeling and automatic code generation by using UML graphical tools and technologies such as Papyrus1

and Eclipse Modeling Framework2 (EMF). Gaspard features hardware/software co-modeling using the
MARTE profile, which enables to modelsoftware applications, hardware architectures, theirallocations
and IPdeploymentseparately, but in a unique modeling environment. As high-level Gaspard models
contain only domain-specific concepts, model transformations (implemented as Eclipse plugins) enable
code generation for different execution platforms, such assynchronous domain for validation and analysis
purposes (Gamatié et al., 2008b); or FPGA synthesis (Quadriet al., 2010). Thus technological concepts
are introduced seamlessly in the intermediate and low levelmodels.

The MARTE RSM is inspired from Gaspard. RSM is based on Array-OL (Boulet, 2007) that
describes thepotential parallelismin a system; and is dedicated to data-parallel multidimensional signal
processing. Manipulated data in Gaspard and RSM are in the form of multidimensional arrays. RSM
allows to describe the regularity of a system’s structure (composed of repetitions of structural components
interconnected in a regular connection pattern) and topology in a compact manner. Gaspard adopts RSM
for the specification of regular hardware architectures (such as multiprocessor architectures) and parallel
processing applications. In addition, both data parallelism and task parallelism can be, via RSM, expressed
with regard to a functional specification.

An example specified with RSM is shown in Figure 1. It expresses data-parallelism inMonochromeM-
ode, used for the processing of a [320, 240]-image. Because the filter, calledMonoFilter, only works on
small [8, 8]-pixel subsets, it should be repeated 40×30 times to cover the whole image. In RSM [40, 30]
is referred to as the shape of repetition space associated with MonoFilter.

Figure 1: A monochrome effect filter.

The repeated MonoFilter runs in a repetition context, defined by the MonochromeMode. All repetition
instances run in parallel. A Connector used in a repetition context is calledLinkTopology. It adds a set
of topological information to a connector. MonoFilter is connected to MonochromeMode viaTiler links.
The repetitions of MonoFilter consume and produce identically shaped sub-arrays of pixels, which are
respectively extracted from the input portI_imageand stored in the output portO_image. These sub-
arrays, referred to as patterns (shaped [8, 8] in the example), are tiled according to the Tilers, which are
associated with each array (i.e. each edge in the graphical representation). A tiler extracts (resp. stores)
tiles from (resp. in) an array based on some information:F a fitting matrix (how array elements fill the
tiles),o theorigin of thereference tile(for thereference repetition), andP apavingmatrix (how the tiles
cover arrays).

1www.papyrusuml.org/
2www.eclipse.org/emf/



Adaptivity in High-Performance Embedded Systems 5

The repetition spaceindicating the number of task instances is itself defined as amultidimensional
array with a shape. Each dimension of the repetition space can be seen as a parallel loop and its shape
space gives the bounds of the nested parallel loops. In Figure 1, the shape of repetition space is [40, 30].

Given a tile, let itsreference elementdenote its origin point from which all its other elements canbe
extracted. Thefitting matrix is used to determine these elements. Their coordinates, represented byei, are
built as the sum of the coordinates of the reference element and a linear combination of the fitting vectors,
the whole modulo the size of the array (since arrays are toroidal) as follows:

∀ i, 0≤ i < spattern, ei = ref + F × i mod sarray (1)

wherespatternis the shape of the pattern,sarray is the shape of the array andF is the fitting matrix.
For each repetition instance, the reference elements of theinput and output tiles are needed to be

specified. The reference elements of the reference repetition are given by theorigin vector,o, of each tiler.
The reference elements of the other repetitions are built relatively to this one. As above, their coordinates
are built as a linear combination of the vectors of thepavingmatrix as follows:

∀ r, 0≤ r < srepetition, refr = o + P × r mod sarray (2)

wheresrepetition is the shape of the repetition space,P the paving matrix andsarray the shape of the array.
Gaspard adopts a component-based approach.Repetitive components(MonochromeMode in Fig-

ure 1)are used to express data parallelism in an application. Sets of input and outputpatterns(scope
of involved data in array structure) consumed and produced by the repetitions of the interiorpart
(a data processing task). Thus a repetitive component provides the repetition context for its interior
task. The repetitions are assumed to be independent and schedulable following any order, generally in
parallel. In comparison, Ahierarchical componentcontains severalparts, and it allows to define complex
functionality in a modular way and provides a structural aspect of the application. Specifically, task
parallelism can be described using such a component. The shape of a pattern is described according
to a tiler connector, which specifies the tiling of produced and consumed arrays. Aninter-repetition
dependency(IRD) is used to specify an acyclic dependency among the repetitions of the same component.
Particularly, an IRD connector leads to the sequential execution of repetitions. Adefaultlinkprovides a
default value for repetitions linked with an IRD, on condition that the source of dependency is absent.

4 Definition of the reactive control model

This paper presents is a control model for adaptive high-performance computing in the framework of
Gaspard: basic concepts are described, and both parallel and hierarchical composition is formally defined
as well as synchronous reactive semantics is integrated in order to benefit from existing formal validation
and synthesis tools (Gamatié et al., 2008b; Gamatié et al., 2009). In addition to functional specification,
this control model is also adopted in IP deployment for reconfigurable FPGAs, which is detailed in (Quadri
et al., 2010).

4.1 Mode-based control modeling

Control behavior in Gaspard is expressed through a mode-switch based control model, which derives
from mode automata (Maraninchi and Rémond, 2003). The notion of exclusion between modes helps
to separate different computations in a modular way. As a result, programs are well structured and fault
propagation from one mode to another is reduced. The controlmodel is mainly composed of concepts
such asMode SwitchandState Graphs.

4.1.1 Mode switch and modes
A mode switch contains at least one mode; and offers a switch functionality that chooses one mode to
execute, among several alternative present modes (Labbaniet al., 2005). The mode switch in Figure 2a
illustrates such a component having awindowwith multiple tabs and interfaces. For instance, it has anm
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(a) A mode switch. (b) A state graph.

(c) Composition of the concepts.

Figure 2: Basic concepts and their composition of Gaspard control model.

(mode value input) port as well as several input/output ports such asid (data input) andod (data output).
The modes,M1, ..., Mn, in the mode switch are identified by the mode values:m1, ...,mn. The switch
between the modesMi is carried out according to the mode value received through the portm. Each mode
can be hierarchical or elementary in nature. All modes have the same interface (i.e.,id andod ports).

4.1.2 State graphs
A Gaspard state graph (Figure 2b), is similar to Statecharts(Harel, 1987) and its synchronous variant
SyncCharts (Andre, 2004) and mode automata (Maraninchi andRémond, 2003), which are used to model
the system behavior using a state-based approach. A Gaspardstate graph is a sextuplet (Q, Vi, Vo, T , M ,
F ) where:

• Q is the set of states defined in the state graph;

• Vi, Vo are the sets of input and output variables, respectively.Vi andVo are disjoint, i.e.,Vi ∩ Vo = ∅.
V is the set of all variables, i.e.,Vi ∪ Vo;

• T ⊆ Q × C(V ) × Q is the set of transitions, labeled byconditionson the variables ofV . The
conditionsC are Boolean expressions onV ;

• M is the set of modes defined in the state graph;

• F ⊆ Q × M represent a set of surjective mappings betweenQ andM .

Gaspard state graph is considered as a graphical representation of transition functions as discussed in
(Gamatié et al., 2008a), hence there are no initial states defined. Eachstateis associated with some mode
value specifications, andTransitionsare conditioned by some events or Boolean expressions.
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4.1.3 Composing mode switch and state graph
A component, whose behavior is exhibited by Gaspard state graphs, is calledstate graph component. A
mode switch component indicates a component implementing amode switch. Then amacrocomponent
can be used to compose state graph component and mode switch components together. The macro in
Figure 2c illustrates one possible composition, i.e., other compositions are also possible. For instance,
one state graph component can be associated with several mode switch components. In the macro, the
state graph component produces a mode value (or a set of mode values) and sends it (them) to the mode
switch component. The latter switches the modes accordingly.

4.2 Composition definitions

Composition of the control model is detailed in this paper due to the requirements of expressivity and
verifiability. The parallel and hierarchical composition has been formally defined so that complex systems
can be specified and system behavior is clear and verifiable bysome formal verification tools. With the
clear composition definition, it is also possible to abstract the control part of a system in order to make the
verification more efficient.

4.2.1 Parallel composition
The parallel composition can be specified in two ways: composing state graphs directly or composing
state graph components. The first one is similar to the parallel composition defined in SyncCharts and
mode automata. The second one is considered as normal Gaspard component composition.

A set of state graphs (Figure 3) can be composed together. Thecomposition of state graphs in this
manner is considered asparallel composition. Figure 3 illustrates a parallel composition example. The
two state graphs are placed in the same ellipse, but separated by a dash line.

Figure 3: An example of the parallel composition of state graphs.

Two state graphsG1: = (Q1, V 1
i , V 1

o , T 1, M1, F 1) and G2: = (Q2, V 2
i , V 2

o , T 2, M2, F 2) are
considered here to illustrate the composition. The Composition operator is noted as:‖. The parallel
composition is defined as:

(Q1, V 1
i , V 1

o , T 1, M1, F 1) ‖ (Q2, V 2
i , V 2

o , T 2, M2, F 2)
= ((Q1 × Q2), (V 1

i ∪ V 2
i )\(V 1

o ∪ V 2
o ), (V 1

o ∪ V 2
o ), T , (M1 × M2), F ),

where

F = {((q1, q2), (m1, m2)) |(q1, m1) ∈ F 1 ∧ (q2, m2) ∈ F 2 },
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and

T = {((q1, q2), C, (q1′, q2′))|(q1, C1, q1′) ∈ T 1 ∧ (q2, C2, q2′) ∈ T 2 },

whereC is a new expression onC1 andC2: C = C1 and C2, and (V 1
i ∪ V 2

i )\(V 1
o ∪ V 2

o ) implies any
output variable is not considered as an input variable in thecomposed graphs, hence it should be removed
from the input variable set.

These state graphs in a parallel composition can be triggered to carry out transitions at the same time,
upon the presence of the source states and events of both two state graphs. Moreover, the number of
transitions fired is supposed to be always the same for these state graphs, i.e., the inputs of these state
graphs have the same size.

As state graph components are considered as normal Gaspard components, the resulting component
composed of several state graph components can be also considered as a normal Gaspard component. The
composition of state graph components is illustrated with an example in Figure 4. State graph components
can also be composed with other Gaspard components. But notethat the interfaces of these state graph
components should be coherent, i.e., it ensures the same transition rate of state graphs. In addition, state
graph components can also be composed with standard Gaspardcomponents, which can specify the
control out of capacity of state graphs, e.g., some binary operations on events or conditions on numbers.

Figure 4: Parallel composition of state graph components inGaspard.

4.2.2 Hierarchical composition
Hierarchical composition of state graphs is defined similarto that of SyncCharts and mode automata. A
state in the state graph A can be refined by another state graphB, where B is considered as sub graph of
A. Consider a state graphG: = (Q, Vi, Vo, T , M , F ) whereQ = {q0, q1, ..., qn} and a corresponding
set of refining automata{Gk}k∈[0,n], whereGk = (Qk, V k

i , V k
o , T k, Mk, F k). The composition can be

defined (inspired from (Maraninchi and Rémond, 2003)) as:

G ⊲ {Gk}k∈[0,n] = (Q′, V ′
i , V ′

o , T ′, M ′, F ′)

where

Q′ = Q ⊲ {Qk}k∈[0,n] =
⋃n

k=0{q
k ⊲ qk

j | j ∈ [o, nk]} ,
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V ′
o = Vo ∪

⋃n

k=0V
k
o ,

V ′
i = (Vi ∪

⋃n

k=0V
k
i )\V ′

o ,

T ′ = {(qk ⊲ qk
j1

, C, qd′ | (qk, C, qd) ∈ T ∧ j1 ∈ [0, nk]}

∪{(qk ⊲ qk
j1

, (C ∧ ¬
∨

(qk,Cm,qd)∈T Cm), qk ⊲ qk
j2

) | (qk
j1

, C, qk
j2

) ∈ T k ∧ j2 ∈ [0, nk]} ,

M ′ = M ∪
⋃n

k=0M
k ,

and

F ′ = {((q, q1, .., qn), (m, m1, ..., mn)) | (q, m) ∈ F ∧ (q1, m1) ∈ F 1 ∧ ...∧ (qn, mn) ∈ Fn } ,

qk ⊲ qk
j denotes the stateqk is refined by the stateqk

j . T ′ has two kinds of transitions:{(qk ⊲

qk
j1

, C, qd | (qk, C, qd) ∈ T ∧ j1 ∈ [0, nk]} implies the transitions ofG, andqk andqd denotes the source
and target state respectively. Asqk is refined by states ofGk, qk ⊲ qk

j1
is used instead ofqk. The target

state is also a refined state ofqd, however, which state is entered is decided at run time. Hence,qd′ is used
instead.{(qk ⊲ qk

j1
, (C ∧ ¬

∨

(qk,Cm,qd)∈T Cm), qk ⊲ qk
j2

) | (qk
j1

, C, qk
j2

) ∈ T k ∧ j2 ∈ [0, nk]} denotes the

transitions inGk, i.e., these transitions are fired when no transitions ofGk are fired. This condition is
expressed by:¬

∨

(qk,Cm,qd)∈T Cm. qk
j1

andqk
j2

denote the source and target states of a transition inGk.
Figure 5 shows an example of the hierarchical composition ofstate graphs. In this example, the stateS3

is refined by the state graph composed of statesS4 andS5, denoted byS3 ⊲ S4 andS3 ⊲ S5.

Figure 5: An example of hierarchical composition of state graphs.

Hierarchical composition using both state graph components and mode switch components can be also
achieved. In this case, an state graph component acts as a mode in a mode switch component, thus it
is only activated in this mode. The mode switch component therefore defines the collaboration between
its corresponding state graph component and other state graph components acting as modes, where state
graphs of the latter act as state refinements of state graphs of the former. An example is illustrated in
Figure 6. The state graph associated withSGT1 has three states:S1, S2 andS3, which correspond to
three modesM1, M2 andM3 respectively. In theMST , SGT2 is defined as the modeM3, i.e.,SGT2 is
activated only whenS3 is active. Hence the state graph ofSGT2 is considered as a refinement (sub state
graph) ofSGT1’s S3.

4.3 Reactive semantics

Basic Gaspard control constructs have been presented herein before, but its explicit semantics is still
not given. We propose to integrate reactive semantics, inspired from mode automata (Maraninchi and
Rémond, 2003), in order to confer certain expected properties related to safe design as well as enhance
design correctness verifiability. The integration result of the control model is called Gaspard mode
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Figure 6: Hierarchical composition of state graph components in Gaspard.

automata. The basic structure of Gaspard mode automata is presented by a composition of state graph
component and mode switch component, i.e., theMacro in Figure 2c. The state graph component in
this macro structure acts as a state-based controller and the mode switch component achieves the mode
switch function. Compared to mode automata, where computations are set in the states, the computations
in Gaspard mode automata is placed in the mode switch component, i.e., outside of the Gaspard mode
automata states. In Gaspard mode automata, a state graph component and its associated mode switch
components are expected to be specified in the same repetition context in order to force the same executing
cadence upon all the components.

There is also the incompatibility between specifications for parallelism in Gaspard and sequential
trace semantics of automata. Hence, the parallel model is mapped onto a timed model through the time
dimension defined in Gaspard. In addition, additional constructs (inter-repetition dependencyanddefault
link) are used to build a connecting link between the preceding and the following states of state graph
components. More precisely, IRD specifications should be specified for the macro structure when it
is placed in a repetition context. The reasons are as follows: the macro structure represents only one
transition from source state on target state, whereas a Gaspard mode automata should have continuous
transitions. Hence the macro should be repeated to enable multiple transitions. Thus the Gaspard mode
automata can be built and executable.

4.4 A Gaspard mode automaton example

Figure 7 shows a Gaspard mode automata example, which can be transformed into synchronous mode
automata eventually.MACRO is placed in a repetitive context, where each of its repetitions models one
transition of mode automata. AnIRD links the repetitions ofMACRO and conveys the current state
(sends the target state of one repetition as the source stateto the next repetition) between these repetitions.
The states and transitions of the automata are encapsulatedin theSGT . The data computations inside the
mode are set in the modes.SGT and its modes share the same repetition space, so they run at the same
rate or clock. The detailed formal semantics of Gaspard modeautomata can be found in (Gamatié et al.,
2008a).
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Figure 7: An example of Gaspard mode automata.

4.5 Abstract syntax of the control model

Models and their transformations sometimes are big in size and have divers technologies or domains
involved, which leads to difficult understanding, maintenance and verification (Combemale et al., 2006;
Mohagheghi and Dehlen, 2008; Chen et al., 2005). The extended control model and its transformation is
first described using abstract syntax (Figure 8), as abstract syntax helps to concentrate on domain-specific
concepts, models, and their transformations are thereforesimplified and easy to be verified, particularly
the coherence between the models involved in the transformation.

HTask ::= {Task}; {Connection}; {Deployment} (r1)
Task ::= task_id ; Interface ; Body (r2)
Interface ::= i, o : {Port} (r3)
Port ::= datatype ; shape (r4)
Body ::= Structuree | Structurer | Structureh | Structuremt | Structuresg (r5)
Structuree ::= null (r6)
Structurer ::= ti : {T iler} ; (r, T ask) ; to : {T iler}

| ti : {T iler} ; (r, T ask) ; to : {T iler} ; {IRD} (r7)
T iler ::= Connection ; (F ; o; P ) (r8)
Structureh ::= HTask (r9)
Connection ::= pi, po : Port (r10)
Structuremt ::= {(mk, Tk) : (mode_id, Task)}, ∀i 6= j

⇒ Ti.Interface = Tj .Interface

& Task.Interface = Tk.Interface ∪ pm (r11)
Structuresg ::= sg_id ; S ; Tr ; sc ; mo ; reset (r12)
S ::= {(state_id, Mode) | (state_id; Structuresg; Mode)} (r13)
Tr ::= {(state_id; label; state_id)} (r14)
IRD ::= Connection ; dep_vector; default (r15)
Deployment ::= {ip_id ; task_id ; depl_info} (r16)

Figure 8: An abstract syntax extract of Gaspard concepts forfunctionality specification.

A GaspardHTask (rule (r1) in Figure 8, where{} denotes a set; we call a Gaspard component
as a task from the viewpoint of programming language here) consists of a set ofTasks, Deployment
andConnections(r10), which connect the tasks. These tasks share common features (r2): a task_id, an
interface(r3 ) and aBody(r5). Interfacespecifies input/outputPorts (typed byi or o in rule (r3), and
Port is defined in rule(r4)) from which each task receives and sends multidimensional arrays.Taskhas
many types, including elementary, repetitive, hierarchical, mode switch, and state graph task. The type of
aTask, is identified by the structure in theBodyof the task. These task types are described as follows:
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• An elementary task(r6) corresponds to an atomic computation block. Typically, itrepresents a
function or an IP. Elementary task can be associated with an IP throughDeployment.

• A repetitive task(r7) expresses data-parallelism in a task. The attributer (in the rule(r7)) denotes
therepetition spacefor repetitions. In addition, patterns involved in each task repetition are defined
via tilers (r8). IRD can be also specified in a repetitive task(r15), which describes the dependency
between repetitions of the repetitive task.dep_vectorspecifies which repetition relies on which
repetitions anddefaultgives a default value.

• A hierarchical task(r9) is actually a HTask. It is represented by a hierarchical acyclic task graph, in
which each node consists of a task, and edges are labeled by arrays exchanged between task nodes.

• A mode switch task(r11) achieves mode switch function as presented in Section 4.1. It is composed
of tasks as mode, which have the same interface. The interface of the mode switch task is the union
of the interface of its internal tasks and the mode port, i.e., pm.

• A state graph task(r12) is associated with Gaspard state graphs that provide mode values for
corresponding mode switch tasks. It is composed of a set ofstates(r13) andtransitions(r14). A
resetflag indicates reset of current statesc for a state graph.mo denotes the output mode.

Deployment(r16) indicates how to find and integrate an implementation, considered as an IP, of
a specific elementary task. Each elementary task is associated with an IP, anddepl_info describes
necessary information for the integration of the IP into thesystem.

5 Transformation into the synchronous model

In Gaspard, the proposed control has been applied on functional specification, IP deployment, etc. The
corresponding model transformations are also under development. Here the transformation from Gaspard
control integrated into functional specifications to synchronous languages (Benveniste et al., 2003) is
illustrated. The latter is used for the formal validation ofGaspard models. The transformation is described
with the help of the abstract syntax of both the Gaspard modeland the synchronous equational model.

A code segment of the synchronous dataflow language Lustre (Figure 9) is used for the introduction
of some basic concepts here. A node is a basic functionality unit in Lustre. Each node gives the same
results with the same inputs because of its determinism. Nodes have modular declarations that enable
their reuse. Each node has an interface (input at line (l1) and output at (l2)), local definition (l3), and
equations (line (l5) and (l6)). Variables are called signals in Lustre. Equations are signal assignments. In
these equations, there are possibly node invocations (l5) that are declared outside this node. Obviously, in
Lustre, modularity and hierarchy are inbuilt. The composition of these equations, denoted by “;”, means
their parallel execution w.r.t. data-dependencies. The node has the same meaning independently of the
equation order.

node node_name (A1:int^4) (l1)
returns(A3:int^4); (l2)
var A2:int^4; (l3)

let (l4)
A2 = a_function(A1); (l5)
A3 = A1 + A2; (l6)

tel (l7)

Figure 9: A simple example of Lustre code.
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5.1 Synchronous equations abstract syntax

This abstract syntax is constructed based on common aspectsof synchronous languages, which is intended
to model three synchronous dataflow languages such as Lustre, Signal, and Lucid synchrone. The syntax
is illustrated in Figure 10:

Module ::= {Node} (s1)
Node ::= nodename ; Interface ; EqSystem (s2)
Interface ::= Interfacei ; Interfaceo (s3)
Interfacei ::= {SignalDeclaration} (s4)
Interfaceo ::= {SignalDeclaration} (s5)
SignalDeclaration ::= signal ; DataType (s6)
DataType ::= type ; shape (s7)
EqSystem ::= {Equation} | CaseEquations | Autmata | extnodelink (s8)
Equation ::= EqLeft ; EqRight (s9)
EqLeft ::= null | signal (s10)
EqRight ::= signal | SignalDelay | Invocation (s11)
Invocation ::= nodename ; {signal} (s12)
CaseEquations ::= case ; {(modevalue, Equation)} (s13)
SignalDelay ::= signal ; delayinstant ; {defaultvalue} (s14)
Automata ::= aut_id ; S ; Tr ; si ; reset (s15)
S ::= {(state_id | (state_id ; Automata )} (s16)
Tr ::= {(state_id ; label ; state_id)} (s17)

Figure 10: An abstract syntax extract of basic synchronous concepts.

Only a brief description of synchronous languages’ syntax is given here. A more detailed description
can be found in (Yu, 2008). ANode is defined as a basic functionality. All the nodes in an application
are declared in a module (s1). A node (s2) is composed ofInterface andEqSystem. TheInterface

has two families:Interfacei andInterfaceo (s3). An EqSystem is the body of a node and defines the
function of the node. AnEqSystem (s8) can have at least oneEquation, CaseEquations, Automata,
or anextnodelink, which indicate four implementation types of theEqSystem. An Equation is either
an assignment of asignal, SignalDelay or anInvocation of another node (s9, s10 ands11). Signal

andSignalDelay are variables used in the program. AnInvocation indicates a function call to another
node defined in the module. ACaseEquations contains a case statement where equations are activated
according to some condition such as mode values (s13). A SignalDelay is similar to thepre operator
(Benveniste et al., 2003), which takes the value of the signal at the previousdelayinstant instant (s14).
delayinstant is defined as a positive integer. Adefaultvalue is a default value of a signal when no value
is provided for the previous instant.Automata (s15) have anS (set of states,s16), Tr (set of transitions,
s17), an initial statesi, and areset flag. Thereset implies a restart of the automata, i.e., the initial state
si is taken as entering state. Finally anextnodelink indicates an external implementation of the node, i.e.
a node is implemented by other languages.

5.2 Transformation between the two models

The first step of transformation is structural, and the second step involves semantic aspects. The

correspondence in the transformation between Gaspard and synchronous concepts is indicated by
T

=⇒.
In order to distinguish the concepts of Gaspard and the synchronous model, the number of the rule, in
which the concept appears in the syntax, is also given in parentheses following the concepts. The rule
numbers of Gaspard concepts begin with r, and those of synchronous model start with s.

5.2.1 Structural transformation
The synchronousModule(s1) is the container of all nodes. A GaspardHTask(r1) is first translated into a

Node(s2):HTask
T

=⇒ Node. A Task(r2) is also translated into aNode: Task
T

=⇒ Node. An Interface(r3)
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can be translated intoInterfaces(s3): Interface
T

=⇒ Interface. A Port (r4) in anInterfaceis a connection

point of a Gaspard task, it is translated into asignal: Port
T

=⇒ signal.
A Body(r5) represents the internal structure of a task. It can be considered as anEqsystem(s8):Body

T
=⇒ Eqsystem. Five kinds of structures are involved in a body. AStructuree (r6) represents the structure
of an elementary task, and the deployment will be used to integrate an IP for this task. AStructurer

(r7) is translated into a set ofequations(s9) (Yu et al., 2008b). AStructureh (r8) is a structure that has a

compound task, i.e.,HTask. A Structuremt (r11) corresponds toCaseEquations(s13):Structuremt T
=⇒

CaseEquations. A Structuresg (r12) can be translated into eitherCaseEquations(s13) orAutomata(s15):

Structuresg T
=⇒ CaseEquationsor Structuresg T

=⇒ Automata. Finally, Deployment(r10) is translated

into anextnodelink(s8), which indicates the integration of an external implementation:Deployment
T

=⇒

extnodelink.

5.2.2 Transformation of behavioral aspects
In addition to structural aspects, transformation also involves behavioral aspects of Gaspard specifica-
tions. These aspects include the transformation of parallelism and control. The former, which includes
elementary, repetitive, and hierarchical task transformation, has been presented in (Yu et al., 2008b). The
latter, including mode switch and state graph tasks will be presented here.

IRD (r15), which enforces serialized execution and passes values between repetitions, is translated

by SignalDelay(s14): IRD
T

=⇒ SignalDelay. A SignalDelayis used to convey the previous value of a

signal.Depvectoris translated bydelayinstant: depvector
T

=⇒ delayinstant. These two concepts are used
to indicate which previous value to take in Gaspard and synchronous program.

A Structuremt (r11) corresponds toCaseEquations(s13). Each pair of (mk, Tk), i.e., a mode, is
translated into (modevalue, Equation) in a case statement. Themodevalueis the condition andEquationis
invoked when the corresponding condition is evaluated as true. TheEquationrepresents the computation
to carry out in a mode.

A Structuresg (r12) is translated into eitherCaseEquations(s13) orAutomata(s15) according to
target languages. The former translate state graphs into pure equations with case statements, while the
latter is a direct transformation which keeps explicit structure of states and transitions.

6 Implementation within MDE

This section concentrates on the implementation of previously mentioned control modeling and transfor-
mation in the MDE framework, based on conceptual descriptions of models and their transformation.

6.1 Gaspard control metamodel

UML (Object Management Group, 2007b) is adopted in Gaspard to specify state graphs, which is
actually a subset of UML State machines. It also helps to ensure the compatibility between Gaspard
control with the MARTE profile. An extract of the Gaspard control metamodel is illustrated in Figure 11.
This metamodel is proposed as a subset of the UML State machines metamodel in structure so that the
compatibility between them simplifies the following transformation.

6.2 Model transformation

Based on the previously presented transformation on the foundation of abstract syntax, model transfor-
mation rules are built on OMG Query / Views / Transformations(Object Management Group, 2005) tools
such as MOMOTE tool (MOdel to MOdel Transformation Engine) (INRIA DaRT team, 2009). Most part
of the transformation from Gaspard to synchronous languages has been developed as Eclipse plugins
(Yu et al., 2008b). An extension is expected to cover transformations to other platforms. Here, only
an example is given in Figure 12 to illustrate the resulting automata (Lustre mode automata) obtained
from Figure 2(b). Equations of data-parallel processing are not included in this example as Lustre mode
automata is only used for model checking purpose.
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Figure 11: An extract of GaspardStateGraph, which is proposed according to the metamodel of UML
state machines.

AUTOMATON auto
STATES

s1 init [ state = s1; mode = M1; ]
s2 [ state = s2; mode = M2; ]
s3 [ state = s2; mode = M3; ]

TRANS
FROM s1 TO s2 WITH [ e1 = true and e2 = true]
FROM s2 TO s1 WITH [ e1 = true ]
FROM s1 TO s3 WITH [ e3 = true ]
FROM s3 TO s1 WITH [ e1 = true ]
FROM s2 TO s3 WITH [ e1 = true and e3 = true]
FROM s3 TO s2 WITH [ e2 = true ]

PROCESS auto [in(e1, e2, e3), out(state, mode)]

Figure 12: An extract of a Lustre mode automaton obtained by transformation.

7 Some applications

Gaspard is well-fitted for applications with repetitive data-parallel computations, which include image
processing, multimedia video codecs, software-based radio and radar signal processing, etc. A modern
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cellular phone is then taken as a typical example in this paper, which have complex multimedia
functionalities: camera, games, MP3 music, video. Let us focus on the video part. A global model view
of this multimedia module is illustrated in Figure 13. The played video clips are obtained from different
VideoSources, either on-line library or local storage. There are different displayImageStylesuch asBlack
& White; Negative; Sepia; or Normal, meaning no effect. In addition, theResolutionof the video can be
set toHigh, MediumandLow. Finally, the color can be in eitherColor or Monochromefor ColorEffect
options.ImageStyle, ResolutionandColorEffectinclude both control and data processing parts.

Besides user commands, the video display modes are controlled by the system by theController,
which validates mode change requests from other componentsaccording to current mode configuration
and the available computational resources. This specific component is either coded manually, or generated
automatically bydiscrete controller synthesisaccording to QoS requirements, including the status of
energy level (EnergyStatus) and the communication quality (CommQuality). The former indicates the
energy level according to events received from an energy monitor component, and the latter provides
the communication quality level according to the energy level and the on-line transmission bandwidth of
received data.

Figure 13: A global model view of the multimedia functionality module.

The above module has different configuration modes following which its components achieve algo-
rithms for a suitable image display. Depending on the resource status, e.g., energy level, communication
bandwidth, the display quality of an on-line video varies. Hence, each mode is associated with non-
functional properties, which must be satisfied in order to display images at a good quality level. The modes
defined in the components are characterized by quantitativeattributes representing the following non-
functional properties: energy consumption (E), communication quality required (CQ), computing resource
consumption (CR) and memory consumption (M). These non-functional requirements are considered as
instantaneous consumption of quantitative resources thatmay vary from one system reaction to another.
The values associated locally with the modes are combined additionally when components are composed
in parallel, so as to obtain global costs for the whole systemfrom the local costs of its components.

Possible behaviors involving the above characteristics are, e.g., that the consumption of a resource
must respect the bounds defined by its capacity. Therefore, if a new functionality is executed, then the
other tasks that are already running should switch to lower consumption modes, possibly reducing their
quality as well. Or, if the level of the battery goes down, then the control should switch task modes so
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that the lower energy capacity is respected. Such control strategies are defined by properties expressed in
terms of the states and inputs of the system. The Sigali tool (Marchand et al., 2000) allows one to express
Boolean properties on states and inputs (P : B

n → B), and to build cost functions, associating numerical
values (here, assumed to be integer, without loss of generality) with Boolean functions of states and inputs
(f : B

n → N). We essentially considerinvariance, by specifying a subset of system states, defined by a
Boolean propertyP : P is invariant for the system if for all states in this subset, transitions from these
states lead to states in the same subset. This invariance property of the system is noted∀2P : the Boolean
propertyP is true at every instant of every trace of the system.

7.1 Model checking

Design validation through model checking of functional properties was first studied (Yu et al., 2008a).
One of the examples is an exclusion relation between two modes from two different components. For
instance, in order to avoid waste of resources, it can be useful to specify that the modes B&W (ImageStyle
component) and Color (ColorEffectcomponent) are never active at the same instant. This invariance
property is denoted:∀2

(

B&W ∧ Color
)

. Nonfunctional properties, for instance, resources provided by
the environment, platform or hardware, can also be checked.By associating each state of the automata
with cost functions, a global cost function has been computed when composing these automata in parallel.
This global function defines, for each resource, the sum of its cost functions computed from all possible
combination of active states in the global automaton. A resource bound is then specified in the system.
Finally, the reachability of certain states is checked under this configuration of resource costs. This
example shows a fast verification in consideration of functional and/or nonfunctional properties in order
to to evaluate complex systems at a low cost in a fast manner, compared with other approaches that need
to specify the system in a precise way (Yu et al., 2008a).

7.2 Discrete controller synthesis

Another example involves discrete controller synthesis (Gamatié et al., 2009): for a cost function where
the global cost is defined by the sum of the local costs of the components, e.g. for memory footprint,
there is a bound defined by the size of the memory. Thus, if we note byfM = fIS + fV S + fR + fCE

the cost function associating with each global state of the system, the memory usage in this state, we
can enforce the fact that this usage will always be bounded bythe memory available (here,90 units),
by the invariance synthesis objective:∀2

(

fM ≤ 90
)

. The bound itself can vary in time: it is actually
the case for the available energy. In this case, we add to our model an automaton which represents the
environment, namely here the energy resource available. Weassociate a cost functionfEA with this
automaton, associating with its states the energy quantityinstantaneously available. Then, we can bound
the energy consumptionfE by the available energy:∀2

(

fE ≤ fEA

)

.
With these synthesis operations, different policies or strategies can be obtainedautomaticallyby

changing the objectives, hence providing for separation ofconcerns and making the models easy to reuse.
The controller computed by Sigali is extracted, and co-simulated with the system with the SIGAL SIMU

tool. Figure 14 shows a particular simulation step, where the controller enforces the values of two
controllable inputs so as to keep the properties satisfied. At this step, the system is in high energy,
high resolution, and color state. We then simulate the discharge of the battery by the occurrence of
the uncontrollable inputevent_energy_down. On the controllable inputs panel, the clearer inputs
shown with ellipsis are those whose values have been forced by the controller. It is here the case of the
inputctr_resolution, meaning that the controller has triggered the transition from high to medium
resolution state.

7.3 Hardware synthesis

The control model has also been applied to move from high level MARTE specifications to reconfigurable
architectures such as FPGAs, and specifically those supporting partial dynamic reconfiguration. The
continuation of this work is in progress in the project FAMOUS, in which the OMG MARTE profile will
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Figure 14: Simulation of the controlled system

be extended into RecoMARTE, for the design of reconfigurablearchitectures, implemented on FPGAs. In
addition, slight extensions have been made to the existing control/data flow concepts and the deployment
level in our framework to integrate the partial dynamic reconfiguration aspects. An initial version of
generating a complete IP core from model transformations has also been developed, along with a solution
to avoid de-synchronization related to task parallelism inthe modeled applications (Quadri et al., 2010).
Currently the Xilinx based partial dynamic reconfigurationdesign flow is adopted due to its availability
and extensible nature.

8 Conclusions

This paper presents a reactive control model and its transformation in a model-driven engineering-
based SoC co-design framework for high-performance systems, which is compliant with the MARTE
standard. The control model is based on mode automata in order to enable the specification of adaptivity
for high-performance systems. Our contribution is the integration of composition and formal semantics
into this model to enrich its expressivity and verifiability. Model transformation towards synchronous
languages has also been studied in order to benefit from validation tools associated with these languages.
Furthermore, the extended control is also integrated into Gaspard IP deployment for reconfigurable
FPGAs, besides functional specifications. The model is illustrated with its abstract syntax, based on which
a conceptual transformation is given. An implementation ofthe metamodel and model transformation in
Eclipse has been carried out, and it is partially accomplished.

One perspective of this work is the application of the control model towards other target technologies
such as SystemC. Reconfigurability is also a very interesting research topic in these platforms. Our
control proposition is one of possible solutions, which take high-performance computing into account.
Another perspective is related to the implementation of thecontrol model, its transformation, and formal
verification in the unique framework of model-driven engineering. The backstage technologies should
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be made transparent to users and the only interface to users would be an integrated development and
simulation environment, such as Eclipse.
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