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Multiparameter Shape Optimization

0.1. Introduction

Optimization tools in engineering design often require a high computational cost.
This cost originates from two main sources: First, the evaluation of the objective func-
tion involved in such problems is in general very expensive.Then, depending on the
method employed and on the dimension of the design vector, the optimization proce-
dure requires a high number of evaluations of the objective function to reach the final
solution. For instance, when studying an optimization problem in fluid dynamics,
many difficulties occur. First, the physical problem is modeled by complex equations
(such as Navier-Stokes equations), so that the evaluation of the objective function is
cumbersome. Then, the numerical computation of the physical problem is expen-
sive. And finally, the fine parameterization of the object to optimize leads to a high
dimension design vector which results in a stiff optimization search. Many authors
proposed hierarchical techniques to make the optimizationalgorithm cheaper. Among
these techniques, we can cite the use of a simplified model of the physical problem
(for exemple, the use of Euler equations instead of the Navier-Stokes ones), the use
of a metamodel instead of the exact model, or the use of a hierarchical parameteri-
zation instead of a single level one. Here we do not describe nor give an exhaustive
list of these hierarchical techniques. The interested reader can refer for instance to
[GIA 06]. In our study, we are interested only by techniques concerning the parame-
terization level of the object to optimize (Multilevel algorithms).

To improve the efficiency of the optimization algorithms, some authors propose to
use a multilevel approach instead of a direct one. This meansthat the optimization is
carried out, at some steps, on a coarse level where not all thedesign parameters are
considered. This idea is inspired from the multigrid theoryused to solve problems
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4 Multidisciplinary Design Optimization in ComputationalMechanics

with differential equations. Indeed, it is well known in such problems, that the com-
putation of a fine solution is expensive, not only because of the increase of the cost
of a single iteration (resolution of a high dimension linearsystem), but also because
of the low rate of convergence of the iterative algorithm. This is why the multigrid
techniques use a coarse level to accelerate the fine level resolution. Several strategies
can be considered, ranging from simple level increase to V-cycle or Full Multi-Grid
approaches [DES 04].

The idea is similar in optimization. Earlier studies reproduced successfully the
multigrid concept and strategies to optimization problems. In particular, Jameson
and Martinelli [JAM 98] used the multigrid concept to solve simultanously the flow
equations and the optimization problems. Lewis and Nash [LEW 00] used the same
concept to solve optimization problems of systems governedby differential equa-
tions. Désidéri et al [DES 04, DES 05, ABO 06] generalized this approach to elabo-
rate a multilevel shape optimization algorithm where the shape is parameterized using
Bézier curves or a Free-Form Deformation (FFD) technique [SED 86].

In these studies, the coarse level optimization is carried out on subspaces that
depend on the parameterization of the geometry of interest.Moreover, when the
Bézier or FFD parameterization is employed, the transfer from a coarse level to a
finer one is done using the Bézier degree-elevation process,which is a straightforward
technique that permits to add some control points without anay modification on the
shape. Eventhough, it can not be generalized to any optimization problems.

In the present study, we propose a more efficient and more general method that
can accelerate the convergence of the optimization algorithm and can be employed
for any kind of problem. This method combines the multigrid concept with the spec-
tral decomposition of the Hessian matrix of the cost function. Indeed, the smallest
eigenvalues of the Hessian matrix correspond to directionswhere the convergence of
the optimization algorithm is very slow, while the highest eigenvalues correspond to
directions where the convergence is fast when descent optimization algorithms are
used. Thus, instead of iterating on the entire design space,our algorithm serach for
the solution in a selected subspace in order to accelerate the resolution in the direc-
tions of low convergence rate. Then it pursues the search on the entire design space.
This can be done by several strategies analogous to those of the multigrid methods.

This chapter is organized as follows: we start first by presenting our multilevel
approach. Then, we describe in details the implementation of this method in the case
of the Multidirectional-search Algorithm [DEN 91]. The method is validated on an
analytical test function and then applied to the shape reconstruction problem and to
the design of a SuperSonic Business Jet (SSBJ).
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0.2. Multilevel optimization

0.2.1. Description of the Multilevel algorithm

In this section, we present a multilevel algorithm that combines the multigrid con-
cept with the spectral decomposition of the Hessian matrix.As mentioned in the
introduction, the idea of this algorithm is motivated by thefact that the smallest eigen-
values of the Hessian matrix correspond to directions wherethe convergence of the
optimization algorithm is very slow, while the highest eigenvalues correspond to direc-
tions where the convergence is fast (see §0.3.1). Thus, instead of iterating on the entire
design space, this algorithm search for the solution in a selected subspace in order to
accelerate the resolution in the directions of low convergence rate. Then, it pursues
the search on the entire design space.

Let E be the entire design space andX0 ∈ E is a starting design vector. The mul-
tilevel algorithm starts first by computing the Hessian matrix H(X0) and its eigen-
vectorsV = (v1, ..., vn). These vectors are ranked from the smallest to the highest
corresponding eigenvalues1. Suppose thatX(l) ∈ E is the design vector obtained at a
level l. Then, the multilevel algorithm search for the new design vector X(l+1) ∈ E
at the new levell + 1 by adding a correction term which minimizes the cost function
in the current optimization subspace. This is done as follows:

Suppose that the new level is characterized bym = ml+1 parameters (m ≤ n)
and consider the basisVm and the subspaceEm defined by:

Vm = (v1, ..., vm) [1]

Em = {z = Vmy | y ∈ ℜm} [2]

The correction term must be a vector fromEm. Hence, to find the best correction,
the optimization algorithm search for a vectory ∈ ℜm so that the cost function:

g(y) = f(X(l) + Vmy) [3]

is minimized. In this way, we can either go from a coarse to a finer level or from a fine
to a coarser level without loosing any information obtainedfrom the former level. Let

1. In the cas of non positive matrices, these vectors are ranked from the smallest to the highest
absolute values of the corresponding eigenvalues
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y∗ be the optimum value that minimizes (3). Then, the design vector of the new level
is given by:

X(l+1) = X(l) + Vmy∗ [4]

The resolution at any level can be full or incomplete. The algorithm can be car-
ried out using several levels, ordered in some way called a cycle, by analogy to the
multigrid terminology. So a cycle is defined by a sequence of levels of dimensions
(m1, m2, ..., mnl) and by the corresponding numbers of iterations(it1, it2, ..., itnl)
wherenl is the number of levels in the cycle. Then, the cycle can be repeated many
times if necessary.

The multilevel algorithm is summarized below:

1) Read the input data and initialize the design variableX0;

2) initialize the number of cycles atk = 0;

3) whilek < nc and stopping criterion not satisfied, perform a multilevel cycle:
a) compute the Hessian matrixH(Xk) and evaluate its eigenvectors;
b) initialize the level number atl = 1;
c) letX l = Xk

d) while l ≤ nl do:
-i. select a basisVm with m = ml eigenvectors,
-ii. use an optimization algorithm to perform a correction vectory∗ ∈ ℜm

that minimizes the cost functiong(y) = f
(
X(l) + Vmy

)
;

-iii. X(l+1) ←− X(l) + Vmy∗;
-iv. l←− l + 1 and goto (3d);

e) Xk+1 ←− X(l);
f) k ←− k + 1 and goto (3);

4) X∗ ←− X(k).

The stopping criterion in the step (3) of the above algorithmis the relative decrease
in the cost function. While this decrease is above a given value, the algorithm pursues
the computation. Furthermore, in step (3d), theml eigenvectors correspond to the
smallest eigenvalues of the Hessian. In this way, on a coarselevel, the algorithm
focuses only on directions with a low convergence rate.

0.2.2. Multilevel optimization using the Multi-directional-Search Algorithm

The Multi-directional-Search Algorithm (MSA), developped by Dennis and Tor-
czon [DEN 91], uses a simplex approach to find the optimum. This simplex is com-
posed ofm + 1 design vectorsy0, y1, ..., ym. After being initialized, the simplex in
each new iteration is obtained as follows:



Multiparameter Shape Optimization 7

Suppose thaty(k)
0 is the vertex that gives the smallest cost function among allthe

simplex vertices, wherek is the iteration number. Then the simplex is reflected with
respect toy(k)

0 according to the following equation:

ỹ
(k)
i = (1 + α)y

(k)
0 − αy

(k)
i i = 0, ..., m [5]

whereỹ
(k)
i represent the reflected vertices andα is a positif real usually equal to1. If

the reflection is successful, i.e if one of the new vertices has a smallest cost function
than that ofy(k)

0 , this means that perhaps the solution is in this direction. So the new
simplex is expanded to pursue the search in this direction. The simplex of the new
iteration is then obtained by:

y
(k+1)
i = (1 − γ)ỹ

(k)
0 + γỹ

(k)
i i = 0, ..., m [6]

whereγ > 1 is the expansion coefficient. Usuallyγ is set to2. In the other case, if
the reflection fails, the simplex is contracted so that the vertices become closer to the
best one. The simplex of the new iteration is then obtained by:

y
(k+1)
i = (1 − β)ỹ

(k)
0 + βỹ

(k)
i i = 0, ..., m [7]

whereβ is the contraction coefficient. Usuallyβ is set to− 1
2 .

In the present study, for the stopping criterion, we computethe distance (using the
Euclidean norm) of verticesy(k)

i from the best oney(k)
0 . Then, the stopping criterion

is given by:

maxi

(
‖ y

(k)
i − y

(k)
0 ‖

)

‖ yref ‖
< ǫ [8]

whereyref is a given reference vector. While this condition is not satisfied and the
number of iterations is below the maximum value for the selected level, the MSA
algorithm pursues the iterations.

In the case of the Multilevel optimization, the MSA algorithm is used in the step
(3dii) of the algorithm described above. In this case,y is the correction vector written
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in a basis of the Hessian eigenvectors andm the dimension of the subspace of opti-
mization. In this way, the number of vertices in a coarse level is less than that of the
fine level. This means that the optimization cost is lower, which is an other advantage
of the multilevel approach.

The simplex can be initialized in any way provided that the vertices are linearly
independant. But to insure the transfer of information fromthe previous levels, one
of the vertices need to be the null vector so that no correction is added to the previ-
ous design vectorX(l). Morever, to take advantage of the directions of the Hessian
eigenvectors, we choose the other vertices to be colinear with the unit vectors. Fur-
ther more, for an efficient search, the initial size of the simplex need to be large at
the begining of the multilevel procedure (the first cycles).However, at the end of this
procedure (the last cycles), whenX(l) is near the final solution, we need to have a
small simplex since the correction to add toX(l) to reach the optimum is small.

0.3. Validation

The Multilevel algorithm is tested and validated on a quadratic function for which
the search of the optimum is straightforword. This functionis given by the following
expression:

f(X) = a + BT X + XT CX [9]

whereX ∈ ℜn is the optimization parameter. In this function,a ∈ ℜ, B ∈ ℜn and
C ∈ ℜn×n are chosen arbitrarily, but to guarantee the existence of a minimum,C is
taken as a symmetric positive definite matrix. In this case, the Hessian off is simply
equal to2C and is also positive definite. Since we would like to use this function to
test the multilevel optimization with a Hessian decomposition approach,C is chosen
such that we control its eigenvalues and eigenvectors. Details about the values ofa, B
andC can be found in [BEN 09].

Table (1) gives the condition number of the matrixC and the optimal value of the
tested function. As we will see, the condition number has an effect on the convergence
rate of the optimization algorithm and is thus an important parameter.

FunctionCondition numberOptimal value
f 18000 −32.517335

Table 1. Condition number and optimal value for the tested function.
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In the following section, we try to find the above optimum using the multilevel
algorithm. The efficiency of the multilevel strategy is measured by the number of
evaluations of the function required to reach the optimum.

0.3.1. Single level optimization

Before testing the multilevel algorithm we try to find the optimum value of the
above function using the MSA method without any multilevel nor Hessian decompo-
sition strategy. For this purpose, we carry out35000 iterations of the MSA optimizer
in order to find a good approximation of the value given in table (1). The optimum
value obtained isfmin = −32.516920. We have so a relative error of0.001%. The
corresponding number of evaluations is910014, which is very high. This means that
using the same algorithm in a problem with the same parameterization size, and where
the evaluation of the cost function is expensive can be very stiff, if possible. So a lim-
itation in the accuracy is then necessary. If we limitate theiteration number to5000,
which is still a high number, the optimum value obtained is−29.2075 and the relative
error is10%.

This exemple shows the necessity to improve the optimization procedure to
become faster. As we mentioned in §0.2.1, the convergence ofthe optimization
algorithm is quick in directions of high eigenvalues of the Hessian and slow in
directions of low eigenvalues. To justify this idea, we compute the componentsei of
the error,|X −X∗|, whereX∗ is the optimum design vector. These components are
calculated in a basis of the Hessian eigenvectors and ordered from the lowest to the
highest corresponding eigenvalue. Figure (1) shows a histogram of these components
at iterations0, 5 and50 respectively. In this figure, the horizontal axis corresponds to
the indices of the compenents. From this figure, we can noticethat the compenents of
the error that correspond to high eigenvalues fall down quickly, whereas those corre-
sponding to small eigenvalues are still at high order after50 iterations. This confirms
our idea that directions of the smallest eigenvalues require more effort to achieve the
optimum. This is what we hope to overcome using our multilevel algorithm.

In order to validate the multilevel algorithm and to prove its efficiency, we start by
optimizing the above function using a simple level strategywith a spectral decompo-
sition of the Hessian. This consists in working in the eigenvectors basis. Therefore,
the optimized function is equivalent to that of equation (3)wherem = n. This is done
by settingnl = 1 andm1 = n in the algorithm described in §0.2. The evolution of the
cost function with respect to the number of evaluations is presented in figure (2). The
result of this optimization is spectacular. The simple use of the Hessian eigenvectors
basis permits the MSA optimizer to converge very fast. Indeed, the optimum value
fmin = −32.517335 was reached after130 iterations only with3394 evaluations of
the cost function. This method is thus268 times faster then the first one! As we will
see, this performance depends on the condition number of theHessian.
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0.3.2. Multilevel optimization

As mentioned above, the multilevel strategy can improve theperformance of the
optimization algorithm when it is used in an adequate manner. For the functionf ,
we carry out the algorithm described in §0.2 with two and three levels using the strat-
egy described in table (2). To be efficient, it is recomended to use a few number of
iterations at each level and to repeat the multilevel cyclesuntil convergence.

Cycles cycle1 cycle2 cycle3
Fine level resolution • • •

ց ց ց
Coarse level resolution • • •

Table 2. schematic description of the two-level cycles.

Table (3) presents the multilevel tests using the strategy described in table (2),
whereas figure (3) shows the evolution of the cost function with respect to the number
of evaluations for the best cases. In table (3), the case1 corresponds to the single level
optimization using the spectral decomposition of the Hessian.

As we can see in table (3) and in figure (3), the multilevel strategy allows a faster
optimization than the single level one. Indeed, if we compare cases1 and 7 for
instance, we can see that the multilevel strategy allows a reduction in the number
of evaluations of about27%. It is not necessary to use a larger number of iterations
by level because this will result in an increased number of evaluations without any
acceleration of the convergence. However, if we reduce the number of iterations,
the convergence becomes slow resulting in an increased number of cycles and so an
increased number of evaluations, while the accuracy on the optimum value is worst.

Furthermore, from previous tests (see [BEN 09]), we can state that when the condi-
tion number of the Hessian is small, the Hessian decomposition is not interesting and
the number of evaluations does not decrease sensitively. Eventhough, the multilevel
approach is still interesting. However, when the conditionnumber is high, the Hessian
decomposition seems to be necessary and very efficient. The multilevel approach is
also interesting in this case.

From these observations we can conclude that the multilevelstrategy permits to
accelerate the convergence of the optimization algorithm and to reduce its cost. This
is true whatever is the condition number of the Hessian matrix. If this number is high,
it becomes necessary to search for the solution in subspacesgenerated by the eigen-
vectors of the Hessian. In this case, the gain in the optimization cost is significant.
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Caselevels number of number of number of optimal value
iterations by cycle cycle evaluations

1 12 130 1 3394 −32.517335

2
12

6

3
ց

3
19 2661 −32.517335

3
12

6

3
ց

2
22 2773 −32.517307

4
12

6

3
ց

4
18 2773 −32.517335

5
12

6

2
ց

4
22 2817 −32.517302

6
12

6

4
ց

2
18 2737 −32.517335

7

12

6

3

3
ց

2
ց

2

17 2483 −32.517335

Table 3. Description of the Multilevel optimization for the function f .

0.4. Applications

0.4.1. First application: Shape reconstruction problem

0.4.1.1.problem description

In this application, we would like to approach a given targetfunctionF0(t) by a
Bézier curveF (t, X), whereX = (x1, ...xn)T is the design vector whose components
are the control points of the Bézier curve. So, the approximated function is given by:

F (t, X) =

n−1∑

k=0

Bk
n−1(t)xk+1 [10]
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for t ∈ [0, 1]. In equation (10),n is the parameterization level andBk
n−1(t) are the

Bernstein polynomials given by:

Bk
n(t) = Ck

ntk(1− t)n−k [11]

where

Ck
n =

n!

k!(n− k)!
[12]

The target function selected in this study is also a Bézier curve2 of degreen0 > n.
It is given by:

F0(t) =

n0−1∑

k=0

Bk
n0−1(t)x0k+1 [13]

wherex01,...x0n0
are the control points of the target function. Details aboutthis func-

tion can be found in [BEN 09].

The squared error of the approximation of the target function F0(t) by the Bézier
curveF (t, X) is given by:

e(X) =

∫ 1

0

(F (t, X)− F0(t))
2dt [14]

For a given parameterization leveln, the approximation problem is equivalent to
the search of a design vectorX that minimizes the squared error. This is hence an
unconstrained optimization problem where the cost function isf(X) ≡ e(X). A the-
oretical solution of this problem can be found easily by considering that the gradient of
the cost function vanishes at the optimum. This leads to the following linear system:

A ·X = B [15]

2. This is just an exemple and we can select any kind of functions. The resolution method and
the behaviour of the optimization algorithm do not depend onthe nature of the target shape.
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whereA = (akj)1≤k≤n, 1≤j≤n, B = (bk)1≤k≤n and:

akj = 2

∫ 1

0

Bk−1
n−1(t)B

j−1
n−1(t)dt [16]

bk = 2

∫ 1

0

Bk−1
n−1(t)F0(t)dt [17]

Note that the matrixA is equal to the Hessian of the cost function and is symmetric
positive definite. This quadratic problem has a unique solution which can be obtained
by solving the system (15).

To evaluate the cost function, the interval[0, 1] is subdivided intonp points. The
squared error (14) is then given by:

e(X) ≈
1

np

np∑

p=1

(
F

(
p− 1

np − 1
, X

)
− F0

(
p− 1

np − 1

))2

[18]

A similar discretization is done to compute the Hessian matrix A, given by (16), and
the right hand side term of equation (15) which is given by (17).

As application of our multilevel algorithm, we employ it to approximate two target
functionsF01 andF02 of parameterization levels14 and18 by respectively functions
F1 andF2 of levels8 and16. The corresponding cost functions are sof1 andf2

respectively. This allows us to test at the same time the ability to approximate dif-
ferent shapes and the influence of the condition number of theHessian matrix on the
algorithm. Table (4) gives the optimum values and the condition numbers correspond-
ing to these cost functions fornp = 20, whereas figure (4) gives the shape of the
target and the approximated functions. These optimum values are obtained from the
resolution of (15).

Cost Functionn0 n Condition number Optimal value
f1 14 8 4617.6 1.751264× 10−5

f2 18 16 3.6× 109 1.037× 10−9

Table 4. Condition numbers and optimal values for the two tested functions of the shape
reconstruction problem.
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0.4.1.2.Experimentation and results

In this section, we try to obtain the approximated function using the multilevel
optimization algorithm with the MSA method. For this purpose, we test many cases
in order to find the best optimization strategy. Tables (5) and (6) describe some cases
for cost functionsf1 andf2 respectively (corresponding to the target functionsF01

andF02) whereas figure (5) shows the evolution of these functions with respect to the
number of evaluations for the studied cases. In these tables, cases0 correspond to
a classical MSA optimization without the Hessian decomposition, whereas the other
cases use a basis of the Hessian eigenvectors.

Caselevels number of number of number of optimal value
iterations by cycle cycle evaluations ×105

0 8 200 1 3610 2.303
1 8 135 1 2440 1.751264

2
8

4

3
ց

5
18 2125 1.751264

3
8

4

3
ց

4
19 2053 1.751264

4
8

4

3
ց

3
15 1471 1.751264

5

8

4

2

3
ց

2
ց

2

19 1958 1.751264

Table 5. The tested cases for the multilvel optimization of the cost functionsf1 of the shape
reconstruction problem.

From tables (5) and (6) and figure (5) we can see that the behaviour of the opti-
mization algorithm is the same as that for the analytical function test case of §0.3. For
medium Hessian condition, the simple use of the Hessian decomposition allows the
algorithm to be faster. The multilevel strategy permits to accelerate the convergence.
The best acceleration is obtained with few iterations by level and by cycle (cases4 and
5 for functionf1 and2 and4 for functionf2). This acceleration is more important for
a high condition number.
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Caselevels number of number of number of optimal value
iterations by cycle cycle evaluations

0 16 200 1 6818 0.00041
1 16 140 1 4778 1.037× 10−9

2
16

8

3
ց

3
20 3641 1.037× 10−9

3
16

8

4
ց

3
20 4321 1.037× 10−9

4

16

8

4

3
ց

2
ց

2

20 3781 1.037× 10−9

Table 6. The tested cases for the multilvel optimization of the cost functionsf2 of the shape
reconstruction problem.

Thus, the multilevel optimization algorithm can be employed to solve the shape
reconstruction problem. For high quality approximations,a high order Bézier curve is
required, and then the condition number is large. In this case, the multilevel approach
using the spectral decomposition of the Hessian is very efficient.

0.4.2. Second application: Optimum design of a SuperSonic Business Jet

The optimum design of a SuperSonic Business Jet (SSBJ) is a very challeng-
ing optimization problem because of its complexity. This problem, which involves
aerodynamics, propulsion and structural mechanics has been used by Sobieszczanski-
Sobieski et al to test their "BLISS" (Bi-Level Integrated System Synthesis) methods
[SOB 00]. Their objective was the maximization of the aircraft range subject to some
constraints. In our case, the SSBJ design problem is used to test the multilevel opti-
mization algorithm in a complex context. The aim of our studyis the minimization
of the total weight of the aircraft at the take-off (TOW) subject to constraints on its
rangeR, the take-off lengthLtake and the landing speedvland. More precisely, these
constraints are:





R > 6500 km
Ltake < 1828 m
vland < 70 m/s

[19]
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The set of the15 design variables is composed of geometrical parameters as well
as flight conditions. Thus, additional constraints on the range of these variables are
introduced. All these constraints are taken into account inour optimization code by
means of penalty terms. Moreover, the design of the aircraftand the evaluation of
its performances are made using routines provided by Dassault Aviation which are
considered here as black boxes. This optimization problem is hard due to the multi-
modality of the objective function and to the complexity of the constraints.

Table (7) presents the different tests carried out to optimize the aircraft weight,
whereas figure (6) shows the evolution of the weight with respect to the number of
cost function evaluations for these tests. In table (7), case 0 refers to the classical
single level MSA optimization without Hessian decomposition, whereas case1 refers
to the single level MSA optimization working in the Hessian eigenvectors basis (see
§0.3.1). Case2 is similar to case1 but with many cycles and few iterations by cycle.
This consists in updating the Hessian and reinitializing the simplex after each10 MSA
iterations. This is obtained by stayingnc > 1, nl = 1 andml = 15 in the algorithm
presented in §0.2. Finally, Cases3 and4 corresponds to a multilevel MSA optimiza-
tion as described in table (2). Note that, in these tests, theHessian matrix is computed
localy using the finite-difference method and is updated at each multilevel cycle. Fur-
thermore, the starting point of the optimization procedureis taken at the center of the
design space. This arbitrary choice does not satisfy the constraints, nevertheless the
multilevel algorithm is able to reach a satisfactory solution. The design parameters
of the best solution (case4 of table (7)) are given in table (8) which gives also the
bounds of the design space. Table (9) shows the corresponding performaces of the air-
craft. We can see that this solution is very close to the bounds of the design space and
satisfays barely the constraints. This fact makes the optimization procedure difficult
because the simplex trys to go on forbidden regions. Even though, the algorithm is
able to reach the solution.

Caselevels number of number of number of optimal weight
iterations by cycle cycle evaluations (kg)

0 15 800 1 25617 38964
1 15 225 1 7764 35390
2 15 10 27 21122 34731

3
15

7

3
ց

3
24 14857 35073

4
15

7

5
ց

6
10 7311 34389

Table 7. The tested cases for the multilvel MSA optimization of SSBJ design problem.
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Variable lower limite upper limiteOptimal value
Cruise altitude 8000 m 18500 m 15306.12 m
Cruise Mach number 1.6 2 1.64
Reference wing area 100 m2 200 m2 100.52
Leading edge sweep of the wing 40◦ 70◦ 49.10◦

Trailing edge sweep of the wing −10◦ 20◦ 14.45◦

Wing taper ratio 0.05 0.5 0.15
Thickness/chord ratio for the wing 0.04 0.08 0.044
Leading edge sweep of the vertical stabilizer 40◦ 70◦ 69.91◦

Trailing edge sweep of the vertical stabilizer 0◦ 10◦ 1.75◦

Vertical stabilizer taper ratio 0.05 0.5 0.058
Thickness/chord ratio for the vertical stabilizer 0.05 0.08 0.075
Fuselage diameter 2 m 2.5 m 2.44 m
Fuel weight 15000 kg 40000 kg 15000 kg
Maximum incidence angle 10◦ 15◦ 14.99◦

Landing/Take-off weight ratio 0.85 0.95 0.87

Table 8. The optimal Design parameters (case4 of table (7)) and the corresponding bounds
for the SSBJ problem.

Performance Value
Take-off weight34389.47 kg
Range 6505.52 km
Take-off length 1806.76 m
Landing speed 69.92 m/s

Table 9. Performances of the aircraft for the optimal design (case4 of table (7)).

On figure (6), we can see that the multilevel approach allows,not only to reduce
the optimization cost, but also to achieve better performances. However, since the
objective function is multimodal, the MSA optimiser can be easily trapped by a local
minimum. Therefore, it is difficult to tune the computational parameters and to find
the best multilevel strategy that permits to get good performances.

Note that, in the above results, we take into account the number of evaluations
of the cost function due to the Hessian computation by the finite-difference method.
This number represents, in most cases, more than50% of the total number of eval-
uations. This means that these results could be better if theHessian is computed by
a chipper method. For instance, it could be interesting to estimate the Hessian using
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a least-square approach on the basis of points already evaluated during a stochastic
optimization.

0.5. Conclusion

In this chapter we present an efficient optimization method based on an algebraic
multilevel approach. This method uses the eigenvectors of the Hessian of the objective
function to define search subspaces. Therefore, this methodis general and can be
applied to any kind of problems. Moreover, this multilevel approach can be used
with any optimization algorithm, but in this study it is implemented with the Multi-
directional Search Algorithm.

In order to validate the multilevel algorithm, it is tested with a quadratic function.
This test case shows that the use of the eigenvectors of the Hessian as basis of the
design space accelerates the convergence of the optimization algorithm. This acceler-
ation is significant for medium and high condition number of the Hessian. Additional
acceleration is obtained when the Hessian decomposition iscombined to an adequate
multilevel strategy. A decreasing level with few iterations by level and by cycle is
found to be a satisfactory strategy.

The method is then applied to two problems: shape reconstruction and Supersonic
Business Jet design. The first application consists in a least-square approximation of
a given shape by a Bezier curve. The cost function is therefore quadratic. In this case,
the behaviour of the multilevel algorithm is similar to thatof the validation test: The
use of the Hessian eigenvectors permits to well approximatethe target shape with a
moderate cost. This cost is lower when using the same multilevel strategy as that for
the validation case.

In the second application, the problem is multimodal and constrained. Moreover,
the cost function evaluation is considered as a black box, which means that the Hessian
is not available. Then, it is computed using a finite-difference discretization. Many
experiments are carried out using the multilevel algorithmwith the MSA method. It
is difficult to tune the computation parameters. Nevertheless, the multilevel algorithm
gives satisfactory results. Indeed, using the multilevel approach and the eigenvectors
of the Hessain we obtain a lower aircraft weight than that of the classical MSA method
and with a lower cost.

As mentioned above, using the MSA method, it was difficult to find a satisfactory
multilevel strategy for the SSBJ problem. For such problem,a stochastic algorithm
could be more suitable. A priori, the Multilevel approach can be used with any opti-
mization method. Presently, a Particle Swarm Optimizationmethod is implemented
in our multilevel procedure and the resulting algorithm is under study.
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Figure 1. Histogram of the error components in a basis of the Hessian eigenvectors for a
single level optimization of the functionf .
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Figure 2. Evolution of the cost functionf for a single level optimization.
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Figure 3. Evolution of the cost functionf for a multilevel optimization.
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