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Abstract

This paper presents a method to simulate growth phe-
nomena, and its application to the modeling of complex or-
ganic shapes (e.g., plants organs) and folded surfaces.

Our main contribution is the interactive and stable res-
olution of the mechanical problem of growth-induced de-
formations, based on the minimization of the energy due
to the various constraints in the shell. From this, we pro-
pose a new modeling approach based on a set of growing
tools: The user can apply ’hot spots’, ’hot curves’, or paint
growing parameters on the surface to grow. Growth can
be simulated either simultaneously to the user interaction,
or once all parameters have been settled on the surface
(which allows the use of textures of parameters and pro-
cedural operations). The main parameters are the intensity
and anisotropy of growth, as well as their variations over
time. Geometric constraints and plasticity can also be con-
sidered.

As our results show shapes can fold, bend, and curl as
in nature, which deforming tools such as displacement map
could not achieve. We demonstrate our tool with an inter-
active session and a gallery of shapes easily produced.

1. Introduction and Previous Work

Natural shapes are often complex, globally as well as
in their details. Modeling them using classical geomet-
ric modelers can thus be especially tedious. A number of
these natural shapes result from a growth phenomena [22]
(e.g., plants, organic shapes) or can be modeled as such
(e.g., folded surfaces, geological shapes). Even though
growth-induced deformations can be physically simulated
similarly to cloth animation or deformable objects [2, 21],
real-world parameters are usually unknown. Moreover,
artists want to keep enough control so a blind off-line sim-
ulation is not desirable.

Various tools have been introduced to model or enrich
a shape by deforming it either at global (e.g., Free-Form
Deformations [19, 8, 3]) or local scale (e.g., displacement
maps [7, 26]). Similarly, several virtual sculpting tools have
been proposed either for the overall shaping (e.g., [4, 11, 1])
or to edit and enrich an existing shape (e.g., [20], which in-
spired Maya Artisan). Although the user interaction is more
intuitive with these tools than using a classical geometric
modeler, the user still has to explicitly specify where each
bulge or pit should be. For shapes that are complex (either
globally or locally) this can be very tedious.

We would like to let the user specify the global and lo-
cal aspect of the shape without having to define every little
detail. [5] introduces the expansion texture paradigm (sum-
marized in the next section) to shape folded surfaces: the
user specifies expansion (i.e. growth) parameters using ei-
ther a brush or a texture map. The surface folds under the
local constraints caused by the growth. Since the param-
eters are attached to the surface, even large amplitude of
growth can be simulated and still yields natural looking re-
sults. Oppositely, surface displacement tools cannot be ap-
plied for huge amplitudes: the displacement is done along
the normal and cannot curl the shapes. Tools like Maya Ar-
tisan (inspired from [20]) or [14] can iterate displacement
relying on the new normals. But such a geometric growth
quickly degenerates into unnatural and self-intersecting sur-
faces. This does not occur with expansion textures due to
the use of a mechanical model to simulate the deforma-
tions. Moreover, a mechanical model reproduces the be-
havior of natural growing surfaces making folds and bulges
under constraints.

The [5] model has similarities with physical models such
as the ones used for deformable surfaces (e.g. [21]). How-
ever, the mechanical model is tuned to give controllable re-
sults (e.g. fold wavelength) and the solving is quasi-static
(the purpose is to simulate the shape at equilibrium, not the
dynamics).

Our model draws on [5] and extends it to permit huge



deformations at interactive rate (i.e., we are not limited to
adding details) and to increase the flexibility. Thus, our tool
applies to the modeling of a large variety of shapes (and
not simply folds). For that we revisit the mechanical model
in order to make it more general, steady and efficient as
detailed in section 3.

From this new engine we propose a new modeling ap-
proach based on a set of growing tools. These allow both
local and global shaping, and both interactive and semi-
procedural specification of growth. We describe these tools
in section 4.

In section 5, we demonstrate our tool with interactive
sessions, as well as samples of typical shapes that are eas-
ily produced (e.g., plant organs, and folded shapes like a
tablecloth or an unmade bed).

2. The expansion texture formalism

Since we draw on and expand the approach of [5], we
share the same formalism. We present here a summary (see
the paper for more details).

The growth is modeled by local anisotropic expansions
which act on a free form surface discretized by a triangular
mesh. The growth does not modify the surface explicitly
but a reference state defined by the rest length le of each
edge e, the rest mean curvature κv of each vertex v and the
graph connectivity of the mesh (see figure 1). This virtual
reference state (updated by the growth) defines locally the
ideal shape the surface should attain. The ‘real’ shape is
obtained by a mechanical solver which minimizes the con-
straints, i.e., the differences between the mesh and the ref-
erence state. Note that the surface has to be dynamically
remeshed (see [5]).

solver

(a) (b) (c) (d)

κle v

Figure 1. The virtual reference state is defined by the rest
lengths le (a), the rest mean curvatures κv (b) and the graph con-
nectivity (c) of the mesh. The solver finds the shape (d) that
minimizes the difference with the reference state (modified by the
growth).

The local expansion is described by an expansion tensor
field over the surface. An expansion tensor can be repre-
sented by a 2× 2 positive definite symmetric matrix D. It
can be defined by three parameters: two expansion rates D1
and D2 relative to the eigenvector directions, and an angle θ
which defines the orientation of the eigenvectors basis rela-
tive to the local 2D frame. The expansion along a vector l
is then given by GD(l) =

√
~ltD~l.

The growth parameters the user can tune are: the rate and
the anisotropy of the expansion (i.e., D1,D2,θ) at every ac-
tive location; and desired wavelength and regularity λ1,λ2
of folds or curls. External constraints can be added by the
user, such as static collision with solid objects and partial
or total attachment (i.e., 1D, 2D or 3D constraints) of some
surface locations. The local growth parameters interactively
painted by the user or predefined using a paint program are
stored in a map – the expansion texture. A parameterization
of the surface is thus required.

3. Our mechanical model and solver

We want to allow huge expansion in order to deal with
a large range of morphogenesis situations, and we want to
provide more precise tools to the user (see section 4). For
this, our model must not depend on any global parameter-
ization (which would be soon overstretched). A very sta-
ble model is also required: we rely on an energetic formal-
ism close to thin shells mechanical model. We also want
to provide the user with higher level controls (i.e., semi-
procedural, or semi-interactive), by allowing him to tune
how long a growth will last, according to which activation
pattern (e.g., delayed starting, progressive decay...).

3.1. Expansion model

To avoid a global (u,v) parameterization we store the
various local data at the vertices or at extra nodes within
the faces. For extra nodes we define a radius of influence r
and an influence kernel w(x). We define a local 2D frame
for each vertex using a local geodesic polar parameteriza-
tion [27].

For growth data defined at vertices we model the expan-
sion of the reference length le of edge e as the average of
the expansion at the tips: G(e) = 1

2 (GDP1
(~le) + GDP2

(~le))
where DP1 and DP2 are the tensors at the edge tips P1 and
P2. For growth data defined at an arbitrary node N we de-
fine DPi = w(‖Pi −N‖)DN . For growth data defined on an
arbitrary curve C (based on control points {Ni}) we define
DPi = w(d(Pi,C))DN where d(P,C) is the distance from a
point P to the curve C.

As stated above and detailed in section 4 we account for
the duration of growth in time. The expansion of an edge
e between iteration steps corresponding to time t1 and t2 is
GG(e) = G(e)t2−t1 .

We also take plasticity into account if desired, which
avoids accumulating undissipated stress in the surface. This
permit smoother shapes in case of huge expansion. When
the difference between the reference length le and the corre-
sponding real length exceeds a threshold αplast we operate
a relaxation over le:



if le < (1−αplast)le
l
′

e = (1− kplast)l + kplast(1−αplast)le
else if le > (1+αplast)le

l
′

e = (1− kplast)l + kplast(1+αplast)le
endif

3.2. Our energy-based mechanical model

Contrary to [5] we do not compute explicitly the dis-
placement of the vertices, but we define an energy E of
deformation between the surface and the reference state.
This is closer to mechanical formalism and this eases the
accounting of new phenomena. We use three components:
E = Emembrane +Ebending +Epressure. This definition is in-
spired by the models of thin shells (see [13] for details)
where the energy is the sum of two components similar to
Emembrane and Ebending.
The expression we propose below for these two energies is
easily to calculate and derive. It produces realistic deforma-
tions. However, more accurate (and thus time-consuming)
formulations could be used in the scope of off-line complex
growth simulation. The pressure is not a classical notion
here and was introduced by [5] to control the wavelength
and the regularity of the shape. We adapt this term to our
energetic formalism.

Membrane energy

Emembrane measures the stretching (change of area) and
the shearing of the surface (change in length but not area).
We opted for a finite element expression of the stress. We
integrate on the mesh the density of elastic deformation en-
ergy Et

membrane of the triangles t:

Emembrane = ∑
t

AtEt
membrane

where Et
membrane =

1
2

2

∑
i=1

2

∑
j=1

σt
i jε

t
i j

At is the reference area of the triangle t, εt
i j (the strain ten-

sor) measures the deformation of t respective to its refer-
ence state, and σt

i j (the stress tensor, which describes the
internal forces which acts on the triangle) can be deduced
using Hook’s law (see for instance [15] for details).

Bending energy

Ebending controls the flexure of the surface. In mechanics,
models classically measure a squared difference between
curvature tensors at current and rest states. We prefer to use
the mean curvature – which is scalar – because it is faster to
evaluate (see [9]), easier to derive and the quality of the ap-
proximation is enough for our simulations. We integrate the

difference between the mean curvature κv and the reference
curvature κv along the surface. So, we have:

Ebending = ∑
v

AvEv
bending

where Ev
bending = (κv −κv)

2

Av is the area of the Voronoï cell which contains the vertex v.

Pressure energy

[5] relies on normal stress ~FN for this term, thus turning
the triangles compression into a displacement along the nor-
mal. This force succeeds in modulating the fold wavelength
and the growth preferred direction. We adapted this term to
define a pressure energy Epressure:

Epressure = ∑
v

AvEv
pressure

where Ev
pressure = −

1
Av

(v− ṽ)~Fv
N

ṽ is the 3D position of the vertex at a previous sub-step in
the optimization solver.

3.3. The solver

To generate a new global equilibrium of the shape after
a growth step, we solve the energy minimization using a
classical Conjugate Gradient Optimization (see [17] for de-
tails). The optimality of the steps provides a more robust
convergence than the simple displacement used in [5] (cor-
responding to a constant step Gradient Optimization). We
stop the optimization when the difference between the ener-
gies in two consecutive steps or the maximum stress along
the surface are below a small threshold.

4. Growing tools

In nature, growth exists in a variety of modalities:
in plants, cellular proliferation mostly occurs at apexes
(i.e., tip of branches). This causes the 1D nature of
branches. At some stage of the leaves development the sur-
face enlarges due to the cellular division along the leaf edge.
Geological rifts are another situation showing an expansion
occurring along a curve. Animal tissues grow more homo-
geneously, but often with an important anisotropy: body
proportions change from embryo to adult [25]. The dis-
tribution of active and passive (expansion-wise) areas on a
surface strongly influences the pattern of deformation due to
mechanical constraints: an expanding spot can only bulge
out of the surface. An expanding linear area crossing the
surface might simply enlarge it (e.g., rifts). When the whole



surface is expanding, any heterogeneity or local constraint
will result in folds or curling.

In order to provide the user with most flexibility, we ac-
count for the same variety of modalities: Our tools can be
hot spots (0D), hot curves (1D) or hot surfaces (2D). For-
mally these three kinds of active regions could all be simply
painted in an expansion texture. The difference mostly lies
in their specification and control: Spots and curves control
points are located precisely on the mesh by relying on their
barycentric coordinates within faces (and updating this data
during remeshings). Hot surface data is defined at the mesh
vertices.

4.1. Hot spots (0D tools)

A hot spot is defined by the growth parameters
(D1,D2,θ,...), a radius of influence r and an activation curve
I(t) (growth intensity in time, or by default a constant and a
duration). Since a hot spot generates a bulge, a long activa-
tion results in the growth of a branch.

We implemented various spot tools such as rotating the
frame over time, and splitting a spot into several spots
within the radius of influence. As shown in the results sec-
tion, this results in branching. It would be easy to connect
this mechanism to a procedural event generator such as L-
systems [18] or [10]. We tried simple ones as illustrated in
the result section.

4.2. Hot curves (1D tools)

A hot curve can share common growth parameters,
whose orientation can follow the local frame along the
curve. We denote DT the expansion along the curve
(i.e., tangential) and DN the expansion in the orthogonal di-
rection (i.e., normal). To model an heterogeneous growth,
growth parameters can be painted and attached to the con-
trol points (and thus to the surface), or specified by a 1D
texture I(u) (relying on a curvilinear parameterization u).
The last case can typically be used for controlling the acti-
vation of growth in time: A user-defined 1D texture defines
the growth intensity along a normalized range of time, and
the local time offset and local time pace are interpolated
along the curve.

The curve is attached to the surface and thus is distorted
together with it (by the effect of its activity and that of other
growing tools). For instance, this allows the user to define
a very short curve across an apex (i.e., a hot spot) and to let
it enlarge before activating it. This can be used to generate
a leaf from a stem. It is easy to create automatically such a
small curve from geometric parameters (e.g., the apex nor-
mal – which corresponds to the stem axis – , or the vertical),
so a procedural tool can generate and trigger hot curves as
illustrated in the results.

Growth anisotropy along the curve can result in differ-
ent shapes: for a straight curve, a totally radially oriented
growth (i.e., DT = 1 and DR > 1) generates a plane. Adding
a slight tangential growth (DT > 1) yields tangential folds,
while a slight tangential contraction (DT < 1) would yield
radial folds. For a curve, the tuning corresponding to the
balanced case (i.e., a plane) depends on the local curvature
γ. If the user wants to control the regularity of the gener-
ated surface (see the mushrooms example on figure 2(b))
a normalization has to be applied: in such case we define
DT = 1 + λ(DR − 1)reγ, with λ a control factor (1 for a
plane) and re the efficient influence radius = r

R r
0 w(x) , where

w(x) defines the shape of the influence kernel.

4.3. Hot surfaces (2D tools)

The user interface for the 2D tool draws on and extends
the [5] one: growth parameters are defined either by inter-
active painting (parameters are sampled at mesh vertices,
orientation is given by the mouse direction) or by a 2D tex-
ture (a temporary (u,v) parameterization – e.g., a projec-
tion – is then defined on the targeted area). From this, we
added several features. In the interactive case we store a
time offset t0 and a time pace dt at each painted vertex: this
allows the user to control how long the growth will apply
(i.e., while (t − t0)dt < 1). This also permits to spread huge
growth along time, thus allowing stable huge deformations.
We also implemented various painting tools in order to ap-
ply growth ‘brushes’ and interpolation. For the latter, we
rely on adapted Laplace interpolation [12]: the user paints
values (spots or curves) which are spread by solving a dif-
fusion equation (we used an implicit solver for efficiency).
Interpolating tensors is not as simple as for scalars. Simi-
larly to what [24] does for vectors, we first interpolate the
tensor coefficients. Then we rebuild an orthonormal frame
and we reconstruct the interpolated tensor by scaling it with
the separately interpolated eigenvalues.

5. Results

Our results are presented on figure 2. Animated se-
quences1 are framed.
• (a): Using a hot spot (the initial shape is a sphere).
Isotropic growth; anisotropic growth (folds appear in the
most expanded side); with twisted frame; branchings by
splitting the spot.
• (b): Using a hot curve (the initial shape is a triangle).
Mushrooms (the initial hot curve is a circle at the stem
tip): without normalization; with the normalization (see
Section 4.2). Leaves (the initial hot curve is a half-circle
crossing the apex at the stem tip; its control points are fig-
ured on the first two images).

1Videos and more data are available on our web site http://www-
evasion.imag.fr/Publications/2006/CN06/ and in [6].



(a) (b)

(c)
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Figure 2. Results (sequences are framed). (a): Using hot spots. (b): Using hot curves. (c-f): Using hot surfaces. (g): Procedural growth.

• (c): Using a hot surface (and isotropic growth). Pumpkin:
rigid lines (in grey) were painted on a sphere before the ho-
mogeneous growth. Leaves: growth is painted only on the
edge, using various tunings (frequency, gradient). Flowers:
painting growth only on the corners grows and curls them
into petals.
• (d): Modeling an unmade bed. A physical cloth simu-
lation would require knowing the initial state, the material
parameters, and the history of forces. Using our model, the
artist simply ‘paints’ on the areas where to add ‘extra mat-
ter’ (resulting in folds) much like a sculptor would. The
frequency is tuned by the user and the folds are oriented by
the mouse direction.
• (e): Table cloth. Starting with a cylinder, the user paints a
totally tangential anisotropic expansion on the bottom, and
a zero-expansion circle on the top. Then he interpolates the
growth parameters in between. Note that the user can ex-

aggerate the folds (as for the drapes in ancient paintings) if
desired.
• (f): A cabbage leaf modeled using an expansion texture
(much like in [5]).
• (g): Procedural growth. Apexes are split randomly. Note
that our model produces a continuous growth, and that me-
chanical constraints move branches apart naturally.

6. Conclusion and Future Work

We have presented a new modeling paradigm based on
the control of surface growth. The engine consists on a new
efficient and stable mechanical model and solver able to
simulate growth-induced deformations. Compared to phys-
ical simulations we are able to provide the user with fine
control of the shape. Compared to traditional modeling
tools and to sculpting tools we do not require the user to



explicitly define every little detail. However, by tuning the
radius of influence the user can indeed edit details when-
ever he wants. Most of the result we show could not have
been modeled easily with any other modeling tool or phys-
ical simulation.

Our approach is able to model either global shapes or
complex surface details, relying on interactive or semi-
interactive operations. However, the user may sometime
want an even higher level of control. Our model could
be connected to procedural tools such as L-systems [18]
to generate complex structures. Similarly, expansion
texture could be procedurally evaluated or simulated
using noise [16] or reaction-diffusion [23]. Finally, it
would be interesting to add to our model a scheme for the
semi-procedural synthesis of surface colors and textures.
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