
EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne
(Guest Editors)

Volume 20(2001), Number 3

Drawing for Illustration and Annotation in 3D

David Bourguignon*, Marie-Paule Cani* and George Drettakis**

iMAGIS–GRAVIR/IMAG–INRIA y

* INRIA Rhône-Alpes, 655 avenue de l’Europe, F-38330 Montbonnot Saint Martin, France
** INRIA Sophia-Antipolis, 2004 route des Lucioles, F-06902 Sophia-Antipolis, France

Abstract
We present a system for sketching in 3D, which strives to preserve the degree of expression, imagination, and
simplicity of use achieved by 2D drawing. Our system directly uses user-drawn strokes to infer the sketches rep-
resenting the same scene from different viewpoints, rather than attempting to reconstruct a 3D model. This is
achieved by interpreting strokes as indications of a local surface silhouette or contour. Strokes thus deform and
disappear progressively as we move away from the original viewpoint. They may be occluded by objects indicated
by other strokes, or, in contrast, be drawn above such objects. The user draws on a plane which can be posi-
tioned explicitly or relative to other objects or strokes in the sketch. Our system is interactive, since we use fast
algorithms and graphics hardware for rendering. We present applications to education, design, architecture and
fashion, where 3D sketches can be used alone or as an annotation of an existing 3D model.

Keywords: Drawing, Stroke-based illustration, Interface

1. Introduction

Drawing has long been an intuitive way to communicate
complexity in a comprehensible and effective manner, due
to visual abstraction. Compared to a photograph of a real
object, extraneous details can be omitted, and thus attention
can be focused on relevant features. The impression a draw-
ing produces on a viewer is very different from the one a
solid model produces: strokes mark the presence of a sur-
face or a contour, but they can be “heavier” or “lighter”, giv-
ing an indication of uncertainty where needed. The viewer’s
imagination is immediately engaged.

This kind of communication is useful in educational ap-
plications such as teaching, but also in the early stages of de-
sign, because drawing a sketch is much faster than creating a
3D model, and definitely more convenient to express ideas.
However, the obvious drawback of 2D sketches is their lim-
itation to a single viewpoint. The user cannot move around
the object drawn, nor view it from different angles.

y iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.
E-mail:{David.Bourguignon|Marie-Paule.Cani}@imag.fr,
George.Drettakis@sophia.inria.fr ; http://www-imagis.imag.fr/

Figure 1: A single landscaping sketch, which can also be
seen as an annotation of an existing 3D model; the two dif-
ferent views are automatically generated by our system.

Adding the ability to render a single sketch from multi-
ple viewpoints has evident advantages, since the work of the

c The Eurographics Association and Blackwell Publishers 2001. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50039172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

artist is significantly reduced. As an example, consider Fig-
ure1, which shows two views of a single rough landscaping
sketch, generated by our system. It is imperative that such
a system be interactive, since a slow, non-interactive system
would interfere with the natural artistic creation process.

The aim of this paper is to provide a system that enhances
classical sketching with 3D capabilities. Here, as in tradi-
tional 2D drawing systems, the user draws strokes that may
represent either surface silhouettes or 1D features. These
strokes may either belong to a single object or to many dif-
ferent ones, embedded in a complex scene. Both open and
closed strokes may be used. As in 2D drawing, the user
can draw several neighbouring strokes to accentuate a given
contour. The main difference is that the viewpoint can be
changed while drawing, thus creating a 3D sketch.

1.1. Related work

Our work is a natural continuation of drawing or sketching
tools which have been developed in computer graphics over
the last few years. In particular, researchers have realized the
importance of providing usable tools for the initial phase of
design, beyond traditional 3D modeling. These have taken
the form of 3D sketch or drawing systems, typically with
direct line drawing or stroke interfaces.

Some of these systems are directly based on 3D
input7; 4; 19. They require special equipment (VR glasses,
tracking sensors, arm-support, etc.) and often cannot be used
on traditional workstations. We will not discuss them fur-
ther; we will instead concentrate on solutions which do not
require specific additional equipment and which are more
practical than drawing directly in 3D.

Some systems use direct 2D drawing to reconstruct 3D
scenes. Cohen et al.6, present a system in which each 3D
curve is entered by successively drawing its screen plane
projection and its shadow on the floor plane. This approach
can be useful for camera path description for example, but
seems potentially unintuitive for drawing shapes. Tolba et
al.24, use projective 2D strokes in an architectural context.
By projecting 2D points onto a sphere, 3D reprojection is
achieved under different viewing conditions. Other systems
restrict drawing to predefined planes, either as a generaliza-
tion of traditional axis aligned views15, or specifically onto
cross-sections10.

Another family of systems12; 25; 8; 17, try to infer 3D mod-
els from 2D drawings and a set of constraints. Ivan Suther-
land’s “Sketchpad” system in 196323 can be considered as
the inspiration for this work. During the 1990’s a number of
researchers advanced in this direction.

Among them, Pugh17 presented the “Viking” system,
where preferred directions and cutting planes guide the user
in the placement of 3D vertices. Direct user intervention is
possible both for explicit constraint specification and hid-
den line designation. Akeo et al.1 used cross section lines

to infer 3D shape, while Branco et al.2 required the user
to draw models without hidden lines, and used a classifica-
tion scheme and direct user input to reconstruct in 3D. Eggli
et al.8; 9 interpret pen strokes by matching them to a small
set of predefined primitives, and by applying a sophisticated
constraint based system. The result is rapid construction of
high-quality, CAD-like models. Lipson and Shpitalni13 use
optimization on a 2D edge-vertex graph which is tolerant
to inaccurate positioning and missing entities; in addition, a
number of different object types are supported.

In some of these systems, the advantage of viewing the
designed model or scene in a non-photorealistic manner has
been exploited to get a result that does not inhibit the de-
signer imagination, as stressed by Strothotte et al.22. The
SKETCH system25 concentrates heavily on the use of effi-
cient gestural input and non-photorealistic rendering to al-
low the creation of approximate, but complete, 3D mod-
els. More recently, the “Teddy” system12 takes closed 2D
freeform strokes as input, and reconstructs a polygonal ob-
ject, which is converted back to strokes for rendering. Both
systems emphasize a natural binding of gestures for the cre-
ation of specific shapes, affording a powerful and intuitive
interface for rapid creation of specific types of 3D models.

The “Harold” system5 is probably the most closely related
previous work. The goal of this system is to provide a world
populated by 3D “drawings”. Three specific modes are pro-
vided: billboard (projection in a plane which turns towards
the user), terrain and ground mode. The system allows the
creation of “bridge strokes” between billboards. However, it
does not handle strokes that correspond to the silhouette of
a 3D object, and should thus deform when the point of view
changes. As we shall see, this is an essential feature of our
approach, since the capability to draw silhouettes is heavily
required in both annotation and initial design applications.

1.2. Overview

The central idea of our approach is to represent strokes in 3D
space, thus promoting the idea of a stroke to a full-fledged
3D entity. Even in 3D, we think that strokes are an excellent
way to indicate the presence of a surface silhouette: several
neighbouring strokes reinforce the presence of a surface in
the viewer’s mind, while attenuated strokes may indicate im-
precise contours or even hidden parts.

Finding surface properties of objects from their silhouette
is a classic hard problem in computer vision. The algorithms
presented here do not address this issue, since our goal is to
develop a drawing system rather than to perform geometric
reconstruction. As a consequence, we develop approximate
solutions that are appropriate in the context of drawing and
sketching.

To enable the user to view stroke-based sketches from
multiple viewpoints, we interpret 2D silhouette strokes as

c The Eurographics Association and Blackwell Publishers 2001.



D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

curves, and use a curvature estimation scheme to infer a lo-
cal surface around the original stroke. This mechanism per-
mits efficient stroke-based rendering of the silhouette from
multiple viewpoints. In addition to stroke deformations, this
includes variation of intensity according to the viewing an-
gle, since the precision of the inferred local surface decreases
when we move away from the initial viewpoint. It also in-
cludes relative stroke occlusion, and additive blending of
neighbouring strokes in the image.

Apart from silhouette strokes, our system also provides
line strokes that represent 1D elements. These have the abil-
ity to remain at a fixed position in 3D while still being oc-
cluded by surfaces inferred using silhouette strokes. They
can be used to add 1D detail to the sketches, such as the
arrow symbols in the example of annotation (see Fig.11).

Because strokes have to be positioned in space, we present
an interface for 3D stroke input. The user always draws on
a 2D plane which is embedded in space. This plane is most
often the screen plane, selected by changing the viewpoint.
The depth location of this plane can be controlled either ex-
plicitly via the user interface or implicitly by drawing onto
an existing object. The user may also draw strokes that are
not in the screen plane, but that join two separate objects.

The combination of rapid local surface reconstruction and
graphics hardware rendering with OpenGL results in truly
interactive updates when using our system.

Finally, we show that our method can be applied to artistic
illustration as well as annotation of existing 3D scenes, such
as for rough landscaping or educational purposes. An exist-
ing 3D object can also be used as a guide to allow the design
of more involved objects, e.g., using a model mannequin to
create 3D sketches for clothing design.

2. Drawing and rendering 3D strokes

Two kinds of strokes are used in our system: line strokes
that represent 1D detail, and silhouette strokes that represent
the contour of a surface. This is the case for both open and
closed strokes.

For line strokes, we use a Bézier space curve for compact
representation. These strokes are rendered using hardware,
and behave consistently with respect to occlusion.

Silhouette strokes in 3D are more involved: a silhouette
smoothly deforms when the view-point changes. Contrary to
line strokes, a silhouette stroke is not located at a fixed space
position. It may rather be seen as a 3D curve that “slides”
across the surface that generates it. Our system infers the
simplest surface, i.e. the same local curvature in 3D as that
observed in 2D. For this we rely on the differential geom-
etry properties of the user-drawn stroke, generating a local
surface around it. But the degree of validity of this surface
decreases when the camera moves. Therefore, we decrease

the intensity of the silhouette as the point of view gets far-
ther from the initial viewpoint. This allows the user to either
correct or reinforce the attenuated stroke by drawing the sil-
houette again from the current viewpoint.

2.1. Local Surface Estimation from 2D input

Since the inferred local surface will be based on the ini-
tial stroke curvature, the first step of our method is to com-
pute the variations of this curvature along each 2D silhouette
stroke drawn by the user.

Each 2D silhouette stroke segment is first fit to a piece-
wise cubic Bézier curve using Schneider’s algorithm20. This
representation is more compact than a raw polyline for mod-
erately complex curve shapes. Then, using the closest-point
method21, each control point of the piecewise Bézier curve
is associated with a given value of the parameteru along the
curve.

For each parameter valueu associated with a control point
V(x(u);y(u)), we find the center of curvatureC(ξ(u);η(u))
by first computing the derivatives and then solving the fol-
lowing equations3:

ξ = x�
ẏ(ẋ2+ ẏ2)

ẋÿ� ẏẍ
η = y+

ẋ(ẋ2+ ẏ2)

ẋÿ� ẏẍ
;

where ẋ and ẍ are first and second derivatives ofx in u.
Therefore, we obtain a curvature vector between a point on
curve at parameteru and its associated center of curvature
C (see Fig.2(a)). We will be using these curvature vectors
to reconstruct local 3D surface properties. However, if the
stroke is completely flat, the norm of the curvature vector
(i.e. the radius of curvature) goes to infinity; the method we
present next solves this problem.

In order to infer a plausible surface in all cases, we use
a heuristic based on the curve’s length to limit the radius of
curvature. One way of looking at this process is that we are
attempting to fit circles along the stroke curve. Thus, if we
encounter many inflection points, the circles fitted should be
smaller, and the local surface should be narrower; in con-
trast, if the curve has few inflection points, the local surface
generated should be broader.

To achieve this, we construct axis-aligned bounding boxes
of the control polygon of the curve between each pair of in-
flection points (see Fig.2(b)). Inflection points can be found
easily since we are dealing with a well-defined piecewise
cubic Bézier curve. We discard bounding boxes which are
either too small or too close to the curve extremities. If the
norm of the curvature vector is larger than a certain fraction
of the largest dimension of the bounding box computed pre-
viously it is clamped to this value (see Fig.2(b)). We use a
fraction value at most equal to12, which gives a length equal
to the radius of a perfect circle stroke.

We also impose a consistent in/out orientation of the curve

c The Eurographics Association and Blackwell Publishers 2001.



D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

(a) (b) (c)

Figure 2: Processing vectors of curvature. In (a), curva-
ture vectors before clamping. In (b), curvature vectors after
being clamped relative to solid bounding box length (dotted
bounding boxes were too small to be selected). In (c), curva-
ture vectors after correcting orientation.

based on the orientation of the curvature vectors in the first
bounding box computed, thus implicitly considering initial
user input as giving correct orientation (see Fig.2(c)). This
intuitive choice corresponds to the intent of the user most of
the time. If not, a button in the UI can be used to invert all
the curvature vectors along the stroke.

From these 2D strokes we infer local surface properties,
which are then used to create a 3D stroke representation.
Each center of curvature embedded in the drawing plane is
considered as the center of a circle in a plane perpendicular
to the drawing plane and passing by the corresponding con-
trol point (see Fig.3(a)). We consider an arc of2π

3 radians
for each circle, thus defining a piecewise Bézier surface by
moving each control point on its circle arc (see Fig.3(b)).
This piecewise tensor product surface is quadratic in one di-
mension, corresponding to a good approximation to circle
arcs, and cubic in the other, which corresponds to the stroke
curve.

In practice, the inferred radius of curvature may of course
be inaccurate, but as stated earlier, the inferred surface will
only be used for generating a probable silhouette when
the viewing angle changes slightly. If more information is
needed about the 3D surface geometry, the contour will have
to be redrawn by the user at another viewpoint.

For a complete overview of the behavior of our method in
a simple “textbook example”, see Fig.4.

2.2. Rendering in 3D

Given a local surface estimation, our goal is to display the
initial stroke from a new viewpoint. When the viewpoint
changes, we expect the stroke to change its shape, as a
true silhouette curve would do. We also expect its color to
change, blending progressively into the background color to
indicate the degree of confidence we have in this silhouette
estimation. Recall that we want our system to be interac-

V0

C0

V1

V2

V3

C1

C2

C3

V0

V1

V2

V3

(a) (b)

Figure 3: Construction of a 3D stroke from a 2D stroke
composed of one cubic Bézier curve with control points Vi.
In (a), the 2D centers of curvature Ci computed with our
method and the corresponding 3D circles. In (b), the Bézier
surface obtained.

tive, which imposes an additional computational constraint.
In what follows, the term “local surface” corresponds to the
polygonal approximation of the local surface estimation of
the stroke.

The solution we adopt is to generate a fast but approxi-
mate silhouette based on the local surface generated as de-
scribed above. We simply render a “slice” of the local sur-
face that lies between two additional clipping planes, paral-
lel to the camera plane and situated in front of and behind
the barycenter of the centers of curvature (see Fig.5(a)).
The distance between clipping planes depends on the stroke
width value we have chosen. This ensures silhouette-like
shape modification, with minimal computational overhead.

It is important to note that our approach to silhouette ren-
dering is very approximate. It is obvious that its behaviour
will be somewhat unpredictable for wide camera angles and
very long strokes. A good accurate solution for computing
a new silhouette from the estimated surface would be to
use one of the existing algorithms14; 18; 11. However, we have
seen that our surface is only a coarse inference of the local
surface to which the silhouette belongs, so computing an ac-
curate silhouette would probably be unnecessary in our case.

Initially, we render all geometry other than the silhou-
ette strokes (for example the house in Fig.1). Therefore, the
depth and color buffers are correctly filled with respect to

(a) (b) (c) (d)

Figure 4: “Textbook example”: a simple circular stroke. In
(a), front view; in (b), side view rotated by 30 degrees; in (c),
side view rotated by 90 degrees; in (d), top view.

c The Eurographics Association and Blackwell Publishers 2001.



D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

V0

V1

V2

V3

CB

P1

P2

(a) (b) (c)

Figure 5: Stroke rendering. In (a), the final stroke is a slice
of Bézier surface obtained by using two clipping planes P1
and P2 facing the camera; CB is the barycenter of the Ci. In
(b), two texture samples, one of “stroke texture” (left) and
one of “occluder texture” (right). White corresponds to an
alpha value of 1, black to an alpha value of 0. In (c), im-
age obtained from rendering a black stroke against a white
background, with the slice position corresponding roughly
to (a).

this geometry. In the next step, we use different elements to
display the silhouette strokes and to perform stroke occlu-
sion. Because of this, we need a multipass algorithm.

First Pass: Rendering Silhouette Strokes

In the first pass, we render the strokes as clipped local sur-
faces, with the depth test and color blending enabled, but
with depth buffer writing disabled. Thus correct occlusion is
performed with respect to other (non-stroke) geometry.

To represent the confidence in the surface around the ini-
tial stroke we apply a “stroke texture” (see Fig.5(b), left) as
analphatexture to the local surface. This confidence is max-
imum at the initial stroke position and minimum at left and
right extremities of local surface. We use a Gaussian dis-
tribution that progressively blends the stroke color into the
background color for modeling this confidence function. As
a result, the stroke becomes less intense as we move away
from the initial viewpoint. This blending also allows two
different strokes to reinforce each other by superposition,
which corresponds to the behaviour of traditional ink brush
drawings.

Second and Third Pass: Occlusion by Local Surfaces

In addition to occlusion by other geometry, we also need to
handle occlusion by strokes. This required a slightly more
sophisticated process, since we do not want local surfaces
to produce hard occlusion (such as that created by a depth
buffer) but rather to softly occlude using the background
color, in a visually pleasing way. To meet these require-
ments, stroke occlusion is achieved in an additional two
passes. Recall that we start with a depth buffer which already
contains depth information for other objects in the scene.

In the second pass, we render the local surfaces into the
depth buffer with the depth test and depth buffer writing en-
abled. Local surfaces are textured with a different alpha tex-
ture called the “occluder texture” (see Fig.5(b), right) and
rendered with the alpha test enabled. As a result, occluder
shape will be a rounded version of local surface shape.

In the third pass, we render the local surfaces into the
color buffer with the depth test and color blending enabled,
but with depth buffer writing disabled. Local surfaces are
textured with the same “occluder texture” and colored with
the background color. The occluder color thus blends with
what is already present in color buffer: we obtain progres-
sive occlusion from the edge of local surface to the center
of initial stroke. During this pass, we use the stencil buffer
to mask the stroke rendered during first pass, and thus the
occluder does not overwrite it in the color buffer.

The multipass rendering algorithm is summarized in
Fig. 6.

Drawing style

We can have a different color for the background and the
stroke occluder, such as that shown in the artistic illustra-
tions of Fig.9 and10. This gives a subtle indication of local
surface around a stroke: it can be seen as equivalent to hatch-
ing or pencil pressure variation in traditional drawing.

Finally, since “stroke texture” and “occluder texture” are
procedurally generated, their parameters can vary freely.
This allows the creation of different tools according to spe-
cific needs.

3. Interface for Drawing: Stroke Positioning

A drawing session using our system is in many ways similar
to 2D drawing. A designer starts with an empty space, or,
in the case of annotation, she can add in a pre-existing 3D
model, such as the house in Fig.1.

For strokes drawn in empty space, we project onto a ref-
erence plane, parallel to camera plane and containing the
world origin (it is possible to choose a fixed offset relative
to this position). Typically, the user will place the drawing
plane in space using the trackball. An example is shown in
Fig. 7, where we start drawing the grounds of the house. We
want to draw in the plane of the ground corresponding to
the house, so we position ourselves in a “top view”. We then
verify that the position of the plane is as intended (a) and
draw the strokes for the grounds in the plane (b). Similarly,
trunks of trees are drawn in planes parallel to the walls of the
house (c).

Once such parts of the drawing have been created, we can
use the existing entities to position the curves in space. More
precisely, if at the beginning or at the end of a 2D stroke
the pointer is on an existing object, we use this object to
determine a new projection plane. We obtain the depth of

c The Eurographics Association and Blackwell Publishers 2001.



D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

(a) (b) (c) (d)

Figure 7: Plane positioning. First, position ourselves in a “top view”. Then, we verify the plane position colored in semi-
transparent grey (a), and we draw the grounds in this plane (b). We next draw trees trunks in planes parallel to the walls of the
house (c), and examine the result from another viewpoint (d).

MultipassRendering()
{

// Pass 1
// Draw clipped local surfaces
// with stroke texture, stroke color
Enable Depth Test
Enable Blend
Disable Depth buffer write
Draw strokes incolor buffer
// Pass 2
// Draw local surfaces
// with occluder texture
Enable Alpha test
Enable Depth test
Enable Depth buffer write
Draw occluders indepth buffer
// Pass 3
// Draw local surfaces
// with occluder texture, occluder color
Enable Stencil test
Enable Depth test
Enable Blend
Disable Depth buffer write
For each stroke:

Draw clipped local surface in stencil buffer
Draw occluder incolor buffer
Erase clipped local surface in stencil buffer

}

Figure 6: Multipass Stroke Rendering Algorithm

the point selected by a simple picking. The picked object
can correspond to a geometric object or to (the local surface
of) a stroke. There are three possibilities:

� If only the beginning of the stroke is on an object, we
project the stroke on a plane parallel to camera plane,
which contains the selected point. An example can be seen
in Fig. 8, where we draw the leaves of a tree in one plane
(a) and another (b).

� If the beginning and the end of the stroke are on an object,
we interpolate depth values found at the two extremities
by using the parameteru of the piecewise cubic Bézier

curve. Each control point is projected on a plane paral-
lel to the camera plane and located at the corresponding
depth. See Fig.8(c), where this “bridge” mechanism is
used to join two parts of a tree.

� If it happens that the stroke extremities are in empty space,
it is projected on the same plane as the previous stroke,
except if the trackball has been moved. In this case, the
reference plane is used.

(a) (b) (c)

Figure 8: Different projections using objects of the scene.
In (a) and (b), each time we draw on a plane automatically
positioned in space with the help of the tree trunk, i.e., a
plane passing through the trunk. This produces convincing
tree foliage. In(c), we use a “bridge” to draw a new branch.
It fits correctly in place because of the automatic positioning
of the start and the end of the stroke.

Classic 2D computer drawing capabilities extended to 3D
are also very useful. Among them, we have implemented
erasing strokes and moving strokes (in a plane parallel to
camera plane).

4. Applications

We present the results of using our system for three different
application scenarios. The first is for artistic illustration, the
second involves annotation of a pre-existing 3D scene, and
the third is for “guided design”. In our current implementa-
tion, drawings can be saved in a custom file format, in world
coordinates, but with no reference to an annotated object.

The initial learning curve for our system is relatively sig-
nificant, requiring a few hours to get used to the idea of draw-

c The Eurographics Association and Blackwell Publishers 2001.



D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

ing in and positioning the planes. Once this is understood,
typical drawings take between ten minutes to one hour to
complete.

4.1. Illustration in 3D

Figure9 and Figure10show two illustrations designed with
our system. Most strokes are silhouette strokes. They have
been rendered on a textured background so that the local
surface occluder appears as a “fill” effect. Each illustration
is shown from several different points of view, showing the
effects of occlusion, varying stroke lightness, and silhouettes
deformations.

4.2. Annotation of a 3D scene

Another application of 3D drawing is to use our system for
annotating an existing 3D model. While 2D annotation is
widespread, few systems provide a straightforward manner
to do this in 3D. In a typical user session, we initially load
the 3D model. It is subsequently integrated with the drawing
in the same way as for local surfaces: if a stroke is drawn on
the model, it is set to lie on it. Line strokes can be used for
adding annotation symbols (e.g., arrows, text, etc).

Figure1 has shown an example of annotation: adding a
coarse landscaping sketch around an architectural model.
Figure11shows annotation used for educational purposes: a
heart model is annotated in a classroom-like context, for in-
stance during an anatomy course. The use of a well-chosen
clipping plane gives an inside view of the model and allows
to draw anatomical details inside it.

Another example could be using our system in collabo-
rative design sessions. Annotation could then be employed
for coarsely indicating which parts of the model should be
changed, and to exchange ideas in a brainstorming context.

4.3. “Guided design”

The idea of this third application is to load a 3D model and
use it as a guide. When the drawing is completed, the model
is removed. A good example of this kind of application is
drawing clothes for fashion. A 3D model is used to obtain
the body proportions (see Figure12).

5. Conclusion and Future Work

We have presented a system which enhances the traditional
2D drawing process with 3D capabilities, notably by per-
mitting multiple viewpoints for a single drawing. Instead of
attempting a complete 3D reconstruction from 2D strokes,
we infer a local surface around the stroke. This is achieved
by assuming that strokes are drawn in a plane, and by using
differential geometry properties of the curve.

The resulting local surfaces are then drawn efficiently us-
ing hardware accelerated rendering of a clipped part of the

local surface, corresponding approximately to a silhouette.
Color blending is used to gracefully diminish the intensity of
the strokes as we move away from the initial viewpoint, and
to allow reinforcement of intensity due to multiple strokes.
We have also introduced a multipass method for stroke inter-
visibility, which results in a visually pleasing gradual occlu-
sion.

Our approach is built into a system which provides an in-
terface which retains many of the characteristics of tradi-
tional 2D drawing. We aid the user in placing the drawing
plane in empty space, and positionning it relative to other
objects (strokes or geometry) in the sketch.

Future Work

We have chosen a Bézier surface representation for storing
silhouette stroke information. This approach is convenient
but it can result in a large number of hardware rendered poly-
gons. Other representations could be used instead.

For instance, a volumetric data structure would have al-
lowed us to combine information about the local surface: the
more strokes are drawn at a given location in space, the more
we are certain that it corresponds to a true surface point. To
render strokes from a new viewpoint, we would have used a
variant of the marching cubes algorithm to produce a surface
estimation, associated with a mesh silhouette detection algo-
rithm to generate new silhouette strokes. The obvious draw-
backs of this approach are memory consumption and data
loss due to volumetric sampling of user input. A particle-
based approach, i.e., strokes composed of particles that try to
satisfy a set of constraints such as “stay on silhouette”, etc.,
would produce interesting stroke transformations. However,
numerical stability would undoubtedly be an issue as well as
computational overhead, which would impede interactivity.

Our user interface is clearly far from perfect. Plane po-
sitioning is not completely intuitive, and alternatives should
be considered. For example, a computer vision approach in
which the user defines two viewpoints for each stroke and
implicitly reconstructs positions in space (within an error
tolerance) could potentially prove feasible. But it is ques-
tionable whether such an approach would truly be more in-
tuitive.

We are investigating various such alternatives with the
goal of finding an appropriate combination to improve our
current solution, both in terms of stroke rendering quality
and user interface.

Acknowledgments

Many thanks to Eric Ferley for his feedback throughout the
project, to Laurence Boissieux for creating the landscaping
and fashion examples, to Frédo Durand for his advice on the
paper, and to Marc Pont for the mannequin model.

c The Eurographics Association and Blackwell Publishers 2001.



D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

Figure 9: Example of artistic illustration. Three views of the same sketch area are shown.

Figure 10: A second example of artistic illustration. Three views of the same sketch area are shown. The fourth view is the
finished drawing.

References

1. M. Akeo, H. Hashimoto, T. Kobayashi, and T. Shibu-
sawa. Computer graphics system for reproducing three-
dimensional shape from idea sketch.Computer Graphics Fo-
rum, 13(3):C/477–C/488, 1994.2

2. V. Branco, A. Costa, and F. N. Ferreira. Sketching 3D mod-
els with 2D interaction devices.Computer Graphics Forum,
13(3):C/489–C/502, 1994.2

3. I. N. Bronshtein and K. A. Semendyayev.Handbook of Math-
ematics, page 554. Springer, 1998.3

4. J. Butterworth, A. Davidson, S. Hench, and T. M. Olano.
3DM: A three dimensional modeler using a head-mounted dis-
play. Computer Graphics, 25(2):135–138, Mar. 1992.2

5. J. M. Cohen, J. F. Hughes, and R. C. Zeleznik. Harold: A
world made of drawings. InProceedings of the First Interna-
tional Symposium on Non Photorealistic Animation and Ren-
dering, pages 83–90. ACM Press, June 2000.2

6. J. M. Cohen, L. Markosian, R. C. Zeleznik, J. F. Hughes, and
R. Barzel. An interface for sketching 3D curves. InProceed-
ings of the Conference on the 1999 Symposium on interactive
3D Graphics, pages 17–22. ACM Press, Apr. 1999.2

7. M. F. Deering. HoloSketch: a virtual reality sketching/
animation tool. ACM Transactions on Computer-Human In-
teraction, 2(3):220–238, Sept. 1995.2

8. L. Eggli, B. D. Brüderlin, and G. Elber. Sketching as a solid
modeling tool. InSMA ’95: Proceedings of the Third Sym-
posium on Solid Modeling and Applications, pages 313–322.
ACM, May 1995. 2

9. L. Eggli, C. Hsu, B. D. Brüderlin, and G. Elber. Inferring 3D
models from freehand sketches and constraints.Computer-
aided Design, 29(2):101–112, 1997.2

10. B. J. Hale, R. P. Burton, D. R. Olsen, and W. D. Stout. A three-
dimensional sketching environment using two-dimensional
perspective input.Journal of Imaging Science and Technol-
ogy, 36(2):188–195, Mar.–Apr. 1992.2

11. A. Hertzmann and D. Zorin. Illustrating smooth surfaces.
In SIGGRAPH 00 Conference Proceedings, pages 517–526.
ACM Press, Aug. 2000.4

12. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketch-
ing interface for 3D freeform design. InSIGGRAPH 99 Con-
ference Proceedings, pages 409–416. Addison Wesley, Aug.
1999. 2

13. H. Lipson and M. Shpitalni. Optimization-based reconstruc-
tion of a 3D object from a single freehand line drawing.
Computer-aided Design, 28(8):651–663, 1996.2

14. L. Markosian, M. A. Kowalski, S. J. Trychin, L. D. Bourdev,
D. Goldstein, and J. F. Hughes. Real-time nonphotorealistic

c The Eurographics Association and Blackwell Publishers 2001.



D. Bourguignon, M-P. Cani and G. Drettakis / Drawing for Illustration and Annotation in 3D

Figure 11: An example of annotation in 3D: annotating a heart model during an anatomy course. The text displayed is view-
dependent. An unimplemented solution would consist in drawing it on a billboard, or using more sophisticated schemes16.

Figure 12: Using a 3D model as a guide can be useful in fashion applications.

rendering. InSIGGRAPH 97 Conference Proceedings, pages
415–420. Addison Wesley, Aug. 1997.4

15. T. B. Marshall. The computer as a graphic medium in con-
ceptual design. In R. Kensek and D. Noble, editors,Computer
Supported Design in Architecture (The Association for Com-
puter Aided Design in Architecture ACADIA’92), pages 39–47,
1992. 2

16. B. Preim, A. Ritter, and T. Strothotte. Illustrating anatomic
models — A semi-interactive approach.Lecture Notes in
Computer Science, 1131:23–32, 1996.9

17. D. Pugh. Designing solid objects using interactive sketch in-
terpretation.Computer Graphics, 25(2):117–126, Mar. 1992.
2

18. R. Raskar and M. Cohen. Image precision silhouette edges.
In SI3D 99 Conference Proceedings, pages 135–140. ACM
Press, Apr. 1999.4

19. E. Sachs, A. Roberts, and D. Stoops. 3-draw: A tool for de-
signing 3D shapes.IEEE Computer Graphics and Applica-
tions, 11(6):18–26, Nov. 1991.2

20. P. J. Schneider. An algorithm for automatically fitting digitized
curves. In A. S. Glassner, editor,Graphics Gems, pages 612–
626. Academic Press, 1990.3

21. P. J. Schneider. Solving the nearest-point-on-curve problem.
In A. S. Glassner, editor,Graphics Gems, pages 607–611.
Academic Press, 1990.3

22. T. Strothotte, B. Preim, A. Raab, J. Schumann, and D. R.

Forsey. How to render frames and influence people.Com-
puter Graphics Forum, 13(3):C/455–C/466, 1994.2

23. I. E. Sutherland. Sketchpad: A man-machine graphical com-
munication system. InProceedings AFIPS Spring Joint Com-
puter Conference, volume 23, pages 329–346, Detroit, Michi-
gan, May 1963.2

24. O. Tolba, J. Dorsey, and L. McMillan. Sketching with pro-
jective 2D strokes. InProceedings of the 12th Annual ACM
Symposium on User Interface Software and Technology, pages
149–158. ACM Press, Nov. 1999.2

25. R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. SKETCH:
An interface for sketching 3D scenes. InSIGGRAPH 96 Con-
ference Proceedings, pages 163–170. Addison Wesley, Aug.
1996. 2

c The Eurographics Association and Blackwell Publishers 2001.


