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ABSTRACT
Sources of data uncertainty and imprecision are numerous.
A way to handle this uncertainty is to associate probabilis-
tic annotations to data. Many such probabilistic database
models have been proposed, both in the relational and in
the semi-structured setting. The latter is particularly well
adapted to the management of uncertain data coming from
a variety of automatic processes. An important problem,
in the context of probabilistic XML databases, is that of
answering aggregate queries (count, sum, avg, etc.), which
has received limited attention so far. In a model unifying
the various (discrete) semi-structured probabilistic models
studied up to now, we present algorithms to compute the
distribution of the aggregation values (exploiting some regu-
larity properties of the aggregate functions) and probabilis-
tic moments (especially, expectation and variance) of this
distribution. We also prove the intractability of some of
these problems and investigate approximation techniques.
We finally extend the discrete model to a continuous one,
in order to take into account continuous data values, such
as measurements from sensor networks, and present algo-
rithms to compute distribution functions and moments for
various classes of continuous distributions of data values.

Categories and Subject Descriptors
H.2.3 [Database Management]: Logical Design, Lang-
uages—data models, query languages; F.2.0 [Analysis of
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1. INTRODUCTION
The (HTML or XML) Web is an important source of un-

certain data, for instance generated by imprecise automatic
tasks such as information extraction. A natural way to
model this uncertainty is to annotate semistructured data
with probabilities. This is the basis of recent works that
consider queries over such imprecise hierarchical informa-
tion [3, 15, 16, 19, 21, 23, 27, 28]. An essential aspect of
query processing has been ignored in all these works, namely,
aggregate queries. This is the problem we consider here. We
provide a comprehensive study of query processing for a very
general model of imprecise data and a very large class of ag-
gregate queries.

We consider probabilistic XML documents and the uni-
fying representation model of p-documents [2, 19]. A p-
document can be viewed as a probabilistic process that ran-
domly generates XML documents. Some nodes, namely dis-
tributional nodes, specify how to perform this random gen-
eration. We consider three kinds of distributional operators:
cie, mux, det, respectively for conjunction of independent
events (a node is selected if a conjunction of some probabilis-
tic conditional events holds), mutually exclusive (at most
one node selected from a set of a nodes), and determinis-
tic (all nodes selected). This model, introduced in [2, 19],
captures a very large class of models for probabilistic trees
that had been previously studied. For queries, we consider
tree-pattern queries possibly with value joins and the re-
stricted case of single-path queries. For aggregate functions,
we consider the standard ones, namely, sum, count, min, max,
countd (count distinct) and avg (average).

A p-document is a (possibly very compact) representation
of a probabilistic space of (ordinary) documents, i.e., a finite



set of possible documents, each with a particular probability.
In the absence of a grouping operation à la SQL (GROUP BY),
the result of an aggregate query is a single value for each
possible document. Therefore, an aggregate query over a
p-document is a random variable and the result is a dis-
tribution, that is, the set of possible values, each with its
probability. It is also interesting to consider summaries of
the distribution of the result random variable (that is pos-
sibly very large), and in particular, its expected value and
other probabilistic moments. When grouping is considered,
a single value (again a random variable) is obtained for each
match of the grouping part of the query. We investigate
the computation of the distributions of random variables
(in presence of grouping or not) and of their moments.

Our results highlight an (expectable) aspect of the differ-
ent operators in p-documents: the use of cie (a much richer
means of capturing complex situations) leads to an increase
in complexity. For documents with cie nodes, we show
the problems are hard (typically NP- or FP#P-complete).
For count and sum, in the restricted setting of single-path
queries, we show how to obtain moments in P. We also
present Monte-Carlo methods that allow tractable approxi-
mations of probabilities and moments. On the other hand,
with the milder forms of imprecision, namely mux and det,
the complexity is lower. Computing the distribution for tree-
pattern queries involving count, min and max is in P. The re-
sult distribution of sum may be exponentially large, but the
computation is still in P in both input and output. On the
other hand, computing avg or countd is FP#P-complete. On
the positive side, we can compute expected values (and mo-
ments) for most aggregate tree-pattern queries in P. When
we move to queries involving joins, the complexity of mo-
ment and distribution computation becomes FP#P-complete.

A main novelty of this work is that we also consider prob-
abilistic XML documents involving continuous probability
distributions, which captures a very frequent situation oc-
curring in practice. We formally extend the probabilistic
XML model by introducing leaves representing continuous
value distributions. We explain how the techniques for the
discrete case can be adapted to the continuous case and il-
lustrate the approach by results that can be obtained.

The paper is organized as follows. After presenting pre-
liminaries and introducing the problems in Sections 2 and 3,
we consider cie nodes in Section 4. In Section 5, we consider
monoid aggregate functions in the context of mux and det
nodes. Continuing with this model, we study complexity of
distributions and moments in Section 6. We briefly discuss
approximation algorithms in Section 7. Continuous proba-
bility distributions are considered in Section 8. Finally, we
present related work and conclude in Section 9.

A preliminary version of some of this work appeared in [1]
(a national conference without proceedings).

2. DETERMINISTIC DATA AND QUERIES
We recall the data model and query languages we use.
We assume a countable set of identifiers I and one of la-

bels L, such that I ∩ L = ∅. The set of labels includes a
set of data values (e.g., the integers, on which the aggregate
functions will be defined). A document is a pair d = (t, θ),
consisting of a finite, unordered1 tree t, where each node has

1Ignoring the ordering of the children of nodes is a com-
mon simplification over the XML model that does not sig-
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Figure 1: Document d: personnel in IT department.

a unique identifier v and a label θ(v). We use the standard
notions child and parent, descendant and ancestor, root and
leaf in the usual way. To simplify the presentation, we as-
sume that the leaves of documents are labeled with data val-
ues and the other nodes by non-data labels, that are called
tags. The sets of nodes and edges of d are denoted, respec-
tively, by I(d) and E(d), where E(d) ⊆ I(d) × I(d). We
denote the root of d by root(d) and the empty tree, that is,
the tree with no nodes, by ε.

Example 1. Consider the document d in Figure 1. Iden-
tifiers appear inside square brackets before labels. The doc-
ument describes the personnel of an IT department and the
bonuses distributed for different projects. The document d
indicates John worked under two projects (laptop and pda)
and got bonuses of 37 and 50 in the former project and 50

in the latter one.

An aggregate function maps a finite bag of values (e.g.,
rationals) into some domain (possibly the same or different).
In particular, we assume that any aggregate function is de-
fined on the empty bag. In the paper we study the common
functions: sum, count, min, countd (count distinct), and avg

(average) under the usual semantics. Our results easily ex-
tend to max and topK .

Aggregate functions can be naturally extended to work on
documents d: the result α(d) is α(B) where B is the bag of
the labels of all leaves in d. This makes the assumption that
all leaves are of the type required by the aggregate function,
e.g., rational numbers for sum. Again to simplify, we ignore
this issue here and assume they all have the proper type. It
is straightforward to extend our models and results with a
more refined treatment of typing.

As we will see some particular aggregate functions, the
so-called monoid ones [10], play a particular role in our in-
vestigation, because they can be handled by a divide-and-
conquer strategy. Formally, a structure (M,⊕,⊥) is called
an abelian monoid if ⊕ is an associative and commutative
binary operation with ⊥ as identity element. If no confusion
arises, we speak of the monoid M . An aggregate function is
a monoid one if for some monoidM and any a1, . . . , an ∈M :

α({|a1, . . . , an|}) = α({|a1|}) ⊕ · · · ⊕ α({|an|}).

It turns out that sum, count, min, max and topK are monoid
aggregate functions. For sum, min, max: α({|a|}) = a and ⊕
is the corresponding obvious operation. For count: α({|a|}) =
1 and ⊕ is +. On the other hand, it is easy to check that
neither avg nor countd are monoid aggregate functions.

nificantly change the results of this paper.



Finally, we introduce tree pattern queries with joins, with
join-free queries and single-path queries as special cases. We
then extend them to aggregate queries.

We assume a countable set of variables Var. A tree pattern
(with joins), denoted Q, is a tree with two types of edges:
child-edges, denoted E/, and descendent edges, denoted E//.

The nodes of the tree are labeled by a labeling function2 λ
with either labels from L or with variables from Var. Vari-
ables that occur more than once are called join variables.
We refer to nodes of Q as n, m in order to distinguish them
from the nodes of documents.

A tree pattern query with joins has the form Q[n̄], where Q
is a tree pattern with joins and n̄ is a tuple of nodes of Q
(defining its output). We sometimes identify the query with
the pattern and write Q instead of Q[n̄] if n̄ is not important
or clear from the context. If n̄ is the empty tuple, we say that
the query is Boolean. A query is join-free if every variable in
its pattern occurs only once. If the set of edges E/∪E// of a
query is a linear order, the query is a single-path query. We
denote the set of all tree pattern queries, which may have
joins, as TPJ. The subclasses of join-free and single path
queries are denoted as TP and SP, respectively.

A valuation ν maps query nodes to document nodes. A
document satisfies a query if there exists a satisfying valua-
tion, which maps query nodes to the document nodes in a
way that is consistent with the edge types, the labeling, and
the variable occurrences. That is, (1) nodes connected by
child/descendant edges are mapped to nodes that are chil-
dren/descendants of each other; (2) query nodes with label
a are mapped to document nodes with label a; and (3) two
query nodes with the same variable are mapped to document
nodes with the same label.

Slightly differently from other work, we define that apply-
ing a query Q[n̄] to a document d returns a set of tuples of
nodes: Q(d) := {ν(n̄) | ν satisfies Q}. One obtains the more
common semantics, according to which a query returns a set
of tuples of labels, by applying the labeling function of d to
the tuples in Q(d).

An aggregate TPJ-query has the form Q[α(n)], where Q
is a tree pattern, n is a node of Q and α is an aggregate
function. We evaluate such a Q[α(n)] in three steps: First,
the non-aggregate query Q′ := Q[n] over d, obtaining a set
of nodes Q′(d). We then compute the bag B of labels of
Q′(d), that is B := {|θ(n) | n ∈ Q′(d)|}. Finally we apply α
to B. Identifying the aggregate query with its pattern, we
denote the value resulting from evaluating Q over d as Q(d).

If Q[n] is a non-aggregate query and α an aggregate func-
tion, we use the shorthand Qα to denote the aggregate query
Q[α(n)]. More generally, we denote the set of aggregate
queries obtained from queries in TPJ, SP, TP and some
function α, as TPJα,SPα,TPα, respectively.

The syntax and semantics above can be generalized in a
straightforward fashion to aggregate queries with SQL-like
GROUP BY. Such queries are written Q[n̄, α(n)] and return
an aggregate value for every binding of n̄ to a tuple of doc-
ument nodes. Since we can reduce the evaluation of such
queries to the evaluation of several simpler queries of the
kind defined before, while increasing the data complexity by
no more than a polynomial factor, we restrict ourselves to
that simpler case.

2We denote the labeling function for queries as λ in order
to distinguish it from the labeling function θ for documents.

name bonus

person

m

Mary n

Q[sum(n)]:

Figure 2: Query: sum of bonuses for Mary.

Example 2. Continuing with Example 1, one may want
to compute the sum of bonuses for each person in the depart-
ment. A TPsum query Q that computes bonuses for Mary is
in Figure 2. The query result Q(d) is 59.

3. DISCRETE PROBABILISTIC DATA
We next present discrete probability spaces over data trees

(see [2] for a more detailed presentation) and formalize the
problems we will study in the following sections.

3.1 px-Spaces and p-Documents
A finite probability space over documents, px-space for

short, is a pair S = (D,Pr), where D is a finite set of doc-
uments and Pr maps each document to a probability Pr(d)
such that

∑
{Pr(d) | d ∈ D} = 1.

p-Documents: Syntax. Following [2], we now introduce
a very general syntax for representing compactly px-spaces,
called p-documents. A p-document is similar to a document,
with the difference that it has two types of nodes: ordinary
and distributional. Distributional nodes are used for defining
the probabilistic process that generates random documents
but they do not actually occur in these. Ordinary nodes
have labels and they may appear in random documents. We
require the leaves to be ordinary nodes3.

More precisely, we assume given a set X of independent
Boolean random variables with some specified probability

distribution ∆ over them. A p-document, denoted by P̂ ,
is an unranked, unordered, labeled tree. Each node has
a unique identifier v and a label µ(v) in L ∪ {cie(E)}E ∪
{mux(Pr)}Pr ∪ {det} where L are labels of ordinary nodes,
and the others are labels of distributional nodes. We consider
three kinds of the latter labels: cie(E) (for conjunction of
independent events), mux(Pr) (for mutually exclusive), and
det (for deterministic). We will refer to distributional nodes
labeled with these labels, respectively, as cie, mux and det
nodes. If a node v is labeled with cie(E), thenE is a function
that assigns to each child of v a conjunction e1 ∧ · · · ∧ ek of
literals (x or ¬x, for x ∈ X ). If v is labeled with mux(Pr),
then Pr assigns to each child of v a probability with the sum
equal to 1.

Example 3. Two p-documents are shown in Figures 3
and 4. The first one has only cie distributional nodes. For
example, node n21 has label cie(E) and two children n22 and
n24, such that E(n22) = ¬x and E(n24) = x. The second p-
document has only mux and det distributional nodes. Node
n52 has label mux(Pr) and two children n53 and n56, such
that Pr(n53) = 0.7 and Pr(n56) = 0.3.

3In [2], the root is also required to be ordinary. For technical
reasons, we do not use that restriction here.
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Figure 3: PrXMLcie p-document: IT department.

We denote classes of p-documents by PrXML with a su-
perscript denoting the types of distributional nodes that
are allowed for the documents in the class. For instance,
PrXMLmux,det is the class of p-documents with only mux and

det distributional nodes, like P̂ on Figure 4.

p-Documents: Semantics. The semantics of a p-document

P̂ , denoted by JP̂K, is a px-space over random documents,
where the documents are denoted by P and are obtainable

from P̂ by a randomized three-step process.
1. We choose a valuation ν of the variables in X . The

probability of the choice, according to the distribution ∆, is
pν =
∏
x in P̂,ν(x)=true

∆(x) ·
∏
x in P̂,ν(x)=false

(1−∆(x)).

2. For each cie node labeled cie(E), we delete its children
v where ν(E(v)) is false, and their descendants. Then, inde-
pendently for each mux node v labeled mux(Pr), we select
one of its children v′ according to the corresponding proba-
bility distribution Pr and delete the other children and their
descendants, the probability of the choice is Pr(v′). We do
not delete any of the children of det nodes.4

3. We then remove in turn each distributional node, con-
necting each ordinary child v of a deleted distributional node
with its lowest ordinary ancestor v′, or, if no such v′ exists,
we turn this child into a root.

The result of this third step is a random document P .
The probability Pr(P) is defined as the product of pν , the
probability of the variable assignment we chose in the first
step, with all Pr(v′), the probabilities of the choices that we
made in the second step for the mux nodes.

Example 4. One can obtain the document d in Figure 1
by applying the randomized process to the p-document in Fig-
ure 4. Then the probability of d is Pr(d) = .75 × .9 × .7 =
.4725. One can also obtain d from the p-document in Fig-
ure 3, assuming that Pr(x) = .85 and Pr(z) = .055, by
assigning {x/1, z/1}. In this case the probability of d is
Pr(d) = .85× .055 = .04675.

Remark. In our analysis, we only consider distributional
nodes of the types cie, mux, and det. In [2] two more types
of distributional nodes (ind and exp) are considered. As
shown there, the first kind can be captured by mux and

4It may seem that using det nodes is redundant, but actu-
ally they increase the expressive power when used together
with mux and other types of distributional nodes [2]: mux
alone can express that subtrees are mutually exclusive, but
in combination with det it can also express this on subforests.
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Figure 4: PrXMLmux,det p-document: IT department.

det, while the second is a generalization of mux and det and
most results of PrXMLmux,det can be extended to PrXMLexp.
As proved in [2], PrXMLcie is strictly more expressive than
PrXMLmux,det. It was shown in [19, 20] that data complexity
of answering TP-queries is intractable for PrXMLcie (FP#P-
complete) whereas it is polynomial for PrXMLmux,det.

3.2 Aggregating Discrete Probabilistic Data
Let Qα be an aggregate query and S = (D,Pr) be a px-

space of documents. Since Qα maps elements of the proba-
bility space S to values in the range of α, we can see Qα as
a random variable.

We therefore define the result of applying Qα to S as the
distribution of this random variable, that is

(Qα(S))(c) =
∑{

Pr(d)
∣∣∣ d ∈ D, Qα(d) = c

}
,

for c in the range of α.
Since in applications px-spaces are given under the form of

p-documents, we further extend the definition to p-documents

by defining Qα(P̂) := Qα(JP̂K). We denote the random vari-

able over the p-document P̂ corresponding to Q as Q(P).

Example 5. Evaluation of the query Q[sum(n)] from Ex-
ample 2 over the cie-document in Figure 3 gives the distribu-
tion {(0, 0.14175), (15, 0.80325), (44, 0.00825) (59, 0.04675)},
while evaluation over the mux-det-document in Figure 4 gives
the distribution {(15, 0.3), (59, 0.7)}.

Computational Problems. For an aggregate query Q, we
are interested in the following three problems, where the

input parameters are a p-document P̂ with corresponding
random document P and possibly a number c:

Membership: Given a number c, is c in the carrier of Q(P),
i.e., is Pr(Q(P) = c) > 0?

Probability computation: Given a number c, compute
Pr(Q(P) = c).

Moment computation: Compute the moment E(Q(P)k),
where E is the expected value.

Membership and probability computation can be used to

return to a user the distribution Q(P̂) of an aggregate query.
Computing the entire distributions may be too costly or the
user may prefer a summary of the distributions. For exam-
ple, a user may want to know its expected value E(Q(P))
and the variance Var(Q(P)). In general the summary can



be an arbitrary k-th moment E(Q(P)k) and the moment
computation problem addresses this issue.5

In the following, we investigate these problems for the
classes of cie documents and mux-det documents. For each
class, we further distinguish between aggregate queries of
the types SP, TP, and TPJ with the functions min, count,
sum, countd and avg. We do not discuss max and topK since
they behave similarly as min. In the paper we mainly speak
about data-complexity, when the input is a p-document and
the query is fixed. Occasionally we also consider combined
complexity, when both the p-document and the query are
inputs of the problem.

4. AGGREGATING PrXMLcie

We now study the problems introduced in Section 3 for the
most general class of p-documents, PrXMLcie. By definition,
one approach is to first construct the entire px-space of a

p-document P̂ , then to apply the aggregate query Q to each

document in JP̂K separately, and finally combine the results

to obtain the distribution Q(P̂). This approach is expensive,
since the number of possible documents is exponential in the

number of variables occurring in P̂ .
Our complexity results show that for practically all func-

tions and all problems nothing can be done that would be
significantly more efficient. All the decision problems are
NP-complete while computational problems are NP-hard or
FP#P-complete. The only exception is the computation of
moments for aggregate single-path queries with sum and
count. The intractability is due to dependencies between
nodes of p-documents expressed using variables.

4.1 Principles
We now show several general principles for p-documents

that are used later on to support the results.

Functions in #P and FP#P. We recall here the defini-
tions of some classical complexity classes (see, e.g., [24])
that characterize the complexity of aggregate functions on
PrXMLcie. An N-valued function f is in #P if there is a
non-deterministic polynomial-time Turing machine T such
that for every input w, the number of accepting runs of T is
the same as f(w). A function is in FP#P if it is computable
in polynomial time using an oracle for some function in #P.
Following [9], we say that a function is FP#P-hard if there
is a polynomial-time Turing reduction (that is, a reduction
with access to an oracle to the problem reduced to) from
every function in FP#P to it. Hardness for #P is defined
in a standard way using Karp (many-one) reductions. For
example, the function that counts for every propositional
2-DNF formula the number of satisfying assignments is in
#P and #P-hard [25], hence #P-complete. We notice that
the usage of Turing reductions in the definition of FP#P-
hardness implies that any #P-hard problem is also FP#P-
hard. Therefore, to prove FP#P-completeness it is enough to
show FP#P-membership and #P-hardness. Note also that
#P-hardness clearly implies NP-hardness.

We now consider membership in FP#P. We say that an

aggregate function α is scalable if for every p-document P̂ ∈
PrXMLcie, one can compute in polynomial time a natural

5The variance is the central moment of order 2; it is known
that the central moment of order k can be tractably com-
puted from the regular moments of order 6 k.

numberM such that for every d ∈ JP̂K the productM ·α(d)
is a natural number. The following result is obtained by
adapting proof techniques of [13].

Proposition 6. Let α be an aggregate function that is
computable in polynomial time and Q be an aggregate TPJ-
query using α. If α is scalable, then the following functions
mapping p-documents to rational numbers are in FP#P:

1. for every c ∈ Q the function P̂ 7→ Pr(Q(P) = c);

2. for every k > 1, the function P̂ 7→ E(Q(P)k).

The proposition above shows membership in FP#P of both
probability and moment computation for aggregate queries
in TPJ with all aggregate functions mentioned in the paper.

Reducing Query Evaluation to Aggregation. Now we
show that for answering aggregate SP-queries it is possible
to isolate aggregation from query processing.

Let P̂ be in PrXMLcie. If Q is an SP-query, we can apply

it naively to P̂ , ignoring the distributional nodes. The result

P̂Q is the subtree of P̂ containing the original root and as
leaves the nodes satisfying Q (i.e., the nodes matched by
the free variable of Q). Interestingly, it turns out that for

all aggregate functions α, evaluating Qα over P̂ is the same

as applying α to P̂Q. If P̂ is in PrXMLmux,det, then P̂Q can be

obtained analogously and, again, evaluating Qα over P̂Q can

be reduced to evaluating α over P̂Q. Therefore, answering

an aggregate SP-query Qα over P̂ in PrXMLcie,mux,det can be

done in two steps, first one queries P̂ with the non-aggregate

part Q, which results in a p-document P̂Q, and then one

aggregates all the leaves of P̂Q. The previous discussion
leads to the following result.

Proposition 7. Let Q[n̄] be a non-aggregate SP-query.

Then for every p-document P̂ ∈ PrXMLcie,mux,det we can

compute in time quadratic in |Q|+ |P̂| a p-subdocument P̂Q

of P̂ such that for every aggregate function α we have:

Qα(P̂) = α(P̂Q).

Hardness Results for Branching Queries. With the next
lemma, we can translate data complexity results for non-
aggregate queries to lower bounds of the complexity of com-
puting probabilities of aggregate values and moments of dis-
tributions. An aggregate function α is faithful if α({|1|}) = 1.

Lemma 8. Let Q be TPJ-query, P̂ a p-document and α a
faithful aggregate function. Then one can construct in linear
time an aggregate TPJ-query Q′α with the function α and a

p-document P̂ ′ such that for any k > 1,

Pr(P |= Q) = Pr(Q′α(P ′) = 1) = E(Q′α(P ′)k).

Moreover,
1. if Q ∈ TP, then Q′α ∈ TPα;

2. if P̂ ∈ PrXMLcie, then P̂ ′ ∈ PrXMLcie;

3. if P̂ ∈ PrXMLmux,det, then P̂ ′ ∈ PrXMLmux,det.

In [19] it has been proved that for every non-trivial Boolean
tree pattern query, computing the probability to match cie-
documents is #P-hard. By reducing #2DNF, we can show
that for the more restricted case of mux-det documents, eval-
uation of tree pattern queries with joins can be #P-hard.



Lemma 9. There is a Boolean TPJ-query with #P-hard
data complexity over PrXMLmux,det.

The result in [19] and the previous lemma yield immedi-
ately the following complexity lower bounds for probability
and moment computation for TP and TPJ.

Corollary 10. For any faithful aggregate function α, there
exist an aggregate TP-query Q1 and an aggregate TPJ-query
Q2, both with function α, such that each of the following
computation problems is #P-hard:

1. probability computation for Q1 over PrXMLcie;
2. k-th moments of Q1 over PrXMLcie, for any k > 1;
3. probability computation for Q2 over PrXMLmux,det;
4. k-th moments of Q2 over PrXMLmux,det, for any k > 1.

We are ready to present aggregation of PrXMLcie.

4.2 Computational Problems
We first show how to check for membership over PrXMLcie.

Theorem 11 (Membership). Let α be one of sum, min,
count, avg, and countd. Then membership over PrXMLcie is
in NP for the class TPJα. Moreover, the problem is NP-hard
for any aggregate query in SPα.

The upper bound holds because, given a query, guessing a
world and evaluating the query takes no more than polyno-
mial time. The lower bound follows from the next lemma.

Lemma 12. Let Q be an SP-query with one free variable
and let AGG = {sum, count,min, countd, avg}. For every
propositional DNF formula ϕ, one can compute in polyno-

mial time a p-document P̂ϕ ∈ PrXMLcie such that the fol-
lowing are equivalent: (1) ϕ is falsifiable, (2) Pr(Qα(P) =

1) > 0 over P̂ϕ for some α ∈ AGG, (3) Pr(Qα(P) = 1) > 0

over P̂ϕ for all α ∈ AGG.

We next show how to compute probability over PrXMLcie.

Theorem 13 (Probability). Let α be one of sum, count,
min, avg, and countd. Then probability computation over
PrXMLcie is in FP#P for the class TPJα. Moreover, the prob-
lem is #P-hard for every query in SPα.

Proof. (Sketch) The FP#P upper bound follows from
Proposition 6 and #P-hardness can be shown by a reduction
of probability computation for DNF propositional formulas
(that is known to be #P-hard), see the following lemma.

The following lemma supports Theorems 13 and 15.

Lemma 14. Let α be one of sum, count, min, avg, countd,
and β be one of min, avg, countd. Let Qα and Qβ be SP-
queries. Then for every propositional DNF formula ϕ, one

can compute in polynomial time a p-document P̂ϕ ∈ PrXMLcie

such that the following are equivalent:

1. Pr(Qα(Pϕ) = 0) = 1− Pr(ϕ);

2. E(Qβ(Pϕ)k) = 1− Pr(ϕ) for any k > 1.

We finally show how to compute moments over PrXMLcie.

Theorem 15 (Moments). Let α be one of sum, count,
min, avg, and countd. Then computation of moments of
any degree over PrXMLcie is in FP#P for the class TPJα.
Moreover, the problem is

PrXMLcie Aggregate query language

SP TP TPJ

Membership NP-c NP-c NP-c

Probability FP#P-c FP#P-c FP#P-c

Moments
count, sum P

others FP#P-c
FP#P-c FP#P-c

Table 1: Data complexity of query evaluation over
PrXMLcie. NP-c means NP-complete.

1. of polynomial combined complexity for the classes SPsum

and SPcount;
2. #P-hard for any query in the classes SPmin, SPavg and

SPcountd;
3. #P-hard for some query in TPsum and TPcount.

Proof. Again, as for Theorem 13, the FP#P upper bound
follows from Proposition 6. Claim 2 follows from Lemma 14
and its analogues for min, countd, and avg. Claim 3 follows
from Corollary 10.

To prove Claim 1, we rely on Proposition 7, which reduces
answering aggregate SP-queries to evaluating aggregate func-
tions, and the following lemmas.

The next lemma shows that the computation of the ex-
pected value for sum over a px-space, regardless whether it
can be represented by a p-document, can be polynomially
reduced to computation of an auxiliary probability.

Lemma 16. Let S be a px-space and V be the set of all
leaves occurring in the documents of S. Suppose that the
function θ labels all leaves in V with rational numbers and let
sum(S) be the random variable defined by sum on S. Then

E(sum(S)k) =
∑

(v1,...,vk)∈V k

( k∏

i=1

θ(vi)
)
×

Pr ({d ∈ S | v1, . . . , vk occur in d}) ,

where the last term denotes the probability that a random
document d ∈ S contains all the nodes v1, . . . , vk.

Intuitively, the proof exploits the fact that E(sum(S)) is
a sum over documents of sums over nodes, which can be
rearranged as a sum over nodes of sums over documents.

The auxiliary probability introduced in the previous lemma
can be in fact computed in polynomial time for px-spaces

represented by P̂ ∈ PrXMLcie.

Lemma 17. There is a polynomial time algorithm that

computes, given a p-document P̂ ∈ PrXMLcie and leaves

v1, . . . , vk occurring in P̂, the probability

Pr

(
{d ∈ JP̂K | v1, . . . , vk occur in d}

)
.

Now we are ready to conclude the proof of the theorem.

Proof. of Theorem 15.1 By Lemma 16, the k-th

moment of sum over P̂ is the sum of |V |k products, where

V is the set of leaves of P̂. The first term of each prod-

uct,
∏k
i=1
θ(vi), can be computed in time at most |P̂|k. By



Lemma 17, the second term can be computed in polynomial
time. This shows that for every k > 1, the k-th moment
of sum can be computed in polynomial time. The claim for
count follows as a special case, where all leaves carry the
label 1.

Table 1 gives an overview of the data complexity results
of this section.

5. MONOID AGGREGATES
The previous section highlighted the inherent difficulty of

computing aggregate queries over cie-documents. The intu-
itive reason for this difficulty is that the event variables used
in a p-document can impose constraints between the struc-
ture of subdocuments in very different locations. In contrast,
mux,det-documents only express “local” dependencies. As a
consequence, for the special case of single path queries and
monoid aggregate functions, mux-det documents allow for a
conceptually simpler computation of distributions, which in
a number of cases is also computationally efficient.

The key to developing methods in this setting is Propo-
sition 7, which reduces the evaluation of a single path ag-

gregate query Qα over P̂ to the evaluation of the function

α over the document P̂Q. Note that P̂Q is again a mux-det

document if P̂ is one. Therefore, we can concentrate on the
question of evaluating α over mux,det-documents.

We are going to show how a mux,det-document P̂ can

be seen as a recipe for constructing the px-space JP̂K in a
bottom-up fashion, starting from elementary spaces repre-
sented by the leaves and using essentially two kinds of opera-
tions, convex union and product. Convex union corresponds
to mux-nodes and product corresponds to det-nodes and reg-
ular nodes. (To be formally correct, we would need to distin-
guish between two slightly different versions of product for
det and regular nodes. However, to simplify our exposition,
we only discuss the case of regular nodes and briefly indicate
below the changes necessary to deal with det-nodes.)

For any α, the distribution over the space described by

a leaf of P̂ is a Dirac distribution, that is, a distribution
of the form δa, where δa(b) = 1 if and only if a = b. For
monoid functions α, the two operations on spaces, convex
union and product, have as counterparts two operations on
distributions, convex sum and convolution, by which one can

construct the distribution α(P̂) from the Dirac distributions

of the leaves of P̂ . We sketch in the following both the
operations on spaces and on distributions, and the way in
which they are related.

As the base case, consider a leaf node v with label l. This
is the simplest p-document possible, which constitutes an
elementary px-space that contains one document, namely
node v with label l, and assigns the probability 1 to that
document. Over this space, α evaluates with probability 1
to α({|l|}), hence, the probability distribution is δα({|l|}). As
a special case, if α is a monoid aggregation function over
M , the distribution of α over the space containing only the
empty document ε is δ⊥, where ⊥ is the identity of M .

Inductively, suppose that v is a mux-node in P̂, the sub-

trees below v are P̂1, . . . , P̂n, and the probability of the i-th

subtree P̂i is pi (see Figure 5, left). Without loss of gener-
ality we can assume that the pi are convex coefficients, that
is, p1 + · · · + pn = 1, since we admit the empty tree as a
special p-document.

muxv:P̂v

v1

p1

· · · vn

pn

P̂1 P̂n

α(P̂v) =

p1α(P̂1) + · · ·+ pnα(P̂n)

vP̂v

v1 · · · vn

P̂1 P̂n

α(P̂v) =

α(P̂1) ∗M · · · ∗M α(P̂n)

Figure 5: Distribution of monoid functions over com-
posed PrXMLmux,det documents.

Let P̂v denote the subtree rooted at v. Then the semantics
of mux-nodes implies that the px-space JP̂vK = (Dv,Prv)

is the convex union of the spaces JP̂iK = (Di,Pri), which
means the following: (1) Dv is the disjoint union of the Di
(in other words, for any d ∈ Dv, there is exactly one Di such
that d ∈ Di); (2) for any document d ∈ Dv, we have that
Prv(d) = piPri(d), where d ∈ Di.

As a consequence, α(P̂v)(c), the probability that α has

the value c over P̂v, equals the weighted sum p1α(P̂1)(c) +

· · ·+ pnα(P̂n)(c) of the probabilities that α has the value c

over P̂1, . . . , P̂n. In a more compact notation we can write

this as α(P̂v) = p1α(P̂1) + · · ·+ pnα(P̂n), which means that

the distribution α(P̂v) is a convex sum of the α(P̂i).
For the second induction step, suppose that v is a regular

non-leaf node in P̂, with the label l. (see Figure 5, right).
Similar to the previous case, suppose that the subtrees below

v are P̂1, . . . , P̂n, that JP̂vK = (Dv,Prv) and that JP̂iK =
(Di,Pri) for 1 6 i 6 n. Moreover, the Di are mutually
disjoint.

Every document d ∈ Dv has as root the node v, which car-
ries the label l, and subtrees d1, . . . , dn, where di ∈ Di. We
denote such a document as d = vl({d1, . . . , dn}). Conversely,
according to the semantics of regular nodes in mux-det docu-
ments, every combination {d1, . . . , dn} of documents di ∈ Di
gives rise to an element vl({d1, . . . , dn}) ∈ Dv. (Note that,
due to the mutual disjointness of the Di, the elements of
Dv are in bijection with the tuples in the Cartesian product
D1 × · · · × Dn.)

Consider a collection of documents di ∈ Di, 1 6 i 6 n,
with probabilities qi := Pri(di). Each di is the result of

dropping some children of mux-nodes in P̂i and qi is the
product of the probabilities of the surviving children. Then
d := vl(d1, . . . , dn) is the result of dropping simultaneously

the same children of those mux-nodes, this time within P̂v.

The set of surviving children in P̂v is exactly the union of the

sets of children having survived in each P̂i and, consequently,
for the probability q := Prv(d) we have that q = q1 · · · qn. In
summary, this shows that the probability space (Dv,Prv) is
structurally the same as the product of the spaces (Di,Pri).

Suppose now that, in addition, α is a monoid aggregate
function taking values in (M,⊕,⊥). Then for any document

d = vl(d1, . . . , dn) ∈ P̂v we have that α(d) = α(d1) ⊕ · · · ⊕
α(dn). Hence, the probability that α(Pv) = c is the sum
of all products Pr(α(P1) = c1) · · ·Pr(α(Pn) = cn) such that
c = c1 ⊕ · · · ⊕ cn. Motivated by this observation, we define



the following operation. For any functions f , g : M → R,
the convolution of f and g with respect toM is the function
f ∗M g : M → R such that

(f ∗M g)(m) =
∑

m1,m2∈M : m1⊕m2=M

f(m1)g(m2). (1)

From our observation above it follows that the distribu-
tion α(P̂v) is the convolution of the distributions α(P̂i) with
respect to M , that is,

α(P̂v) = α(P̂1) ∗M · · · ∗M α(P̂n). (2)

For det-nodes v, the same equation applies, although the
supporting arguments are a bit more complicated. The cru-

cial difference is that for det-nodes, JP̂vK is a space of forests,

not trees, since the trees (or forests) in the JP̂iK are combined
without attaching them to a new root.

We summarize how one can use the operations introduced
to obtain the distribution of a monoid aggregate function
over a mux-det document.

Theorem 18. Let α be a monoid aggregation function

taking values in M and P̂ ∈ PrXMLmux,det. Then α(P̂) can
be obtained in a bottom-up fashion by

1. attaching a Dirac distribution to every leaf and for ev-
ery occurrence of the empty document;

2. taking convex sums at every mux-node; and
3. taking convolutions with respect to R at each det and

each regular non-leaf node.

Essentially the same relationship between distributions as
spelled out in Theorem 18 exists also if we allow continuous
distributions at the leaves of documents. An evaluation al-
gorithm then has to compute convex sums and convolutions,
starting from continuous instead of Dirac distributions (we
will discuss this in detail in Section 8).

The carrier of a function f : M → R is the set of elements

m ∈ M such that f(m) 6= 0. Since for any P̂ the carrier of

min(P̂) and of count(P̂) has at most as many elements as

there are leaves in P̂ , we can draw some immediate conclu-
sions from Theorem 18.

Corollary 19. For any mux,det-document P̂,

1. the distributions count(P̂) and min(P̂) can be computed

in time polynomial in |P̂|;

2. the distribution sum(P̂) can be computed in time poly-

nomial in |P̂|+ |sum(P̂)|.

Proof. (Sketch) Claim 1 holds because computing a con-
vex sum and convolutions with respect to “+” and min of two
distributions is polynomial and all distributions involved in

computing count(P̂) and min(P̂) have size O(|P̂|). Claim 2
holds because, in addition, a convex sum and the convolu-
tion with respect to “+” of two distributions have at least
the size of the largest of the two arguments.

Remark. For the monoid of integers with addition, (1) is
the same as the well-known discrete convolution. (2) is in
fact a special case of a general principle: If X and Y are two
M -valued random variables on the probability spaces X , Y,
with distributions f , g, respectively, then the distribution of
X ⊕ Y : X × Y → M is the convolution f ∗M g of f and g.

PrXMLmux,det Aggregate query language

SP, TP TPJ

Membership sum, avg, countd NP-c
count,min P count,min NP

Probability
avg, countd FP#P-c
count,min P

FP#P-c

Probability SP TP
FP#P-c

(for sum) P∗ FP#P

SP TP

Moments P
avg FP#P

others P
FP#P-c

Table 2: Data complexity of query evaluation over
PrXMLmux,det. NP-c means NP-complete, NP means
membership in NP and * means in the size of |in-
put|+|distribution|.

This principle has also been applied in [26] in the context of
queries with aggregation constraints over probabilistic rela-
tional databases.

6. AGGREGATING PrXMLmux,det

We investigate the three computational problems for ag-
gregate queries for the restricted class of PrXMLmux,det, draw-
ing upon the principles developed in the preceding section.

Theorem 20 (Membership). Let α be one of sum, count,
min, avg, and countd. Then membership over PrXMLmux,det

is in NP for the class TPJα. Moreover, the problem is
1. NP-hard for every query in SPsum, SPavg and SPcountd;
2. of polynomial combined complexity for the classes SPmin

and SPcount;
3. of polynomial data complexity for any query in TPmin

and TPcount.

Proof. (Sketch) The NP upper bound is inherited from
the cie-case (Theorem 11). Claim 1 can be shown by a reduc-
tion of subset-sum and exact cover by 3-sets. Claims 2 and 3
follow from their counterparts (Claims 1 and 2, respectively)
in Theorem 21.

We next consider probability computation.

Theorem 21 (Probability). Let α be one of sum, count,
min, avg, and countd. Then probability computation over
PrXMLmux,det is in FP#P for the class TPJα. Moreover, the
problem is

1. of polynomial combined complexity for the classes SPmin

and SPcount;
2. of polynomial data complexity for any query in TPmin

and TPcount;
3. #P-hard for any query in SPavg and SPcountd;
4. #P-hard for some query in TPJsum, TPJcount and TPJmin.

Proof. (Sketch) The FP#P upper bound is inherited from
the cie-case (Theorem 13). Claim 1 follows from Corol-
lary 19, since, due to Proposition 7, for an aggregate SP-

query Qα we have that Qα(P̂) = α(P̂Q).
Regarding Claim 2, algorithms for count and min can be

developed in a straightforward way, applying the techniques



in [8] to evaluate TP-queries with aggregate constraints. For
a given p-document, there are only linearly many possible
values for min and count, the probability of which can be
computed in polynomial time by incorporating them in con-
straints. Consequently, the entire distribution of min or
count can be computed in polynomial time.

Claim 3 can be shown by a reduction of the #K-cover
problem for countd and the #Non-Negative-Subset-Average
problem for avg.6 Claim 5 follows from Corollary 10.

Finally, we consider moments over PrXMLmux,det.

Theorem 22 (Moments). Let α be one of sum, count,
min, avg, and countd. Then computation of moments of
any degree over PrXMLmux,det is in FP#P for the class TPJα.
Moreover, the problem is

1. of polynomial combined complexity for the class SPα;
2. of polynomial data complexity for the class TPα,

if α 6= avg;
3. #P-hard for some query in TPJα.

Proof. The FP#P upper bound is inherited from the cie-
case (Theorem 15). Claim 3 follows from Corollary 10.

Regarding Claim 1, all our algorithms first reduce aggre-
gate query answering to function evaluation (see Proposi-
tion 7). The algorithm for count and sum is a refinement for
the one for the cie-case (Theorem 15). The algorithm for
min works on the entire distribution, which can be computed
in polynomial time (Corollary 19).

For countd we apply similar techniques of regrouping sums
to those that we used for sum in Lemma 16. In doing so,
we exploit the fact that the probability for a value (or sets
of values of fixed cardinality) to occur in a query result over
a mux,det-document can be computed in polynomial time,
which follows from work in [19].

The algorithm for avg traverses p-documents in a bottom-
up fashion. It maintains conditional moments of sum for
each possible value of count and combines them in two pos-
sible ways, according to the node types.7

Regarding Claim 2, moments for count and min can be
computed directly from the distributions, which can be con-
structed in polynomial time as sketched in the proof of The-
orem 21.2.

Algorithms for sum and countd can be based on a general-
isation of the principle of regrouping sums (see Lemma 16)
for tree pattern queries. Analogously as for the case of single-
path queries, the crucial element for the complexity of the
sum-algorithm is the difficulty of computing the probability
that a node (or sets of nodes of fixed cardinality) occur in
a query result. For tree pattern queries without joins, these
probabilities can be computed in polynomial time adapting
the techniques in [19]. A variation of this principle, where
the probabilities of a given set of values to occur in a query
result is computed, gives an algorithm for countd.

Table 2 gives an overview of data complexity results of
this section.

7. APPROXIMATIONS AND SAMPLING
6The same problems has been used earlier in [26] to show
#P-hardness of evaluating relational queries with countd
and avg-constraints.
7A technique that is similar in spirit has been presented in
[18] for probabilistic streams.

Without loss of generality, we only discuss how to esti-
mate cumulative distributions Pr(Qα(P) 6 c) and moments
E(Qα(P)k) for aggregate TPJ-queries. Notice that by using
cumulative distributions one can also approximate the prob-
ability of individual values: to estimate Pr(Qα(P) = c), we
estimate Pr(Qα(P) 6 c + γ) and Pr(Qα(P) 6 c − γ) for a

small γ (that depends on α and P̂) and subtract the second
from the first.

For instance, in order to approximate the cumulative prob-
ability Pr(Qcountd(P) 6 100), one evaluates the query on in-

dependent random samples of worlds of P̂, and then use the
ratio of resulting samples where countd is at most 100 as an
estimator. Similarly, for approximating E(Qcountd(P)), one
returns the average of countd over the results.

Using Hoeffding’s Bound [14] we obtain the following two
propositions for approximating a point for the cumulative
distribution of an aggregate query and moments of any de-
gree, respectively.

Proposition 23. Let Q be an aggregate TPJ-query, P̂ ∈
PrXMLcie,mux,det a p-document and x ∈ Q. Then for any
rationals ε, δ > 0, it is sufficient to have O( 1

ε2 log 1
δ
) samples

so that with probability at least 1−δ, the quantity Pr(Q(P) 6

x) can be estimated with an additive error of ε.

Observe that the number of samples in Proposition 23

is independent of the size of P̂. A problem may arise if
Pr(Q(P) 6 x) 6 ε, since then an additive error of ε makes
the estimate useless. However, for probabilities above a
threshold p0, it is enough to have the number of samples
proportional to 1/p2

0 (with additive error, say p0/10).

Proposition 24. Let Q be an aggregate TPJ-query, f a
function mapping Q to Q, such that f(Q(P)) ranges over an

interval of width R and P̂ ∈ PrXMLcie a p-document. Then,

for any rationals ε, δ > 0, it is sufficient to have O(R
2

ε2 log 1
δ
)

samples so that, with probability at least 1− δ, the quantity
E(f(Q(P))) can be estimated with additive error of ε.

As a consequence, if Q takes values in [0, R], choosing
f(x) := xk yields that the k-th moment of Q(P) around

zero can be estimated with O(R
2k

ε2 log 1
δ
) samples.

Observe that if the range R has magnitude polynomial

in size of P̂ , then we have a polynomial-time estimation

algorithm. For example, to approximate E(Qcountd(P̂)) it is
enough to draw a quadratic number of samples, since the

range R is at most the number of the leaves in P̂ .

8. CONTINUOUS PROBABILISTIC DATA
We generalize p-documents to documents whose leaves are

labeled with (representations of) probability distributions
over the reals, instead of single values. We give semantics
to such documents in terms of continuous distributions over
documents with real numbers on their leaves.

Continuous px-Spaces. In the discrete case, a p-document
defines a finite set of trees and probabilities assigned to them.
In the continuous case, a p-document defines an uncountably
infinite set of trees with a continuous distribution, which as-
signs probabilities to (typically infinite) sets of trees, the



possible events, which form a σ-algebra. We refer to a text-
book on measure and probability theory such as [5] for the
definitions of the concepts used in this section.

From now on, we consider only documents whose leaves
are labeled with real numbers. We say that two documents
d = (t, θ) and d′ = (t′, θ′) are structurally equivalent, de-
noted d ∼st d

′, if t = t′ and θ(v) = θ(v′) for every v that
is not a leaf of t. That is, d and d′ differ only in the labels
of the leaves. Obviously, ∼st is an equivalence relation on
the set of all documents. Intuitively, the structure and the
labels of inner nodes fix the structure of a document while
the leaves contain values.

A set of documents D is structurally finite (or sf for short)
if (1) for any document d ∈ D and any d′ that is structurally
equivalent to d, we have d′ ∈ D; (2) D consists only of
finitely many ∼st-equivalence classes. That is, intuitively, if
it contains a document d, then it contains also all documents
that have the same structure, but different values, and it
contains only finitely many structurally distinct documents.

Let D be an sf set of documents. We define a σ-algebra
AD on D and then probabilities on AD by doing so first for
each ∼st-class and then for D as a whole.

Let d0 = (t0, θ0) be a document, l̄ := (l1, . . . , lk) a tuple
consisting of the leaf nodes of d0, and [d0]∼st the equivalence
class of d0 under ∼st. For every document d = (t, θ) with
d ∈ [d0]∼st we define θ(l̄) := (θ(l1), . . . , θ(lk)) a k-tuple of
real numbers. In fact, this mapping of tuples of leaf values
to tuples of numbers is a bijection between [d0]∼st and Rk,
which we denote as β. The standard σ-algebra on Rk is the
algebra of Borel sets. We use β to introduce a σ-algebra A0

on [d0]∼st . We say that D0 ∈ A0 for a set D0 ⊆ [d0]∼st if
and only if β maps D0 to a Borel set of Rk. In the same
vein, we can identify probability distributions over Rk with
distributions over [d0]∼st . Note that, due to symmetry, the
definition of A0 does not depend on the specific order of the
leaves that is used by β.

Now, suppose that D =
⋃n
i=1

[di]∼st and that Ai is the
σ-algebra on [di]∼st defined above. Then we define

AD := {D1 ∪ · · · ∪ Dn | Di ∈ Ai}.

Clearly, since all the Ai are σ-algebras, AD is a σ-algebra.
Moreover, suppose that for each equivalence class [di]∼st we
have a probability distribution Pri and that p1, . . . , pn are
convex coefficients (that is, pi > 0 and p1 + · · · + pn = 1).
Then we define for every D′ ∈ AD

Pr(D′) :=

n∑

i=1

pi · Pri(D
′ ∩ [di]∼st).

Clearly, Pr is a probability on AD. Conversely, every prob-
ability Pr over (D,AD) can be uniquely decomposed into
probabilities Pri over the ∼st-classes of D such that Pr can
be obtained from the Pri as described above. Moreover, each
Pri is essentially a probability over some Rk.

p-documents. To support (possibly continuous) distribu-
tions on leaves, we extend the syntax of p-documents by an
additional type of distributional nodes, the cont nodes. A
cont node has the form cont(D), where D is a representa-
tion of a probability distribution over the real numbers. In
contrast to the distribution nodes introduced earlier, a cont
node can only appear as a leaf.

Example 25. Consider the PrXMLcont,mux,det p-document

0.6

[11]

0.250.75

[56]

[51]

[52] [53]

0.4
[32][13][8]

[41]

[23]

[22] time sb

[5] measurement

5

[31] value

sc

[7] measurement

[50] value

[2] sensor

[6] id

N(25,1)

[4] id

sa

17 U[15,19]

mux

[55] time

3

cont, mux, det:

[3] sensor

[1] monitoring

mux

Figure 6: PrXMLcont,mux,det p-document: monitoring.

in Figure 6. The document collects results of (e.g., tempera-
ture) monitoring by sensors sa, sb and sc. The data in the
document are measurements at time 3 by sb and at time 5
by either sa or sc. At time 3 the measurement is either 17,
or a value in the interval from 15 to 19. The fact the latter
value is unknown and can be anywhere between 15 and 19
is represented by a continuous node cont(U([15; 19]), where
U stands for the uniform distribution. We know that both
sensors sa and sc have an inherent imprecision and the real
measurement is normally distributed around the one they
sent. We model it by a continuous node with a normal dis-
tribution cont(N(25; 1)) with mean 25 and variance 1.

Any finitely representable distribution can appear in a
cont node. As an example, we consider in the following
piecewise polynomial distributions. A function f : R→ R is
piecewise polynomial if there are points −∞ = x0 < x1 <
. . . < xm = ∞ such that for each interval Ii := ]xi−1, xi[,
1 6 i 6 m, the restriction f|Ii of f to Ii is a polynomial.
(The points x1, . . . , xn−1 are the partition points and the
intervals I1, . . . , Im are the partition intervals of f .) Every
piecewise polynomial function f > 1 with

∫∞
−∞
f = 1 is the

density function of a probability. Clearly, in this case f|I1
and f|Im are identical to 0. Note that distributions defined
by piecewise polynomial densities are a generalization of uni-
form distributions. Piecewise polynomials are an example of
a class of functions stable under convex sum, (classical) con-
volution, product, and integration. We shall use this stabil-
ity property to compute the distribution of aggregate query
answers.

When the symbol cont appears as a superscript of PrXML,
possibly in combination with other symbols, it indicates a
class of p-documents that have distributions on their leaves.
The symbol cont can be used with class symbols like the
three above as arguments to specify the kind of distributions
that can appear.

We define the semantics JP̂K of continuous p-documents
of PrXMLcont,cie,mux,det as a continuous px-space as defined

earlier. More precisely, let P̂ ∈ PrXMLcont,cie,mux,det and

P̂ ′ ∈ PrXMLcie,mux,det be the p-document obtained from P̂
by replacing every continuous node with an arbitrary value,

say, 0. JP̂ ′K is a (discrete) px-space ({d1 . . . dn}, {p1 . . . pn})
with
∑
pi = 1. For a given 1 6 i 6 n, we consider the docu-

ment P̂i of PrXMLcont obtained by putting back in di the con-

tinuous nodes of P̂ , where the corresponding leaves still exist.
Let Di1 . . .Dik be the k probability distributions over the

real numbers represented in the cont nodes of P̂i. We define
then a continuous probability distribution Pri over Rk as the



product distribution [5] of theDij ’s, i.e., the unique distribu-
tion such that Pri(X1×· · ·×Xk) = Di1(X1)×· · ·×Dik(Xk).
Using the inverse of the bijection β discussed earlier, Pri can
be translated into a probability distribution over [di]∼st , the
equivalence class of di under ∼st. Let D = ∪ni=1[di]∼st . We
then define as already discussed the probability distribution

Pr of JP̂K on the σ-algebra AD as:

Pr(D′) :=

n∑

i=1

pi · Pri(D
′ ∩ [di]∼st).

Aggregating Continuous Probabilistic Data . Having de-
fined the semantics of continuous p-documents, we now show
how the results for aggregate queries obtained in the discrete
case can be lifted to the continuous case. Our purpose here
is not to give a comprehensive picture of the complexity,
as in the discrete case, but to see what kind of tractability
results can be obtained. Let us restrict ourself to monoid
aggregate functions, and p-documents of PrXMLcont,mux,det,
which is our main case of tractability in the discrete case.
For simplicity, we only deal with single-path queries.

The following result is at the basis of the tractability of
monoid aggregate query evaluation in PrXMLcont,mux,det.

Proposition 26. Let X, Y be independent real-valued
random variables with probability density functions f , g and
cumulative distribution functions F , G (i.e., F =

∫
f , G =∫

g). We have:
1. The density function of X+Y is f ∗g, the convolution

of f and g.
2. The cumulative distribution function of max(X,Y ) is
F ×G.

3. The cumulative distribution function of min(X,Y ) is
F +G− F ×G.

Obviously, there is no hope of computing probabilities of
aggregate query answers if it is not possible to somehow
combine (either symbolically or numerically) the probabil-
ity distributions of the leaves. The preceding result hints
that if we are able to efficiently apply a number of basic
operations on our probability distribution functions, we are
able to compute the distribution of the min, max or sum.
The following operations are required: convex sums (for mux
nodes); convolution (for sum, in conjunction with det nodes);
integration and multiplication (for min and max, in conjunc-
tion with det nodes). One simple case where we can perform
these operations efficiently is when cont leaves are piece-wise
polynomials of a bounded degree. For a fixed K > 0 let
PP(K) be the set of all piecewise polynomial probability
distributions whose polynomials have degree 6 K. It is
reasonable to assume that such a bound K exists for every
application. This bound ensures that the piecewise polyno-
mial representing the distribution of the query answer has
degree polynomial in the size of the document. Hence:

Theorem 27. For p-documents in PrXMLcont,mux,det that
are labeled with distributions in PP(K) we have:

1. The distribution of results of queries in SPsum can be
computed in polynomial time in the combined size of
the input and the output.

2. The distribution of results of queries in SPmax and SPmin

can be computed in polynomial time.

3. All moments of results of queries in SPsum, SPmax, and
SPmin can be computed in polynomial time.

Other results from the discrete case can be generalized
to the continuous case. For example, it can be shown that
moments of queries in TPsum can be computed in polyno-
mial time over PrXMLcont,mux,det (and similarly for SPsum and
PrXMLcont,cie), by replacing the cont nodes by the expected
value of the represented distribution.

9. RELATED WORK AND CONCLUSION

Related Work. The probabilistic XML models that have
been proposed in the literature can be grouped in two main
categories, depending on the kind of supported probabilistic
dependencies: PrXMLmux,det-like local dependencies [15, 16,
23, 28], or PrXMLcie-like global dependencies [3, 27], in the
spirit of c-tables [17]. We used here the unifying framework
of [2, 19].

The complexity of non-aggregate query answering over
PrXMLmux,det and PrXMLcie has been investigated in [19–
21, 27]. Several results presented here either extend or use
these works. The dynamic-programming algorithm for com-
puting the probability of a Boolean tree-pattern query from
[19–21] is in particular used for Claim 2 of Theorem 22. The
same authors have also studied in [8] the problem of tree-
pattern query answering over PrXMLmux,det documents with
constraints expressed using aggregate functions, i.e., some-
thing similar to the HAVING queries of SQL. We use their
results for proving Claim 2 of Theorem 21.

Only a few works have considered aggregate queries in
a setting of incomplete data. In non-probabilistic settings
aggregate queries were studied for conditional tables [22],
for data exchange [4] and for ontologies [6]. In probabilis-
tic settings, to the best of our knowledge, in addition to
the aforementioned [8], only [26] studies aggregate queries.
Ré and Suciu consider the problem of evaluating HAVING

queries (using aggregate functions) in “block-independent
databases”, which are roughly PrXMLmux,det restricted to
relations (limited-depth trees). The complexity bounds of
Claim 3 of Theorem 21 use similar arguments than the corre-
sponding results for block-independent databases presented
in [26]. In both [8] and [26], the authors discuss the fil-
tering of possible words that do not satisfy a condition ex-
pressed using aggregate functions, and do not consider the
problem of computing the distribution of the aggregation,
or moments thereof. Computation of the expected value of
aggregate functions over a data stream of probabilistically
independent data items is considered in [18]. This is a sim-
pler setting than ours, but we use similar techniques in the
proof of Theorem 22.

There is very little earlier work on querying continuous
probability distributions. The authors of [12] build a (con-
tinuous) probabilistic model of a sensor network to run sub-
sequent queries on the model instead of the original data.
In [7], algorithms are proposed for answering simple classes
of queries over uncertain information, typically given by a
sensor network. As noted in a recent survey on probabilistic
relational databases [11], “although probabilistic databases
with continuous attributes are needed in some applications,
no formal semantics in terms of possible worlds has been
proposed so far”. We proposed in Section 8 such a formal
semantics.



Conclusion. We provided algorithms for, and a character-
ization of the complexity of, computing aggregate queries
for both PrXMLmux,det and PrXMLcie models, i.e., very gen-
eral and most interesting probabilistic XML models. We
also considered the expected value and other moments, i.e.,
summaries of the probability distribution of the results of ag-
gregate functions. In the case of PrXMLmux,det, we have iden-
tified a fundamental property of aggregate functions, that of
being monoid, that entails tractability. The complexity of
aggregate computations in many cases has led us to intro-
duce polynomial-time randomized approximation schemes.
Finally, a last original contribution has been the definition
of a formal continuous extension of probabilistic XML mod-
els. We have shown how some of the results of the discrete
case can be adapted.

Because our work has many facets, it may be extended in
a number of directions. First, we intend to implement a sys-
tem that manages imprecise data with aggregate functions.
In particular, we want the system to handle continuous prob-
abilities, which are quite useful in practice. A main novelty
of the present work is the use of continuous probabilities
for data values. We are currently developing the theory in
this direction. Finally, observe that although a p-document
(with continuous probabilities) represents uncountably infi-
nite possible worlds, they only have finitely many possible
structural equivalence classes, and in particular, they all are
of bounded height and width. It would be interesting to in-
vestigate extensions of the model without this restriction.
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