
HAL Id: inria-00537976
https://hal.inria.fr/inria-00537976

Submitted on 4 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DISC-SET: Handling temporal and security aspects in
the Web services composition

Ehtesham Zahoor, Olivier Perrin, Claude Godart

To cite this version:
Ehtesham Zahoor, Olivier Perrin, Claude Godart. DISC-SET: Handling temporal and security aspects
in the Web services composition. ECOWS 2010 - The 8th IEEE European Conference on Web Services,
Dec 2010, Ayia Napa, Cyprus. �inria-00537976�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50038749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00537976
https://hal.archives-ouvertes.fr


DISC-SET: Handling temporal and security aspects in the Web services composition

Ehtesham Zahoor, Olivier Perrin and Claude Godart

Université de Lorraine, Nancy 2, LORIA

BP 239 54506 Vandoeuvre-lès-Nancy Cedex, France

{ehtesham.zahoor, olivier.perrin, claude.godart}@loria.fr

Abstract—In this paper we propose the DISC-SET frame-
work to handle the representation, solution computation and
verification of temporal and security requirements in the
services composition. The proposed approach provides a flexi-
ble event calculus based composition design, that allows for
modeling different temporal (response time, time-units and
other) and security aspects (access control, confidentiality and
others) for Web services with different synchronization modes.
The use of a formal approach allows to reason about and
verify the security and temporal requirements. Further, as the
proposed approach is integrated and builds upon the DISC
framework, it allows to learn from run-time security and
temporal constraints violations to take recovery actions.

I. INTRODUCTION

Web services are in the mainstream of information tech-

nology and are paving way for inter and across organiza-

tional application integration. Individual services may need

to be composed and as the Web services are autonomous,

having local (temporal and security) constraints and as the

composition process may have some global (temporal and

security) constraints, the need to represent and compute an

ordering satisfying the associated constraints is evident.

The motivation of our work stems from the process

modeling, analysis and monitoring in a flexible way such as

needed by a crisis situation and the temporal and security

properties are one of the most important aspects in such a

situation. As the information comes from different sources

with different local temporal constraints, it is challenging to

find a plan which respects the local constraints of different

participating services and conforms to the process-level

global temporal constraints, and to achieve that in a flexible

way by not over constraining the composition process. Fur-

ther, the need to incorporate the security requirements in the

composition process, such as confidentiality, integrity, access

control and others is critical due to the ad-hoc nature of the

process, and any process ordering should not compromise on

the security requirements. In addition, the temporal and se-

curity aspects can be combined to have security requirements

for a specific time interval, such as separation of duties

(SoD) requirements for a particular time frame. Then the

design time verification of the process to identify not only

any control-based conflicts such as dead-locks, but also to

identify conflicting security and temporal requirements, and

the run-time monitoring of the process while in execution

are even more important as in a crisis situation the services

are more error prone to the response time delays, network

failures and other unforeseen situations. Further due to the

critical nature of these processes, ideally the composition

process should be able to recover from and should provide

recovery actions and alternatives to handle such situations,

preserving the associated security and temporal constraints.

In this paper we build upon the DISC (Declarative Inte-

grated Self-healing web services Composition) framework

[1] for the services composition, to propose the DISC-

SET (DISC-extended with SEcurity and Timed properties)

framework to handle the representation, computation and

verification of temporal and security requirements in the

services composition. When compared to traditional ap-

proaches, the proposed approach is declarative and allows

for incorporation of security and temporal aspects (and their

combinations) in a (possibly) partially defined process using

a simple and flexible way, without over-constraining the pro-

cess. Then the proposed approach is integrated as it allows to

handles the temporal and security requirements at all stages

of process life cycle, using the same event-calculus based

model for composition design, verification and monitoring.

At the process design stage, it allows for an expressive

composition design incorporating various temporal (such

as data and control based ) and security (access control,

data retention and others) aspects. The formal approach for

composition design in turn allows for verifying the design

for any data and control based conflicts, that need to be

resolved for the successful execution of the process. Further,

the proposed approach allows to monitor the process during

execution and to take recovery actions in case of violations

identified during the process execution.

II. RELATED WORK

In the literature, there have been many approaches that

aim to handle different aspects of the Web services compo-

sition. However, the traditional approaches (such as WS-

BPEL, WS-CDL) are highly procedural and they over-

constrain the process, making it rigid and difficult to han-

dle dynamically changing situations [1]. In contrast, some

declarative approaches have been proposed [1], [2], [3], that

allow for defining process in a flexible way by specifying



the constraints that mark the boundary of any acceptable

solution to the composition process. The growing need

for incorporating the security and temporal aspects in the

services composition has led to many approaches that aim

to handle security and temporal aspects in the services

composition at different levels of process life-cycle. In

general, the proposed approaches are either based on the

procedural approaches such as BPEL, lack expressiveness

and ease to model complex temporal and security aspects (or

most importantly, their combination) or mostly focus on only

part of the problem (not integrated to handle requirements

at composition design, verification and monitoring stages).

The proposed approaches for incorporating temporal as-

pects include [4], [5], [6], [7] however, these approaches

do not address the need for a unified framework and only

focus on part of the problem. The proposed approaches

also include [8], in which authors introduced a formalism

called WSTTS to capture timed behavior of Web services

and then using this formalism for model-checking WS-BPEL

processes. In the planning domain, in [9] authors proposed

Conditional Temporal Problem (CTP) formalism that allows

for the construction of conditional plans that satisfy complex

temporal constraints. The approaches also include ISDL [10]

which uses time attributes to represent properties. In order

to verify the timed properties authors proposed converting

the BPEL process specification to timed automata and using

UPPAAL model checker [11].

Further, there have been many approaches that aim to

handle the security aspects in the Web services composition

[12], [13], [14], [15] however, as similar to the approaches

for incorporating the temporal aspects, they focus on only

part of the problem. The approaches that deal with the

representation of the security aspects and aim to incor-

porate the security requirements into the business process

definition include [12], [16], [17]. Further, there have been

approaches that aim to incorporate security requirements

in the executable composition [13], [14], [18] or their

enforcement at execution time [19], [12]. In [15] authors

proposed to use a formalism that allows for incorporating

security aspects at different levels of abstraction and has

important contributions in terms of identification of security

requirements in the services composition, however the ap-

proach is procedural as it is based on and extends BPMN

notations, lacks formal representation and does not allow for

verification of and reasoning about the security properties.

The proposed DISC-SET framework serves as a unified

integrated declarative framework for temporal and security

properties representation, analysis, computation, allowing

for solution re-computation to handle monitored violations.

III. MOTIVATING EXAMPLE

Let us consider a modified form of the emergency patient

handling scenario [20]. After a serious road accident, the

patient is in critical condition and no documents other than

his vehicle number are available to identify the patient.

Patient is taken to nearby hospital in a remote region with

limited resources and a composition process has been setup

at the hospital to handle the emergency patient (see figure-1).

At the hospital, before the patient can be operated some

blood tests are needed to identify any possible diseases, such

as diabetes. Blood samples are thus sent to the laboratory

department and the results are provided (pushed) to the

requester as soon as they are available, normally between 4

to 10 minutes, by the push-based asynchronous Web service.

Patient medical history can also be obtained by requesting

the social security Web service, but for that the patient needs

to be identified first. This can be done by contacting the

vehicle and/or police department Web services to identify

the owner information for the vehicle and to identify if the

patient is indeed owner of the vehicle. These Web services

support pull-based asynchronous invocation and thus the

results can be pulled 5 minutes after sending the request.

The patient information is then communicated to social

security Web service to get the medical history for the

patient. Further, additional blood supply can be requested

by contacting the BloodBank Web service (see figure-1).

Once patient medical history or lab results are known, the

scheduling service should be contacted for both scheduling

the operation theatre and the surgery team. As the hospital

has limited facilities and as there is another surgery already

planned after 90 minutes, the composition process introduces

some global temporal constraints, including:

• The surgery should start within next 15 minutes and

once the surgery has been scheduled, it needs to be

confirmed 5 minutes before the surgery begins.

• The schedule request can only be made if patient

history/ lab results and additional blood supply infor-

mation is available.

• If there is some delay in obtaining the patient his-

tory/lab results, the delay can be notified to the schedul-

ing service and the next surgery can either be resched-

uled or transferred to some other surgery facility.

BloodBank
Sync

PoliceDept
Async (pull-based)

VehicleDept
Async (pull-based)

SocialSecurity
Synch

Laboratory
Async (push-based)

SchedulingServ
Synch

4 to 10mins

5mins

5mins

Figure 1. Motivating example

Further, due to the critical nature of the process, some secu-

rity constraints need to be specified, including the following:

• Request messages to the services should be encrypted.

• The composition process is used by different users in

two different roles, staff and admin. Staff users can only

send requests and are not allowed to pull the response

(and eventually read the confidential information), on

the other hand admins can send the requests and receive

response as well.



• All response messages are checked for integrity and are

only valid (and deleted) 60 minutes after reception.

The emergency handling scenario presented above poses

many challenges. First, specifying the exact sequence of

activities as required by traditional procedural approaches,

seems difficult as the solution depends on the specified

constraints that can be difficult to solve manually. Then,

the specification of the temporal and security (and other

non-functional) aspects in a simple way without over-

constraining the process is another challenge as the

traditional procedural approaches are focused on the

functional aspects. Further, if there is no solution then

either the constraints are too strict or there is some conflict

in the specified model that needs to be identified. Then, the

process needs to be monitored during execution and in case

of any violations to the security or temporal constraints,

recovery actions should be taken to repair the process.

IV. THE PROPOSED DISC-SET FRAMEWORK

The proposed DISC-SET framework builds upon the

DISC framework [1], which has three main stages, Com-

position design, Instantiation and execution and the Com-

position monitoring. The composition process starts when

the user provides the composition design backed up by

an event calculus model, by specifying the basic entities

and associated constraints. The event calculus model for

the composition design specified by the user can then be

used to instantiate and verify the composition process. Then,

the composition monitoring process detects, calculates side-

effects and takes recovery actions to cater for and recover

from the run-time violations.

The proposed DISC-SET framework extends the DISC

framework [1] to add the security and timed properties rep-

resentation, computation, verification, and re-computation

(as a form of recovery action). In reference to DISC

framework different aspects are handled at different stages,

for the representation of timed and security properties we

will extend the composition design phase to add the event

calculus models for handling timed properties. Then, the

computation and verification of timed and security properties

can be handled in the instantiation and execution phase and

finally the re-computation can be added as a recovery action

in case of run-time violations captured in the monitoring

phase of the DISC framework. In the sections to follow,

we will discuss in detail different components of the DISC-

SET framework.

V. REPRESENTATION

The proposed approach for the representation of timed

and security properties is based upon event-calculus. Event

calculus is a logic programming formalism for representing

events and their side-effects (see [21], [1], [22] for a detailed

discussion about event-calculus background and motivation

for its usage). The event calculus models are presented here

using the discrete event calculus language [22] and we will

only present the simplified models that represent the core

aspects, intentionally leaving out the supporting axioms. All

the variables (such as service, time) are universally quanti-

fied and in case of existential quantification, it is represent

with variable name within curly brackets, {variablename}.

Further, some event and fluent names are abbreviated in

some models due to spacing issues.

A. Ground model

In this section we will first detail the ground model

from the DISC framework [1], and will add temporal and

security properties modeling in the sections to follow. At a

basic level, the composition process can be regarded as the

invocation/reception of response from the participating Web

services. The basic event calculus model to handle services

invocation is as below:

Ground model - CM-1.0

sort service fluent ResponseReceived(service) event InvokeService(service)

Initiates(InvokeService(service),ResponseReceived(service),time).

The basic entities in the model are Web services,

they can be regarded as a sort in the discrete event

calculus language terminology. Then we define an event

to specify the service invocation InvokeService(service),

a fluent ResponseReceived(service), which specifies if

we have received the response message from the Web

service and an axiom which states that if the action

InvokeService(service), happens at some time then the

fluent ResponseReceived(service) continues to hold after

that time. Before going further, let us discuss how this

basic model can be used for reasoning purposes by using

the model below:

sort service service S1, S2 event InvokeService(service)

Initiates(InvokeService(service),ResponseReceived(service),time).

!HoldsAt(RespReceived(service), 0). ;initial situation

HoldsAt(ResponseReceived(service), 1). ;composition goal

In the model above, we add two instances of type

service, called S1 and S2, add initial condition that the

fluent ResponseReceived(service) does not hold at time-

point 0, a goal to the ground model above that the fluent

must hold at time point 1 for services, and then invoke the

reasoner. It gives us a plan, i.e. a temporal ordering, which

shows that invoking the services concurrently at time-point

0, will result in receiving the response at time-point 1.

0 Happens(InvokeService(S1), 0). Happens(InvokeService(S2), 0).

1 +ResponseReceived(S1). +ResponseReceived(S2).

The ground model presented above does not model the re-

sponse, request data from the services, and we can introduce

the sorts named request and response to model it. We can

further add the predicates, such as RequestSource(request,



service) and others and update the service invocation ax-

iom in the ground model to cater for the newly added

predicates. Using the modified model we can represent

more complex orchestrations in which a service should be

invoked multiple times with different request and response

parameters, space limitations restrict us to discuss the model

in detail. For simplicity, we will only consider the request,

response parameters if they are needed, in the models to

follow. Further, the invocation mode for the services can

also be asynchronous and the process can either request and

later "pull" the data from provider or alternatively data is

"pushed" to the process by providers, when it is available.

B. Pull-based Asynchronous invocation

In order to model the pull-based asynchronous invocation,

we update the model CM-1.0, and break down the invocation

process by adding events and fluents for the sending request

and then pulling the response. In the model below, we thus

first introduce predicates that specify the synchronization

mode for the Web service. Then we add another event to

invoke asynchronous services and a new set of axioms to

handle service invocation and then pulling for the response.

Asynchronous invocation (pull-based) - extends CM-1.0

fluent ResponseRequested(service)

event ReceiveResponsePull(service),InvokeAsynchService(service)

predicate IsSynchronous(service), IsASynchronousPull(service)

Initiates(InvokeAsynchService(service), ResponseRequested (service),time).

Initiates(ReceiveResponsePull(service), ResponseReceived (service),time).

Happens(ReceiveResponsePull(service), time1) → {time2}HoldsAt (Respon-

seRequested(service), time2) & time1 > time2.

Happens(InvokeAsynchService(service),time1) & Happens(ReceiveResponsePull

(service), time2)→ time2 - time1 >= 20.

The second last axiom specified in the above model

specifies that the event ReceiveResponsePull(service) can

only happen if we have already requested for the response.

Other axioms in the model specify the response request and

the eventual "pull" for the response message. The last axiom

models the minimum time after which the response data is

available to be pulled and this information can be imported

from the service repositories.

C. Push-based Asynchronous invocation

In order to model the push-based asynchronous

invocation, we introduce the queues that can be used

to store the pushed data from the service providers and

composition process can then use the data from these

queues. We use the pull-based asynchronous model and

add the fluent and corresponding event to model the queues

and data being pushed to queues by the service providers.

In the updated model, the process first sends the request,

InvokeAsynchService(service), and then the response is

pushed to the process queue, PushResponse(service),

between the specified time intervals. Once the data is

available in the queues, HoldsAt(ResponsePushed(service),

time2), the response can then be retrieved from the process

queue, ReceiveResponsePush(service).

Asynchronous invocation (push-based) - extends CM-1.0

fluent ResponsePushed(service) event PushResponse(service), ReceiveResponse-

Push(service)

Initiates(PushResponse(service),ResponsePushed(service),time).

Initiates(ReceiveResponsePush(service),RespReceived (service),time).

Happens(ReceiveResponsePush(service), time1) → {time2} Hold-

sAt(ResponsePushed(service), time2) & time1 > time2.

D. Modeling temporal aspects

The temporal aspects in the services composition

can be broadly categorized into data and control based

temporal properties. Below we briefly discuss event calculus

modeling for some of the temporal aspects.

Response time: For modeling the response time of

asynchronous services, it is sufficient to introduce the delay

between the service invocation and later pull/push for the

response (first axiom in the model below). However, in

case of synchronous services, we can model it by breaking

down the invocation process in two events, StartInvoke and

EndInvoke, as modeled in the second axiom below.

Happens(InvokeASynchService(S1),time1) & Happens (ReceiveRespon-

sePull(S1),time2) → time2 -time1 = 10.

Happens(StartInvoke(S1), time1) & Happens(EndInvoke(S1), time2) → time2 -

time1 = 10.

Refresh: The temporal properties include the refresh

constraint which requires the service re-invocation after a

fixed time, for instance to invoke some service (S1) every 2

minutes. The refresh operation when applied to data flow,

requires the data to be re-fetched once it expires. The first

event calculus axiom below models the control-flow based

refresh constraint while the second axiom models the data

flow version, assuming the event InvalidateData results in

data expiry.

Happens(InvokeSynchService(S1),time1)&time2-time1=2→Happens

(InvokeSynchService(S1),time2).

Happens(InvalidateData(S1), time) → Happens(InvokeSynchService(S1),time).

Invocation time-frame: The invocation timeframe

constraint requires a service to be invoked within a fixed

timeframe, for instance to invoke a service S1 between 10

and 20 minutes after some event happens). The timeframe

constraint when applied to data flow requires that the

data from a service is available (at-least/only) between the

specified time-frame. The first axiom below models the

control-flow based invocation time-frame constraint while

the second axiom models the data flow version.

Happens(SomeEvent(), time1) → {time2} time2>time1+ 10 & time2<time1+20

& Happens(InvokeSynchService(S1), time2).

Happens(SomeEvent(), time1) & time2>time1+ 10 & time2<time1+20 →
HoldsAt(ResponseReceived(S1), time2).

Happens(InvokeSynchService(S1), 10). HoldsAt(ResponseReceived(S1), 10).



Further, a variant of execution time-frame aspect is to

invoke a service at exact time point (such as exactly at 10

minutes). When applied to data, it requires the data to be

available at (at-least/only) specified time-point. The last

axiom in the above model, handles this behavior.

Invocation delay: The execution delay aspect requires

that the successive invocations of the service must be

delayed by some time (possibly to prevent overloading a

service). This constraint can also be specified to specify

the invocation delay between multiple services, such as S2

should be invoked exactly three minutes after the service

S1. The first axiom below models the invocation delay for

invocations of a single service, while the second adds the

delay between the invocation of multiple services.

Happens(InvokeSynchService(S1),time1) & Happens(InvokeSy nchSer-

vice(S1),time2) & time1 != time2 → time2-time1 = 2.

Happens(InvokeSynchService(S1),time1) & Happens(InvokeSy nchSer-

vice(S2),time2) & time1 != time2 → time2-time1 = 3.

Modeling time-units: In order to model the Web services

with temporal constraints in different time-units, we need

to add semantics to the event calculus time-points, so that

saying that an event happens at time-point 1 can signify

one second/minute and so on. The possible solutions to

this problem include to convert all the time-units to some

common time-unit (such as seconds), however a smaller

common time-unit such as seconds, and converting all

other units to seconds (10 minutes equals 600 seconds)

will increase the resulting event-calculus to SAT encoding

size and thus is not feasible. On the other hand, converting

all the units to a higher common format such as minutes

will not allow to handle the smaller time units, such as

seconds, as the DECReasoner is discrete. As an alternative,

we pre-process the time-units associated with different

participating services to find a solution and then post-

process the solution returned to update the time-units

associated with each service. Space limitations restrict us

to detail the process further.

E. Modeling security aspects

In terms of modeling security aspects using event-

calculus, we have proposed the dynamic authorization poli-

cies for task delegation [23] and in this work, we use a set of

security requirements identified in [15] and discuss how the

proposed framework can be used to model and reason about

the security requirements. The security requirements include

confidentiality, data retention, access control, authentication,

data integrity and others (see [15] for a detailed discussion).

They can be represented by defining the event calculus

fluents and events that have impact on the fluents. Below

we discuss some of security aspects and their modeling in

the event calculus:

Confidentiality security property requires that the

critical information, such as credit card and other

personal information, should be encrypted and protected

from unauthorized access. In event calculus, the

confidentiality property can be modeled as a fluent,

IsConfidential(response), which is set by the event

Encrypt(response), and defines that as the Encrypt event

happens the fluent continues to hold and the data is

considered confidential. In the model below, the Initiates

axiom handles this behavior:

fluent IsConfidential(response) event Encrypt(response)

Initiates (Encrypt(response), IsConfidential(response), time).

Data retention property associates a time-to-live (TTL)

information with the data requiring it to be deleted

after a certain time and it can be modeled as similar to

data validity model discussed during the streaming Web

services modeling [1]. Further, the data integrity security

property requires that the sensitive data (such as personal

information of a user) has to be verified for data corruption

before usage. The data integrity can be modeled as a

fluent, IsValid(response), which is activated by the event

CheckDataIntegrity(response). Then the authentication

property requires that only appropriate users have access to

the sensitive or critical information held by the services. The

event calculus model below handles the authentication and

data integrity security requirement, however one important

difference is that the fluent is released (Releases) instead

of initiated (Initiates) and this highlights that the effect of

the event to check the data integrity (and authentication) is

either that the data integrity holds (user is authenticated) or

is considered corrupted (authentication fails). The Releases

axioms model this behavior:

fluent IsValid(response), IsAuthenticated (user)

event CheckDataIntegrity(response), Authenticate(user)

Releases (CheckDataIntegrity(response), IsValid(response), time).

Releases (Authenticate(user), IsAuthenticated(user), time).

Auditing property requires that all the operations

performed by the composition process should be logged

and are available for auditing (if needed). In relation to

the proposed event calculus modeling approach, an event

called CreateLog() can be used that should be invoked after

each event to log the process state. Then the access control

restricts the access to resources to only the authorized users

and in the literature different access control schemes have

been proposed (such as RBAC, TBAC and others). Space

limitations restrict us to discuss the basic role based access

control (RBAC) in this work. For the proposed modeling

approach, different roles (organized in hierarchy) can be

modeled by creating EC sort/sub-sort for each role. Tasks

can then be assigned/delegated and access is controlled

using EC predicates, fluents and axioms. We can create a

sort named user that models the users of the system and a

sort named role which represents the role(s) to which a user



belong by using the predicate HasRole(user, role). Then

for each event requiring controlled access, we can define

an predicate called HasRestrictedAcess(event, role), which

serves as the role based access control assignment for the

event. Finally we can specify an axiom that limits access to

only those user that belong to the particular role. We will

discuss an example of access control in the section-VI.

sort user, role

predicate HasRole(user, role), HasRestrictedAcess(event, role)

Happens(SomeEvent(..., user), time) & HasRestrictedAcess(SomeEvent(..., user),

role) & HasRole(user, role1) → role = role1.

F. Example

Let us now review the motivating example and discuss

the event calculus model with temporal and security

properties representation. In order to keep the model simple

we consider the multiple invocations of SchedulingService

with different parameters, as multiple service invocations.

In the model below we first define the instances of the

sort service that specify the Web service instances, their

synchronization modes and local temporal constraints:

service SocialSecurity, VehicleDept, ReSchedulingServ ...

IsSynchronous(SocialSecurity), IsPullBasedASynchronous (VehicleDept), ...

Happens(InvokeAsynchService(VehicleDept), time1) & Happens (ReceiveRe-

sponsePull(VehicleDept), time2)→ time2 - time1 = 10...

Next, we introduce the dependencies between different

services, SocialSecurity service has dependency on either

Police or VehicleDept service, while the SchedulingService

has dependency on either SocialSecurity or Laboratory

services. We can model the dependencies between

SchedulingService and scheduling confirmation service in a

similar fashion.

Happens(InvokeSynchService(SocialSecurity),time1) → {time2} (Hold-

sAt(ResponseReceived (VehicleDept),time2) | HoldsAt (ResponseReceived

(PoliceDept),time2)) & time1 >= time2.

Happens(InvokeSynchService(SchedulingServ),time1)→ {time2} (Hold-

sAt(ResponseReceived (SocialSecurity),time2) | HoldsAt (ResponseReceived

(Laboratory), time2)) & time1 >= time2. ...

fluent IsConfidential(response), event Encrypt(response)

Initiates(Encrypt(response),IsConfidential(response),time).

Happens(InvokeService(service,request),time1)→{time2}HoldsAt(IsConfidential

(request),time2)&time1 >= time2. ...

The model above also models the security aspects and

specifies that all the request messages should be confidential

i.e. encrypted, before the request can be sent to the Web

services. We have omitted the data integrity models due to

the space limitations. Next, we model the access control

using the proposed framework by creating two users

SomeUserA, SomeUserB and assigning then different roles

and then restring the access for events:

user SomeUserA, SomeUserB role Staff, Admin

HasRole(SomeUserA, Staff) HasRole(SomeUserB, Admin)

Happens(InvokeSynchService(service,request,user),time) & HasRestrictedAcess

(InvokeSynchService(service, request, user), role) & HasRole(user, role1) → role

= role1.

!HoldsAt(ResponseRequested(service),0). !HoldsAt(RespReceived(service),0)...

HoldsAt(RespReceived(SchedulingConServ),10) | HoldsAt( RespRe-

ceived(ReSchedulingServ),10).

In the model above, last two axioms specify the initial

situation for the fluents, that they do not hold at time point

0, and the goal for the process. As the surgery must start in

15 minutes, so we need to either confirm/reschedule other

surgery at time-point 10, we thus specify a goal for the

composition process that the response from either of these

services is available at time-point 10.

VI. COMPUTATION AND VERIFICATION

The specified composition design with associated tempo-

ral and security constraints can then be used for the solution

computation or for the process verification. In reference

to the proposed implementation architecture [1], the event

calculus model is encoded into a SAT problem and the

SAT solver is invoked to provide a set of solutions to

the SAT problem. However, if there are some conflicts in

the composition design and/or the specified constraints are

too strict, this leads to empty solution set and requires

the verification of the composition design to identify any

conflicts or hard constraints.

With respect to the process verification, the proposed

framework allows for both design-level verification and for

the run-time monitoring (and recovery) using the different

reasoning techniques on the event-calculus based composi-

tion design. Abduction reasoning is used to find a set of

solutions and to identify any conflicts, while deduction rea-

soning is used to calculate the effect of run-time violations

(more details can be found in [1]). The proposed approach

to the design-time verification relies on the SAT solver to

provide a set of near-miss models and/or unsatisfied clauses

and as underlined in our previous work ([1]), delegation

of verification task to the SAT solver has many benefits.

First, the reasoner we are using transforms the EC model

into a SAT problem, thus the same SAT encoding can be

also used for both solution finding and verification purposes.

Then, it allows not only for the conflicts (such as deadlocks)

detection, but allows for identifying the hard constraints that

should be relaxed to find a solution and for identifying other

side-effects such as the data expiry and others. Then, it

provides an highly extensible approach, same SAT encoding

can be either analyzed by multiple solvers. In reference to

the proposed approach, the properties that can be verified

include the temporal aspects such as minimum and maxi-

mum time intervals that exist between the execution of one

or several services, data retention such as the maximum time

interval about data validity and security aspects such as the

SoD constraint requiring prohibition to invoke of a service

if another service had been executed, possibly combined

with temporal conditions (e.g. the ban lasts only two hours),

access control aspects such as the permission/prohibition

to invoke a service given a role. These requirements are

termed as invariants and are handled by adding axioms to the



event calculus based composition design. Below we briefly

discuss some of the security and temporal properties (and

their combinations) verification requirements that can be

handled using the proposed approach, we will also briefly

discuss the event-calculus axioms that should be added to

the composition design for these requirements.

• Is there any solution exists that satisfies the associated

temporal and security (SoD, access control, ...) con-

straints? This can be verified by invoking the reasoner.

In case of empty solution set, a list of unsatisfied

clauses or partial plan is returned by the SAT solver.

• In case of response time delay, re-plan to find

alternatives to the current execution plan. This

requirement requires the process to recover from

a run-time monitored violation and find some

alternatives to the current plan. As the proposed

approach is integrated, it allows to recover from

run-time violations (see [1]) and the monitored

violation can be based on security such as data not

remains confidential, access to unauthorized data and

corresponding actions can include to terminate the

process or send alert for the violation.

Happens(Invoke(service),time1) & !HoldsAt(RespRecvd(service), time2) &time2-

time1!=10 → Happens(Replan(),time2).

• If data does not remain valid, re-invoke the (idempo-

tent) service. This requirement can be handled at both

design/execution time and an event calculus axiom can

be used to re invoke the service as soon as data is not

valid.

Happens(InvalidateData(service),time) → Happens(Invoke(service),time).

• Is there any conflict in the security policy specifi-

cation? This requirement can be handled by using

event calculus axioms that can check if the users have

simultaneously conflicting roles, or if the user belongs

to one role it can-not belong to some other role, or in

case of delegation of roles it cannot have some other

role for some specific time-interval.

Let us now review the motivating example and discuss the

solution computation. Invoking the reasoner for the event

calculus model for the motivating example gives us a set of

models including the following:

0 Happens(Encrypt(SomeRequest), 0).

1 +IsConfidential(SomeRequest).

Happens(InvokeAsynchService(Laboratory,SomeRequest,SomeUserA), 1).

... Invocation for PoliceDept and VehicleDept

Happens(InvokeSynchService(BloodBank, SomeRequest, SomeUserA), 1).

2 +ResponseReceived(BloodBank). +ResponseRequested(Laboratory). ...

...

6 Happens(ReceiveResponsePull(PoliceDept, SomeUserB), 6).

7 +ResponseReceived(PoliceDept).

Happens(InvokeSynchService(SocialSecurity, ...,7).

8 +ResponseReceived(SocialSecurity).

Happens(InvokeSynchService(SchedulingServ, ...),8).

9 +ResponseReceived(SchedulingServ).

Happens(InvokeSynchService(SchedulingConServ,...),9).

10 +ResponseReceived(SchedulingConServ).

The model above shows that there exists a solution in

which the response can be received from police/vehicle

department Web service for identifying the patient and

thus retrieving the patient history from social security Web

service and in turn scheduling the patient. The laboratory

Web service can take 4-10 minutes and in the worst case

scenario the results are obtained after 10 minutes, so it is

not chosen as a possible solution. However, the proposed

solution is based on design level service contracts and they

may change at the execution time for the actual service

invocations. In reference to the motivating example, let us

assume that the patient history is not available as the services

are not respecting design time service agreements and thus

at monitoring time a violation is detected at time-point 6.

To handle this violation the action specified by the user may

be to recompute the plan and reasoner is invoked again after

adding the updated information to the plan. There are two

cases, as the laboratory service takes 4-10 minutes the result

can be obtained after 4 minutes. So if we consider this case

the following regenerated plan can be used:
...

5 Happens(PushResponse(Laboratory), 5).

6 +ResponsePushed(Laboratory).

...

8 +ResponseReceived(Laboratory). ...

9 Happens(InvokeSynchService(SchedulingConServ,SomeRequest,SomeUserA),9).

10 +ResponseReceived(SchedulingConServ).

However, if the data is not yet available from the laboratory,

the request to reschedule the next surgery should be sent and

invoking the reasoner gives us the following plan:
...

9 Happens(InvokeSynchService(ReSchedulingServ,SomeRequest,SomeUserA),9).

10 +ResponseReceived(ReSchedulingServ).

VII. PERFORMANCE EVALUATION

The event-calculus models presented in this work use

the discrete event calculus language [22] and they can

directly be used for reasoning purposes. The performance

evaluation tests were conducted on a MacBook Pro with

Intel core 2 Duo 2.53 Ghz processor and 4GB RAM running

Mac OS-X 10.6. The DECReasoner version 1.0 and the

SAT solver, relsat-2.0/zchaff were used for reasoning. The

performance results are highlighted in figure-2. In order to

test the scalability of the approach, the number of services is

obtained by replicating the motivating example (which has 8

services) with all the dependencies and constraints, multiple

times. So 16 services is the motivating example replicated

twice and so on. We evaluate three different test cases for

solution computation, verification and re-computation and

for each test case, the total time taken by the reasoner

is divided into time for encoding event-calculus to SAT

problem and solution finding by the SAT solver.

The evaluation results show that the encoding process

does not scale very well, but it is still reasonable given

the large size of the problem. Moreover, we are in the

process of optimizing this encoding process. The solution

computation by using the relsat solver is very efficient and



1600 20 40 60 80 100 120 140

21

0

2

4

6

8

10

12

14

16

18

20

Number of services

S
e
c
o
n
d
s

99,7 seconds for 160 services

Encoding

Solution computation - relsat solver

Verification - zchaf solver

Recomputation - relsat solver

Figure 2. Performance evaluation

the zchaff solver used for the verification performs even

better. Then for the solution re-computation to cater for run-

time violations, the time taken to find the solution drops, and

this highlights that the part of the solution is already known

(in terms of partial plan added to the model) and thus it

requires less work by the solver.

VIII. CONCLUSION

In this paper we build upon the DISC framework for the

services composition, to propose the DISC-SET framework

to handle the representation, computation and verification of

temporal and security aspects in the services composition,

in a declarative and integrated way. The proposed approach

provides a flexible event calculus based composition design,

that allows for modeling different aspects such as the tempo-

ral and security constraints for Web services with different

synchronization modes. Further, the approach allows to

reason about and perform both design-time verification and

run-time monitoring of the composition process. We have

identified a set of requirements for the process verification

and discussed how the proposed model can handle them. We

have also presented a motivating example and performance

evaluation results, that highlight our approach.

REFERENCES

[1] E. Zahoor, O. Perrin, and C. Godart, “Disc: A declarative
framework for self-healing web services composition,” in
ICWS, 2010.

[2] W. M. P. van der Aalst and M. Pesic, “Decserflow: Towards
a truly declarative service flow language,” in The Role of
Business Processes in Service Oriented Architectures, 2006.

[3] M. Pesic and W. M. P. van der Aalst, “A declarative approach
for flexible business processes management,” in Business
Process Management Workshops, 2006.

[4] N. Guermouche and C. Godart, “Asynchronous timed web
service-aware choreography analysis,” in CAiSE, 2009.

[5] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella, “When
are two web services compatible?” in TES, 2004, pp. 15–28.

[6] J. Ponge, B. Benatallah, F. Casati, and F. Toumani, “Fine-
grained compatibility and replaceability analysis of timed web
service protocols,” in ER, 2007.

[7] B. Benatallah, F. Casati, J. Ponge, and F. Toumani, “On
temporal abstractions of web service protocols,” in CAiSE
Short Paper Proceedings, 2005.

[8] R. Kazhamiakin, P. K. Pandya, and M. Pistore, “Represen-
tation, verification, and computation of timed properties in
web,” in ICWS, 2006, pp. 497–504.

[9] I. Tsamardinos, T. Vidal, and M. E. Pollack, “Ctp: A new
constraint-based formalism for conditional, temporal plan-
ning,” Constraints, vol. 8, no. 4, pp. 365–388, 2003.

[10] D. A. C. Quartel, R. M. Dijkman, and M. van Sinderen,
“Methodological support for service-oriented design with
isdl,” in ICSOC, 2004, pp. 1–10.

[11] N. Guermouche and C. Godart, “Timed model checking based
approach for web services analysis,” in ICWS, 2009.

[12] M. Menzel, I. Thomas, and C. Meinel, “Security requirements
specification in service-oriented business process manage-
ment,” in ARES, 2009, pp. 41–48.

[13] D. A. Basin, J. Doser, and T. Lodderstedt, “Model driven
security: From uml models to access control infrastructures,”
ACM Trans. Softw. Eng. Methodol., vol. 15, no. 1, 2006.

[14] D. Z. G. Garcia and M. B. F. de Toledo, “Ontology-based
security policies for supporting the management of web
service business processes,” in ICSC, 2008.

[15] A. R. R. Souza, B. L. B. Silva, F. A. A. Lins, J. C.
Damasceno, N. S. Rosa, P. R. M. Maciel, R. W. A. Medeiros,
B. Stephenson, H. R. M. Nezhad, J. Li, and C. Northfleet, “In-
corporating security requirements into service composition:
From modelling to execution,” in ICSOC/ServiceWave, 2009.

[16] T. Neubauer and J. Heurix, “Defining secure business pro-
cesses with respect to multiple objectives,” in ARES, 2008.

[17] A. Rodríguez, E. Fernández-Medina, and M. Piattini, “A
bpmn extension for the modeling of security requirements
in business processes,” IEICE Transactions, vol. 90-D, 2007.

[18] S. Chollet and P. Lalanda, “Security specification at process
level,” in IEEE SCC (1), 2008, pp. 165–172.

[19] H. Song, Y. Sun, Y. Yin, and S. Zheng, “Dynamic weaving
of security aspects in service composition,” in SOSE, 2006.

[20] E. Zahoor, O. Perrin, and C. Godart, “Mashup model and
verification using mashup processing network,” in Collabo-
rateCom2008. ACM, 2008.

[21] R. A. Kowalski and M. J. Sergot, “A logic-based calculus of
events,” New Generation Comput., vol. 4, no. 1, 1986.

[22] E. T. Mueller, Commonsense Reasoning. Morgan Kaufmann
Publishers Inc., 2006.

[23] K. Gaaloul, E. Zahoor, F. Charoy, and C. Godart, “Dynamic
authorisation policies for event-based task delegation,” in
CAiSE, 2010, pp. 135–149.


