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Abstract. A one-dimensional Vlasov-Poisson model is used to describe the parallel

transport in a tokamak scrape-off layer. Thanks to a recently-developed ‘asymptotic-

preserving’ numerical scheme, it is possible to lift numerical constraints on the time

step and grid spacing, which are no longer limited by, respectively, the electron

plasma period and Debye length. The Vlasov approach provides a good velocity-

space resolution even in regions of low density. The model is applied to the study

of parallel transport during edge-localized modes (ELMs), with particular emphasis

on the particles and energy fluxes on the divertor plates. The numerical results are

compared to analytical estimates based on a free-streaming model, with good general

agreement. An interesting feature is the observation of an early electron energy flux,

due to suprathermal electrons escaping the ions’ attraction. In contrast, the long-time

evolution is essentially quasi-neutral and dominated by the ion dynamics.
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1. Introduction

One of the main challenges for future tokamak operation, such as ITER, is constituted

by the large heat load on the divertor plates. The divertor surfaces are constantly

bombarded with high-energy neutral and charged particles and may thus see their

lifetime considerably reduced [1, 2]. The erosion also releases high-Z impurities, which

migrate towards the bulk plasma and, due to radiation, deteriorate its confinement

[3]. In order to keep within reasonable limits the erosion of different wall materials, it

is important to estimate the plasma characteristics in the scrape-off layer (SOL), i.e.

the region outside the last closed magnetic surface (separatrix). Several numerical and

analytical studies have addressed the problem of the transition between a hot plasma

and a material surface, both for unmagnetized and magnetized plasmas [4, 5, 6, 7].

Most such studies focus on the static plasma-wall transition. However, transient

events – such as edge-localized modes (ELMs) – routinely occur in the tokamak edge

during H-mode confinement [8]. ELMs are plasma relaxations, presumably of MHD

origin, which cause a sudden drop in density and temperature of the pedestal plasma,

leading to a significant loss of the stored plasma energy (5 − 20%) [9, 10]. Once the

ELM-driven plasma pulse has crossed the magnetic separatrix, it travels mainly parallel

to the magnetic field lines and ends up hitting the divertor plate, after a delay typically

of the order of a few hundred microseconds. Such violent events can pose a serious

threat to the long-time resistance of the divertor materials.

The SOL is a complex region where a multitude of physical and chemical processes

take place, occurring on rather disparate space and time scale. A realistic description of

the SOL thus requires sophisticated modelling that takes into account, among others,

plasma turbulence, collisions and ionisation, impurity transport, and plasma-surface

interactions. The corresponding simulations [11, 12] are computationally very costly, so

that a thorough analysis of the various physical regimes is a demanding task.

On the other hand, a few semi-analytical models have been developed in order to

capture the essential features of parallel transport in the SOL. In particular, an elegant

and exactly-solvable model can be obtained by neglecting the Coulomb force in the

parallel kinetic equation [13]. Together with an initial Maxwellian distribution, this

surprisingly simple model reproduces with good accuracy some of the main features

of an ELM signal, most notably its rapid rise (∼ 200µs) followed by a much slower

decay (up to 3ms). The main drawback of this model is that it fails to respect quasi-

neutrality, which is a direct consequence of the Coulomb attraction between the ions

and the electrons. (Some form of ‘weak’ quasi-neutrality can be imposed a posteriori to

partially correct this shortcoming [13]).

In the present paper, we adopt an intermediate stance: the fully nonlinear

parallel dynamics is solved by means of a self-consistent kinetic model (Vlasov-Poisson

equations), but we neglect collisions and effects due to plasma-surface interactions,

such as secondary electron emission and recycling. The Vlasov equation is integrated

numerically using an Eulerian method (meshing of the entire phase space), which
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guarantees a high resolution in velocity space, even in regions of low plasma density such

as the sheaths [14]. In addition, thanks to a recently-developed ‘asymptotic-preserving’

numerical scheme [15, 16], it is possible to lift numerical constraints on the time step and

grid spacing, which are no longer limited by, respectively, the electron plasma period

and Debye length.

The resulting numerical code is computationally manageable on a desktop computer

(2–3 hours of CPU for a typical run, albeit with an effective parallel connection length

smaller than its realistic value) and capable of reproducing with good accuracy the

principal features of parallel plasma transport during ELMs. The remainder of this

paper will be devoted to the description of the model and the analysis of the numerical

results for some experimentally-motivated scenarios.

2. The Vlasov-Poisson approach

In our approach, we assume that the charged particles (or rather, their guiding centres)

travel along the magnetic field lines, but not across them. Thus, we can adopt a one-

dimensional geometry along the parallel direction, here denoted x, with corresponding

parallel velocity vx. In the perpendicular plane, the distribution function remains

Maxwellian at all times, so that the distribution in the four-dimensional phase space

(x,v) reads as:

Fj(x,v, t) = fj(x, vx, t)Mj(v⊥), (1)

where Mj(v⊥) = (1/2πv2Tj) exp(−v2⊥/2v
2
Tj), vTj =

√
Tj/mj is the thermal speed, and

the label j = i, e stands for ions and electrons respectively. The temperature is supposed

to be the same for both species, Ti = Te = TELM.

Under these assumptions, the ion and electron evolutions are described by the one-

dimensional Vlasov equations in the parallel phase space (x, vx):

∂fj
∂t

+ vx
∂fj
∂x

− qj
mj

∂φ

∂x

∂fj
∂vx

= Sj(x, vx, t), (2)

where qj = ±e (we consider singly charged ions). The collisionless approximation is

reasonable for the initial phase of high-energy transients such as ELMs, for which the

thermal mean-free-path exceeds the parallel connection length L‖, defined as the typical

distance between the outer midplane and the divertor outer target. In the JET tokamak,

the parallel connection length is roughly L‖ ∼ 30 m.

The source terms Sj describe the plasma pulse generated by the ELMs, and can be

written as Sj(x, vx, t) = fELMj(x, vx)g(t), where

fELMj(x, vx) = nELM exp

(
− x2

2σ2

)
exp(−v2x/2v

2
Tj)√

2πvTj

, (3)

and g(t) models the pulse temporal profile. Thus, the source is a Maxwellian

distribution, whose spatial profile is given by a Gaussian with width σ ∼ 0.1L‖ and
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peak density nELM. Finally, the electrostatic potential φ(x, t) obeys the one-dimensional

Poisson equation

∂2φ

∂x2
= − e

ǫ0
(ni − ne) . (4)

The above equations are solved on an interval x ∈ [−L‖, L‖], where x = ±L‖ represent

the locations of the divertor plates. The plates are supposed to be perfectly absorbing

surfaces (i.e. the incoming flux is zero) and are kept at constant electric potential,

φ(±L‖) = 0.

Besides being relevant to the ELM dynamics in a tokamak, the above model

describes the general scenario of an initially neutral plasma created in a confined region

delimited by two grounded plates: the plasma first undergoes an expansion into vacuum

and then reaches the plates. Here, we are mainly interested in the plasma features on

the plates, particularly the particles and energy fluxes, defined respectively as (we omit

the species index for clarity):

Γ(t) =

∫ ∫ ∫
vxF (±L‖,v, t)dv, (5)

Q(t) =

∫ ∫ ∫
1

2
m(v2x + v2⊥)vxF (±L‖,v, t)dv = Q‖ +Q⊥. (6)

It can be readily checked that Q⊥ = Γ TELM.

We use typical parameters for Type-I ELMs [13]: plasma density nELM = 5 ×
1019m−3, temperature TELM = 1.5keV, and parallel connection length L‖ = 30m. With

these values (and considering hydrogen ions, mi = 1836me) the ion traversal time is

τ‖i = L‖/vT i ∼ 80µs and the Debye length λD ∼ 40µm. In the simulation results, the

parallel energy fluxes will be expressed in terms of Qref = nELMvT iTELM, which, for the

above set of parameters, is Qref = 4.5GWm−2.

The relevant physical regime will be determined by two dimensionless parameters,

namely, the ion-to-electron mass ratio and the ratio of the Debye length to the parallel

connection length, λ ≡ λD/L‖ ∼ 10−6. The latter is particularly important as it

determines the scale length over which quasi-neutrality can be violated. This can be

easily seen by rewriting Poisson’s equation in dimensionless units, normalizing space to

L‖, the densities to nELM, and the electric potential to TELM/e:

λ2∂
2φ

∂x2
= ne − ni. (7)

When λ → 0, the only way to satisfy Poisson’s equation is for the plasma to be quasi-

neutral (ne − ni → 0). The electric potential does not vanish, but takes exactly the

value required to enforce the quasi-neutrality constraint. In that case, Poisson’s equation

cannot be used to determine the potential, as Eq. (7) becomes singular.

When λ is finite but very small, as is the case for our problem, quasi-neutrality is

satisfied over distances much larger than the Debye length, but breaks down at finer

scales (a typical instance are the sheaths that form at the plasma-surface boundary,

which have a thickness of a few Debye lengths). Thus, an increasingly fine spatial
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resolution is required as λ → 0. In addition, since the plasma frequency scales as λ−1,

the time step must also be reduced in the same proportions. Indeed, it has been proven

that a numerical instability occurs if the adopted time step is larger than the inverse

plasma frequency [15].

For the above reasons, it would be useful to replace the standard Poisson’s equation

(7) with an equivalent equation that can provide φ when λ → 0. This can actually be

achieved rather easily [15, 16] by using the mass and momentum conservation equations

derived from the Vlasov equations (2). The resulting ‘reformulated’ Poisson’s equation,

written in appropriate dimensionless units, reads as:

λ2 ∂
2

∂t2

(
∂2φ

∂x2

)
+

∂

∂x

[
(ε ni + ne)

∂φ

∂x

]
= − ∂2

∂x2
(Ri −Re) , (8)

where ε = me/mi and Rj =
∫
fjv

2dv (see the Appendix A for details on its derivation).

Equation (8) is completely equivalent to the standard Poisson equation (provided the

latter and its time derivative are satisfied at t = 0), but does not become singular in

the asymptotic regime λ → 0. For this reason, the above approach has been termed

‘asymptotic-preserving’ method.

Thanks to the asymptotic-preserving scheme, it is possible to employ a grid spacing

that exceeds the Debye length and, more importantly, a time step larger than the

inverse plasma frequency. In the forthcoming simulations, we have used a grid spacing

∆x = 2λD and a time step up to ∆t = 4ωpe. Note that here λD and ωpe refer to

their initial values computed with the peak density nELM and temperature TELM. These

values, in the normalisation of Eq. (7), are equal to λ and λ−1, respectively.

Some details on the numerical techniques used to solve the model equations are

provided in Appendix B.

3. Free-streaming model

Fundamenski et al. [13] have developed a simple analytical model for parallel transport,

which nevertheless captures the main features of an ELM signal, most notably its rapid

rise and slower decay. The model completely neglects Coulomb interactions, so that the

Vlasov equations are reduced to the following free-streaming equations (in the rest of

this section we omit the species index for simplicity):

∂f

∂t
+ vx

∂f

∂x
= S(x, vx, t). (9)

This equation possesses the exact solution

f(x, vx, t) =

∫ t

0

fELM(x− vxt+ vxt
′, v)g(t′)dt′. (10)

We further assume that the source is instantaneous in time, g(t) = δ(t), where δ is the

Dirac delta function, and that it is localized in space, nELM(x) ≡
∫∞

−∞
fELM(x, v)dv =√

2πσδ(x). With these hypotheses, it is possible to express analytically all relevant

quantities at an arbitrary location x.
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For the particles density, we obtain:

N(x, t) ≡
∫ ∫ ∫

F (x,v, t)dv =
σ

vT

nELM

t
exp

(
− x2

2t2v2T

)
, (11)

whereas the particles flux yields: Γ = (x/t)N . Further, we have for the kinetic energy:

E(x, t) ≡ 1

N

∫ ∫ ∫
F (x,v, t)

m

2
v2dv = E‖ + E⊥ =

m

2

x2

t2
+ TELM (12)

and the energy flux:

Q(x, t) = Q‖ +Q⊥ =
m

2

x2

t2
Γ + ΓTELM. (13)

Using these expressions, we can define the parallel sheath transmission coefficient:

γ‖ = Q‖/(ΓE‖), which is exactly equal to unity within this model.

The above formulae will be used as a benchmark for the numerical results presented

in the next section.

4. Simulation results

We now present the numerical results obtained by solving the full Vlasov-Poisson

equations, i.e. including the effect of the electric field. We shall use two types of

temporal profiles for the sources in the Vlasov equations (2): an instantaneous source

g(t) = δ(t), and a distributed-in-time source with

g(t) = Ct2 exp

(
−(t− t0)

2

2σ2
t

)
, (14)

where the normalization constant C is chosen so that
∫∞

0
g(t)dt = 1. Provided that

σt ≪ t0, the above expression peaks at t = (t0/2)(1 +
√
1 + 8σ2

t /t
2
0) and has the

advantage of vanishing at t = 0.

In all cases, except where otherwise stated, we use the following parameters:

mi = 1836me, σi = 0.1L‖, and λ = 10−3. This value of λ is much larger than the

realistic value for ELM plasmas. However, we have checked that the evolution of relevant

quantities (such as the particles and energy fluxes) are virtually unchanged when smaller

values of λ are taken (an exception is an early peak in the electron energy flux, which

disappears in the asymptotic limit λ → 0; see later for further details). Thus, it appears

that for λ = 10−3 we have already reached the asymptotic regime and the results can

be confidently extrapolated to the realistic value of λ.

4.1. Instantaneous source

First of all, we tested our numerical code by comparing the analytical results from

the free-streaming model with the numerical solution of the Vlasov equation without

electric field (9). As expected, the analytical and numerical fluxes (not shown here)

were virtually identical.

Next, we turn to the full solution of the Vlasov-Poisson equations including the

electric field. Figure 1 shows the evolution of the electron and ion particles and energy
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Figure 1. Particles (left panel) and energy (right panel) fluxes as a function of time

normalized to the ion transit time. Solid lines refer to the ions, dashed lines to the

electrons. The dotted lines represent the ion fluxes obtained from the free-streaming

model. Top panels: λ = 10−3; bottom panels: λ = 2.5× 10−4.

fluxes on the divertor plates (since this case is symmetric there is no difference between

the inner and the outer plate), for λ = 10−3 and λ = 2.5× 10−4. The standard pattern

(sharp rise, followed by a slower decay) is recovered in the simulations.

Very little difference in the fluxes is observed between the λ = 10−3 and the

λ = 2.5 × 10−4 cases. Therefore, it seems that the asymptotic regime (λ → 0) has

already been reached, so that the results for the fluxes should remain unchanged for a

realistic value of λ, which is of the order 10−6.

The ion and electron particles fluxes are virtually identical, which is a consequence

of quasi-neutrality. In contrast, the electron energy flux is appreciably smaller than

that of the ions. This is in line with measurements of the heat load on a tokamak

divertor plates, where the electron load is observed to be roughly one third of the ion

load [17, 18]. The free-streaming model (dotted line in Fig. 1) is fairly accurate for the

ion fluxes, especially over long times.

The above dynamics occurs on the timescale of the ionic transit time τ‖i, as is

expected from quasi-neutrality. However, an early burst of electrons is observed on the

electronic transit time scale, as can be seen from Fig. 2. This burst is due to a bunch

of electrons escaping the attraction of the ions and reaching the plates before quasi-

neutrality can be established. Indeed, the height of this peak decreases with decreasing

λ, i.e. when quasi-neutrality is stronger. From the free-streaming result [Eq. (13)],

the electron energy flux should peak at tpeak = L/2vTe ∼ 0.5τ‖e. The observed peak
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Figure 2. Electron energy flux on the divertor plate for short times, for three values

of the normalized Debye length: λ = 10−3 (solid line), λ = 5×10−4 (dashed line), and

λ = 2.5× 10−4 (dotted line). Note that here time is normalized to the electron transit

time τ‖e = (me/mi)τ‖i.

Figure 3. Diamonds: Electron kinetic energy deposited on the right plate (x = L‖)

as a function of λ. The straight solid ine represents the curve Eelec/TELM = 15λ2.

is at roughly one half of this value, signalling that the peak is caused by suprathermal

electrons travelling with an average velocity equal to twice the thermal speed.

It would be interesting to deduce a scaling law for the deposited electron energy as

a function of λ. This can be done by integrating the electron fluxes on Fig. 2 between

t = 0 and, say, t = τ‖e. The electron kinetic energy deposited on the divertor plate

(x = L‖) is then defined as Eelec =
∫ τ‖e
0

Qe(t)dt and is shown in Fig. 3 on a log-log

plot. It is clear that Eelec depends quadratically on λ. In the present case, we obtain a

scaling law of the type: Eelec/TELM ≈ 15λ2, which allows us to extrapolate the result to

realistic values of λ.

The mechanism responsible for the above effect is best understood by inspecting

the parallel phase space (x, vx), displayed in Fig. 4, where we show the contour plots

of the electron distribution function at various times. The electron velocity distribution

on the right boundary is shown on Fig. 5 at the same instants. Very early, a small

fraction (about 0.2%) of energetic electrons is ejected from the bulk plasma and hits

the divertor plate. This leaves behind a net positive charge that traps the remaining

electrons in a potential well, preventing them to reach the divertor plates. The potential

well expands slowly following the motion of the ions (on a timescale ∼ τ‖i) and finally
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Figure 4. Contour plots of the electron distribution function in the parallel phase

space at different times, measured in units of the electron transit time τ‖e =

(me/mi)τ‖i. Only contour levels for which fe ≤ 10−4 are shown.

Figure 5. Electron parallel velocity distribution at x = L‖ at different times, measured

in units of the electron transit time τ‖e = (me/mi)τ‖i.
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Figure 6. Electron (left panel) and ion (right panel) velocity distribution at x = L‖

at the end of the run (t = 3.73τ‖i).

Figure 7. Time evolution of densities (left panel) and parallel temperatures (right

panel) at x = L‖. The temperatures are normalized to their initial value TELM. Solid

line: ions; dashed line: electrons. The dotted line in the left panel represents the

theoretical prediction of Eq. (11) for the ions. The inset in the right panel shows the

ion temperature multiplied by t2.

reaches the boundary, thus releasing the ions’ and the (remaining) electrons’ energy

onto the divertor plate. On the timescale of the ion dynamics, the velocity distributions

on the wall become approximately half-Maxwellian for the electrons and Maxwellian for

the ions [19], as can be seen from Fig. 6.

The densities and temperatures of the two species of particles on the plate are

depicted in Fig. 7. The temperatures are particularly interesting: whereas the electron

temperature converges to a constant (about one thousandth of the initial value TELM),

the ion temperature decreases with time as t−2. This type of decrease is readily obtained

from the free-streaming model and was anticipated in earlier studies [20]. (One should

keep in mind that here we are talking about the parallel temperatures; the perpendicular

temperatures remain constant for all times, since no coupling between the parallel and

perpendicular motion is allowed in our model).

The parallel sheath transmission coefficients are shown in Fig. 8. Whereas γ‖i
quickly reaches unity, as expected from the free-streaming model, γ‖e is twice as large.

This is due to the fact that the electronic distribution on the divertor plate is a half-

Maxwellian (see Fig. 6), so that the parallel kinetic energy E‖ is twice as small compared

to a full Maxwellian.
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Figure 8. Parallel sheath transmission coefficients for the electrons (diamonds) and

the ions (stars).

Figure 9. Time evolution of the total ion kinetic energy (dotted line), electron kinetic

energy (dashed line), potential energy (×1000) (thin solid line), and total energy (thick

solid line). All quantities are normalized to the initial total energy.

Finally, we show the time evolution of some integrated quantities, particularly the

kinetic and potential energies (Fig. 9). As long as the main plasma population does

not reaches the plates, it expands freely into a vacuum. During this phase, lasting up

to ∼ 0.2τ‖i, some kinetic energy is transferred from the electrons to the ions.

This transfer occurs because of the fast electrons that move rapidly forwards leaving

the ions behind, as was shown in Figs. 4–5. This creates a charge imbalance – and

therefore an electric field – at the plasma-vacuum front, which is revealed by the peak

of the potential energy in Fig. 9. The electric field slows down the electrons and

accelerates the ions, thus effectively transferring some kinetic energy from the former to

the latter. Eventually, the ions catch up with the electrons, the plasma becomes locally

neutral, and the potential energy goes to zero. Over longer times (t > 0.2τ‖i), the

charged particles start being lost on the divertor plates and consequently both kinetic

energies decrease.

4.2. Time-distributed source

In actual ELM events, the plasma pulse is not instantaneous, but has a finite duration,

which is of the order of a few ion transit times. In order to simulate this type of scenario,
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Figure 10. Particles (left panel) and energy (right panel) fluxes as a function of time,

for a case with time-distributed source. Solid lines refer to the ions, dashed lines to

the electrons. The dotted lines represent the source temporal profile g(t), in arbitrary

units.

Figure 11. Same as Fig. 10 for free-streaming particles (no electric field).

we use a pulse temporal profile such as that of Eq. (14), with σt = 0.7τ‖i and t0 = 1.4τ‖i
[the plot of g(t), given by the dotted line on Fig. 10, shows that the pulse peaks at

about 1.9τ‖i].

The evolution of the particles and energy fluxes is shown in Fig. 10. The fluxes

reach a maximum at roughly one ion transit time after the source peak. The ion energy

flux is about 30% larger than that of the electrons, whereas it was almost four times

larger in the case of an instantaneous source (Fig. 1). It is useful to compare these

results to a free-streaming case, for which the electric field was neglected (Fig. 11).

In the free-streaming case, the electron fluxes peak earlier, basically in phase with the

source (at closer inspection, the electron fluxes peak around 2-3 electron transit times

after the peak of the source). Also, a larger fraction of the energy flux is carried by the

electrons, at the expense of the ions’ energy flux. Clearly, the electric field has the effect

of transferring some energy from the electrons to the ions.

By inspecting the electron energy flux for short times (Fig. 12), we also observe

a small peak occurring on the electronic timescale, as we had found for the case of an

instantaneous source. Now the peak appears later, since the plasma needs to build up

progressively, but still occurs much earlier than the peak of the ELM pulse (see inset of
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Figure 12. Electron energy flux on the divertor plate for short times (in units of the

electron transit time). The inset shows the temporal profile of the source g(t).

Figure 13. Electron (left panel) and ion (right panel) velocity distribution at x = L‖

at the end of the run (t = 9.34τ‖i), for a case with time-distributed source.

Fig. 12).

The velocity profiles on the divertor plate (Fig. 13) are similar to those obtained in

the case of an instantaneous source, i.e. half-Maxwellian for the electrons and roughly

Maxwellian for the ions.

Finally, the parallel sheath transmission coefficients are shown in Fig. 14, revealing

some interesting behaviour. The ion coefficient remains close to unity for the entire

duration of the run, signalling that the Vlasov-Poisson result stays close to the

free-streaming solution. The electronic coefficient displays a long transient, which

corresponds to the time-window when the source is active, then quickly relaxes to its

asymptotic value (γ‖e = 2) after the source is extinguished.

5. Conclusion

Parallel transport plays a major role in the dynamics of ELM events in a tokamak. Even

relatively simple models that ignore Coulomb interactions [13] manage to reproduce with

fair accuracy the main features of an ELM event, particularly the energy load on the

divertor plates.

Stimulated by this observation, we constructed a minimal kinetic model of parallel
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Figure 14. Parallel sheath transmission coefficients for the ions (solid line) and the

electrons (dashed line), for a case with time-distributed source. The dotted lines

represent the source temporal profile g(t), in arbitrary units.

transport during ELMs, based on the Vlasov-Poisson equations in the direction parallel

to the magnetic field (in the perpendicular plane, the plasma is supposed to be

Maxwellian). The results of numerical simulations performed with this model were

compared systematically to the free-streaming solutions [13].

Several interesting conclusions can be drawn from our study:

(i) Even for moderate connection lengths (we used L‖ = 1000λD throughout this work)

the particles and energy fluxes are correctly described, i.e. by decreasing the ratio

λ = λD/L‖ the fluxes are virtually unchanged;

(ii) Whereas the ion fluxes are relatively well reproduced by the free-streaming model,

the electron fluxes are not. This is because the free-streaming model does not

properly include quasi-neutrality;

(iii) On the electron transit time scale, an early burst can be observed on the divertor

plates, which corresponds to suprathermal electrons escaping the ions’ attraction

due to their large kinetic energy. The remaining electrons are trapped in the

potential well created by the ions (which now outnumber the electrons) and evolve

in unison with them. On the ion timescale, the plasma is everywhere neutral, except

for a positive net charge in front of the divertor plates (sheaths);

(iv) The long-time velocity distributions on the plates are Maxwellian for the ions and

half-Maxwellian for the electrons;

(v) The parallel sheath transmission coefficients tend rapidly to 1 for the ions and 2

for the electrons;

(vi) Most of the above results hold equally for an ELM pulse with a realistic duration

tELM ∼ τ‖i.

The present model could be further improved in several ways. First, a pre-ELM

environment (low temperatures and densities) should be computed self-consistently and

used as a starting background prior to the ELM pulse. Second, even though collisions are

not dominant due to the high temperature of the ELM pulse, they may play a role over

long times, so that a suitable collision term should be added to the Vlasov equations.
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Finally, the perpendicular dynamics should be treated with more sophistication, by

taking into account that the magnetic field decreases with increasing distance from

the tokamak axis. This introduces a ‘mirror’ force that acts differently on ions with

different magnetic moments (this effect should be negligible for the electrons) and

couples the parallel and perpendicular dynamics. A sufficiently accurate description

could be achieved by assuming that the magnetic moment is an exact invariant and

then using an approach such as that of Ref. [21]. The above issues are currently under

investigation.
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Appendix A. Reformulated Poisson’s equation

As mentioned in Section 2, in order to compute the potential φ leading to a quasi-

neutral regime (the limit λ → 0) we need a reformulation of the Poisson’s equation that

does not become singular in this limit. Such an equation was already derived in the

case of the Euler-Poisson [15] and the Vlasov-Poisson systems [22, 16]. For the sake of

completeness, we show how the reformulated Vlasov-Poisson model is obtained in our

case.

We start with the following scaled Vlasov-Poisson equations

∂fi
∂t

+ vx
∂fi
∂x

− ε
∂φ

∂x

∂fi
∂vx

= Si(x, vx, t) (A.1)

∂fe
∂t

+ vx
∂fe
∂x

+
∂φ

∂x

∂fe
∂vx

= Se(x, vx, t) (A.2)

−λ2∂
2φ

∂x2
= ni − ne, (A.3)

which are obtained by normalizing Eqs. (2)–(4) as follows

x̂ =
x

L‖

v̂x =
vx
vTe

t̂ =
vTe

L‖

t n̂j =
nj

nELM

φ̂ =
φ

Te/e
(A.4)

(the overcarets, which will be omitted in the sequel, stand for the dimensionless

variables). By taking the first two moments of the difference between Eq. (A.1) and

Eq. (A.2), we obtain

∂t(ni − ne) + ∂x(Ji − Je) = 0 (A.5)

∂t(Ji − Je) + ∂x(Ri −Re) + (ε ni + ne) ∂xφ = 0, (A.6)

where Jj =
∫
fj(x, vx, t) vx dvx and Rj =

∫
fj(x, vx, t) v

2
x dvx. Now we subtract the

spatial derivative of Eq. (A.6) from the time derivative of Eq. (A.5):

∂2

∂t2
(ni − ne)−

∂

∂x

[
(ε ni + ne)

∂φ

∂x

]
=

∂2

∂x2
(Ri −Re) . (A.7)

Finally, using Poisson’s equation we express ∂2
tt(ni − ne) in terms of φ and thus recover

the reformulated Poisson equation (8).
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It can further be shown [16, 22] that the reformulated Poisson equation (8) (coupled

to the Vlasov equation) is rigorously equivalent to the standard Poisson equation (7)

provided that φ satisfy the following conditions at the initial time: (λ2∂2
xxφ+ni−ne)t=0 =

0 and
(

∂
∂t
(λ2∂2

xxφ+ ni − ne)
)
t=0

= 0.

Appendix B. Numerical methods

The Vlasov equation (2) is solved using an Eulerian method based on a uniform meshing

of the parallel phase space (x, vx). For the time-stepping, a second-order splitting scheme

is used [14], which solves alternatively the advection in real space, ∂tf + vx∂xf = 0, and

the advection in velocity space, ∂tf+(qE/m)∂vxf = 0. Each advection step is performed

using a third-order positive flux-conservative (PFC) method, with a slope corrector that

prevents the distribution function from becoming negative [23, 24]. A typical simulation

requires 1000 points both in real space and in velocity space.

As to the reformulated Poisson’s equation, it was shown that an explicit time-

stepping scheme is only stable if ∆t ≤ ω−1
pe ∼ λ [15]. In order to lift this numerical

constraint, the reformulated Poisson equation must be solved through an implicit

scheme. More precisely, we first discretize Eq. (8) as follows:

− ∂

∂x

(
λ2 ∂xφ

m+1 − 2∂xφ
m + ∂xφ

m−1

∆t2
+ (εnm

i + nm
e ) ∂xφ

m+1

)
=

∂2

∂x2
(Rm

i −Rm
e ).

Then, using Poisson’s equation, we replace ∂2
xxφ

m and ∂2
xxφ

m−1 by density terms at the

corresponding time steps:

− ∂

∂x

[( λ2

∆t2
+ εnm

i + nm
e

)
∂xφ

m+1

]

=
∂2

∂x2
(Rm

i −Rm
e ) +

1

∆t2

(
2 (nm

i − nm
e )− (nm−1

i − nm−1
e )

)
.

Next, we make use of a discrete form of Eq. (A.5) to replace (nm
i −nm

e )− (nm−1
i −nm−1

e )

with −∆t (∂xJ
m
i − ∂xJ

m
e ). We thus obtain the discrete (in the time variable) version of

the reformulated Poisson’s equation

− ∂

∂x

[(
λ2 +∆t2(εnm

i + nm
e )

)
∂xφ

m+1

]

= ∆t2
∂2

∂x2
(Rm

i −Rm
e ) + (nm

i − nm
e )−∆t (∂xJ

m
i − ∂xJ

m
e ), (B.1)

which allows us to compute φm+1 from known quantities at time tm [16]. A finite

difference method is then used to approximate the spatial derivatives in the equation.

Although the above time-stepping strategy is only first order in time, the method

could be easily extended to second order accuracy. Some work along this direction was

presented in Ref. [15].

Finally, we remark that: (i) when ∆t → 0 for fixed λ, Eq. (B.1) reduces to a

discrete form of the standard Poisson’s equation; (ii) when λ → 0 for fixed ∆t, the

scheme leads to a consistent (non-singular) discretization of the λ → 0 limit of Eq.
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(8). Indeed, the last two terms in Eq. (B.1) are of order O(λ2) in virtue of Poisson’s

equation, and therefore vanish when λ → 0.
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