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Stéphane Wloka
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Abstract

This paper deals with the issue of self-modifying
code and packed programs, a long-standing prob-
lem commonly addressed by emulation techniques
and memory dumps. We propose an origi-
nal semantics-based approach to simplify dynamic
code analysis, by using compiler optimization tech-
niques to get rid of code-generating instructions.
For this, we use classic slicing techniques to iden-
tify code dependencies. As it is semantics-based,
our approach allows us to rely on strongly estab-
lished formal methods and is a promising approach
for handling packed programs.

1 Introduction

Packed malware is a long-standing problem
which appeared very early in the history of com-
puter viruses. Until relatively recently, the state
of the art in unpacking technology consisted in a
set of specific unpacking procedures created man-
ually for known packers [22]. The limit of this
reactive approach has been reached in the early
2000s, due to a significant increase in the num-
ber of self-modifying malware samples and custom
packers. Since then, generic unpacking and emu-
lation techniques have constituted a hot topic in
the malware community.

Related works. Let us briefly review studies
that tackle the problem of generic unpacking.

PolyUnpack [19] and VxStripper [11] compare
the binary code and its image in memory in order
to detect runtime-generated instructions.

Renovo [12] and Pandora’s Bochs [2] both de-
tect the presence of unpacked code by monitor-
ing whether the instruction stream reaches a pre-
viously written memory area. This is achieved
through whole system emulation. The approach
of Ether [6] is similar, but the hardware virtualiza-
tion extensions of modern CPUs are used instead
of emulation.

In [21], Hump-and-dump detects dynamic code
by using execution histograms.

OmniUnpack [14] makes use of the virtual ad-
dress translation feature of CPUs in order to track
the modifications in memory and identify packed
code. The heuristics combine static and dynamic
analysis to monitor memory writes.

Justin [9] employs the no execute bit of CPUs
in order to take control and trigger a malware scan
when a data region is executed.

In [4], the authors propose an efficient layering
algorithm based on an emulation framework for
user-mode x86 and the Windows API.

The main limitation of these approaches based
on memory monitoring is that the tools are not
guaranteed to output valid executables. Indeed,
the tools attempting to reconstruct an unpacked
binary generally rely on a memory dump, repre-
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senting a particular state of the program at a given
point in time. This representation lacks semantics
information, so the reconstructed binary may not
be semantically equivalent to the original program
or even outright broken [7], for instance due to
code erased from memory or not yet decoded.

Moreover, the techniques used to monitor exe-
cution generally incur a significant performance
overhead. As a result, generic unpacking tech-
niques are either not deployed on end-user desk-
tops or are deployed as watered-down versions.
Binaries to be unpacked are rather submitted to
dedicated sandbox analysis services.

Contribution. In this paper, we propose a fun-
damentally different approach to extract and re-
store hidden code, called program flattening. It
can be summed up as follows: if we consider that
a packed program is the association of an en-
coded payload and an unpacking stub that uncon-
ditionally restores the original program by self-
modification, then observing any trace of the
packed program is sufficient in order to recover the
generated code and to eliminate code-generating
instructions with a data dependency analysis.

This approach differs from previous works by
the use of program transformations based on se-
mantic information: data flows are computed
based on x86 instruction semantics. Moreover,
this perspective allows to rely on established for-
mal methods whereas previous approaches usually
employ black box analysis. Another contribution
of our work is the relation that we draw between
program optimization and unpacking.1

The paper is organized as follows. Section 2
details the theory behind program flattening and
explains how it can be applied to packed programs.
Section 3 presents our optimizing technique on ex-
ecution traces and illustrates its behavior on a sim-
ple but realistic self-modifying x86 program. Sec-
tion 4 discusses the limitations of the approach.
Finally, Section 5 presents the next steps of this
research vein.

1Its development is however in a preliminary stage,

therefore it has not been tested on malware samples at the

time of writing.

2 Program flattening

2.1 Futamura’s projection

An interpreter is a program with an argument x

such that launched with x = p, it simply executes
the program p. In the Linux world, bash, perl
and python are well-known interpreters.

Specialization is a program transformation
which turns programs with n + 1 arguments into
programs with n arguments. This process is
achieved by a program spec, commonly referred
to as a specializer or a partial evaluator. Nowa-
days this notion is well-known since it constitutes
the basis of most JIT compilers. A good introduc-
tion to program specialization for performance can
be found in [10].

The combination of an interpreter and a spe-
cializer is also well-known in compilation theory
since they constitute fundamental building blocks
of compilers. Indeed, the Futamura projection [8]
tells that a compiler ccS

T
from a source program-

ming language S to a target machine code T can
be obtained by combining an interpreter of S pro-
grams written in T , noted execS

T
, and a specializer

of T , noted specT .

ccS
T (p) = specT (execS

T ,p)

With p a source program written in S, executing
a target program t = ccS

T
(p) is by definition of

execS
T

semantically equivalent to executing pro-
gram p. From the above equality, we observe that
t is the machine code program resulting from the
compilation of the source program p.

2.2 Packing as factitious compilation

We now draw a relation between compilation
and packing. In their simplest form, packers are
composed of an encoded payload and a header pro-
gram which decodes and transfers control to the
payload. The payload can either be compressed
or encrypted, depending on the design goal of the
packer: code size reduction or obfuscation. UPX2

is a well-known packer used for code compression

2http://upx.sourceforge.net/
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that conforms to this model. In other terms, a
packed program is an encoded program wrapped
into a runtime decoder.

From a theoretical perspective, packing can be
seen as a particular compilation process: a packer
is seen as an interpreter and the payload is seen as
the source program. Let us consider a symmetric
transformation process with encoding (resp. de-
coding) procedure encode (resp. decode). That
is, for any data a we have

decode(encode(a)) = a

Then, the packed version of a program p has a
structure similar to the one presented in Figure 1,
where the value b is the result of the computation
encode(p).

x := b;

x := decode(x);

exec(x);

Figure 1. A simple packed program

We observe that from a compilation-theoretic
point of view:

• the first line corresponds to a specialization
pattern,

• the second and third lines correspond to an
interpreter for encoded programs on the tar-
get architecture.

In Figure 2, we present such an interpreter writ-
ten in assembly language where the programs
are decoded with a simple xor by constant value
0xdeadbabe. The pointer to the payload is noted
x and len(x) is the length of the payload.

2.3 Self-modifying code elimination

As said above, in our framework, the protection
of packed programs consists in a factitious com-
pilation process, which yields a program with a
decoding overhead. Therefore, we can see unpack-
ing as a process aiming at removing this overhead.

mov ecx, (len(x)/4) ; init decryption

lea eax, x

loop: ; decryption loop

mov edx, [eax]

xor edx, 0xdeadbabe

mov [eax], edx

add eax, 0x4

dec ecx

jnz loop ; end of loop

call x ; call payload

Figure 2. Interpreter for xored programs

From a compilation perspective, this corresponds
to an optimization process. We then propose to
simplify the packed program by restoring the dy-
namic code observed during a run and suppressing
the instructions that generated it.

This idea appears clearly in the program of Fig-
ure 1, where the propagation of the constant value
b would lead to the following program:

x := decode(b);

exec(x);

Then replacing the expression decode(b) by p and
propagating this value would lead to the following
program:

exec(p);

Finally, the interpretation becomes useless and a
trivial code alignment would lead to the program
p. We conclude that the original program can be
recovered by using classic optimization techniques,
namely:

• constant propagation,

• code alignment.

Unfortunately, it is highly difficult to statically
optimize programs, particularly for binary code.
However, at runtime, more information on the ex-
ecution context is available and it is easier to op-
timize specific code regions. This is the premise
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of just-in-time compilers which rely on runtime
information to specialize code regions and boost
performance, as described in [18]. From this ob-
servation, we propose to apply our approach to
the easier context of execution traces.

It will therefore consist in executing the sub-
ject program, then using the runtime informa-
tion to inline the hidden code and finally simpli-
fying the execution trace to make it free of self-
modifications.

3 Execution trace flattening

3.1 Overview of the algorithm

We now present the algorithm used to trans-
form a self-modifying program into a flat execu-
tion trace. This process is achieved in three steps:

• extracting an execution trace of the packed
program,

• backtracking dependencies of self-modified
code,

• simplifying the execution trace.

Execution trace. An execution trace is a se-
quence of system states resulting from the execu-
tion of the subject program. In order to extract
such a trace, we have to log changes to the exe-
cution context (register and memory values) each
time an instruction is executed.

Dataflow backtracking. We are specifically
interested in memory regions that are written and
then executed, because they indicate the pres-
ence of dynamic code. We mark such memory
addresses and we backtrack the dataflow depen-
dencies through a slicing algorithm to find the in-
structions that affected the marked memory re-
gion. In other terms, we backtrack the unpacking
stub from the payload. We do this by computing
“def-use” chains: there is a def-use dependency
between two instructions i1 and i2 if i2 reads data
written by i1.

Trace optimization. The next step is to op-
timize the trace by deleting all instructions that
spawn dynamic code. For this, we simply remove
the code backtracked in the first step. This pro-
cess uses a well-known dynamic slicing algorithm
with a deletion constraint on dynamic code. We
refer to [23] for further theoretical details on it.

Program recovery. Sometimes it is possible to
recompile the optimized trace into an executable.
For this we fold the trace into a program using the
observed addresses. This functionality is still un-
stable in our current implementation. The main
limitation is due to the possibility for a packer to
yield different code blocks at the same address.
At the current state of prototyping, this is not a
problem if the generated code is position indepen-
dent: we pad the addresses with the layer number
and we recover the control flow by adding offsets
to jump targets. Dealing with position dependent
code is more difficult and requires a thorough data
dependency analysis. We are currently working on
this aspect.

3.2 Implementation details

We make use of several tools to achieve flat-
tening. First, we extract the execution trace by
running the program within a monitored environ-
ment with dynamic instrumentation capabilities.
This process uses of a specialized sandbox which
monitors and analyzes data dependencies on code
access. We rely on TEMU [20] (a whole-system
emulator for binary analysis based on QEMU)
for program tracing, but we could also use other
dynamic analysis systems such as Bochs [1], Dy-
namoRIO [3] or Pin [13].

To express data dependencies, we model the in-
struction semantics in a Pascal-like language. This
dependency framework has been developed as an
extra analysis layer over Vine [20].

Next, the backtracking of data dependencies
is achieved by a slicing algorithm built from the
survey of several dynamic slicing algorithms de-
scribed in [23]. The optimization of the trace is
straightforward: it consists in the deletion of the
backtracked code.
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3.3 Proof of concept

We now illustrate the flattening procedure step
by step on a self-modifying program example. It
makes use of the interpreter for xored programs of
Figure 2 where x is set to a xored code that com-
putes the factorial of 4. The code of the resulting
program in presented in Figure 3.

payload: ; xored code of 4!

.dd "\x07\xbe\xad\xde\xbe\x02\xac\xde"

.dd "\xbe\xba\x5a\x3f\xf7\xcf\x56\x1d"

mov ecx, 4 ; init decryption

lea eax, payload

loop: ; decryption loop

mov edx, [eax]

xor edx, 0xdeadbabe

mov [eax], edx

add eax, 0x4

dec ecx

jnz loop ; end of loop

call payload ; call payload

Figure 3. Self-modifying program

First, let us follow the execution of this pro-
gram.

1. The first instructions are the initial setup for
the decoding loop. Register ecx is initialized
with the length (i.e. number of 32-bit values)
of the encoded buffer, and eax points to the
beginning of the buffer.

2. Then, the decryption loop performs the xor
operation with constant 0xdeadbabe on each
32-bit value of the buffer.

3. Finally, the control is transferred to the now
decrypted buffer.

The execution of this program produces the
trace presented in Table 1. In this trace, we ob-
serve that the code region 0x12ff64–0x12ff73 is
written and executed. Then, the slicing algorithm

Time Address Instruction

1 0x401048 mov ecx, 0x4

2 0x40104b lea eax, 0x12ff64 •

3,9,15,21 0x40104e mov edx, [eax] •

4,10,16,22 0x401050 xor edx, 0xdeadbabe •

5,11,17,23 0x401056 mov [eax], edx •

6,12,18,24 0x401058 add eax, 0x4 •

7,13,19,25 0x40105b dec ecx

8,14,20,26 0x40105c jne 0x40104e

27 0x40105e call 0x12ff64

28 0x12ff64 mov ecx, 0x4

29 0x12ff69 mov eax, 0x1

30,33,36,39 0x12ff6e mul ecx

31,34,37,40 0x12ff70 dec ecx

32,35,38,41 0x12ff71 jne 0x12ff6e

42 0x12ff73 ret

Table 1. Execution trace

backtracks the instructions that are highlighted
with a bullet in Table 1.

The backtracking procedure works as follows.
The algorithm linearly processes the execution to
identify memory regions that have been written
and then executed. In Table 1 we observe write
accesses at times 5, 7, 11 and 23, the correspond-
ing accessed region is then executed. From this,
we backtrack the dataflow dependencies on this
region, making use of the propagation relations
given by Vine [20].

For instance, the data used in instruction mov

[eax], edx at time 17 depends on the instruction
xor edx, 0xdeadbabe at time 16.

After this process, we simply nop the back-
tracked instructions. We obtain the execution
trace presented in Table 2. It is free of self-
modification and it clearly computes the factorial
of 4. We observe that the instruction add eax,

0x4 at time 24 has not be deleted, this is because
it does not depend on any subsequent write access
to an executed region. The resulting trace includes
a superfluous loop which is subject to further op-
timization focused on dead code elimination. This
refinement work flow is a common practice in pro-
gram optimization.
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Time Address Instruction

1 0x401048 mov ecx, 0x4

2 0x40104b nop

3,9,15,21 0x40104e nop

4,10,16,22 0x401050 nop

5,11,17,23 0x401056 nop

6,12,18 0x401058 nop

24 0x401058 add eax, 0x4

7,13,19,25 0x40105b dec ecx

8,14,20,26 0x40105c jne 0x40104e

27 0x40105e call 0x12ff64

28 0x12ff64 mov ecx, 0x4

29 0x12ff69 mov eax, 0x1

30,33,36,39 0x12ff6e mul ecx

31,34,37,40 0x12ff70 dec ecx

32,35,38,41 0x12ff71 jne 0x12ff6e

42 0x12ff73 ret

Table 2. Flattened execution trace

4 Scope and limitations

In this paper, we proposed a generic technique
to identify dependencies between dynamic code
and the code that generates it at runtime. In
particular, if this operation is unconditional (i.e.
it does not depend on the program input), the
hidden code can be restored by observing a sin-
gle execution path. We assert that most packers
work by unconditionally restoring the original pro-
gram, therefore our technique should eventually
give good results on packed samples. Preliminary
testing on x86 self-modifying code confirms this
intuition. However, we are naturally confronted
to a number of limitations.

Conditional behaviors. The trace on which
we perform the optimizations depends on a spe-
cific input. Therefore, any generalization based
on the transformed trace can be misleading if the
generated code depends on the input.

Multiple layered unpacking. In the case
study, we made the assumption that the code
was unpacked in a single layer. In essence, the
same optimization technique could be applied re-

cursively to other code layers, though this has not
been tested yet.

External code. The previous case study fo-
cuses on user-mode x86 with no library or system
calls, which would have to be handled specially.

Control dependencies. As usual with un-
structured control-flow, we only focus on data de-
pendencies. Control dependencies would require
some degree of static analysis [17, 5, 24, 25], which
is undecidable on binary programs in the general
case.

Transparency of the transformation. We
can not ensure that the output binary works ex-
actly like the original one, since it has been partly
rewritten. For instance, in addition to perform
self-modifications, the unpacking stub may also
try to detect if it has been tampered with. In
this case, we would remove the self-modifications
but not the integrity checking, which would fail.
However, the resulting binary would be analyzable
statically and could therefore be helpful.

5 Further work

This study is the first step toward an ambitious
research program. We are currently working in
two main directions to enhance trace flattening
and to tackle the current limitations of our imple-
mentation.

First, we have underlined a strong relation be-
tween unpacking and program optimization. We
want to push this intuition forward by using stan-
dard optimization frameworks. The difficulty is
that we have to translate assembly code into a
higher level language. As a result we are con-
fronted to the complex semantics of the x86 assem-
bly language. To overcome this issue we are work-
ing on the formal semantics specification given
in [16].

Second, we are designing a new version of the
sandbox to force execution contexts in order to
increase code coverage. For this we have inspired
from [15] where the authors propose a dynamic
analysis framework to explore as much execution
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paths as possible. Within the context of program
flattening, the idea would be to generate several
execution traces to cover the whole control flow
graph of the subject binary. Using the same pro-
cess as before we would be able to backtrack self-
modifying code. Then, we could recover a flat ex-
ecutable if the different execution traces are con-
sistent.
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