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Abstract—Distributed computing environments have evolved
from in-house clusters to Grids and now Cloud platforms. We,
as others, provide HPC benchmarks results over Amazon EC2
that show a lower performance of Cloud resources compared
to private resources. So, it is not yet clear how much of
impact Clouds will have in high performance computing (HPC).
But hybrid Grid/Cloud computing may offer opportunities to
increase overall applications performance, while benefiting from
in-house computational resources extending them by Cloud
ones only whenever needed. In this paper, we advocate the
usage of ProActive, a well established middleware in the grid
community, for mixed Grid/Cloud computing, extended with
features to address Grid/Cloud issues with little or no effort
for application developers. We also introduce a framework,
developed in the context of the DiscoGrid project, based upon
the ProActive middleware to couple HPC domain-decomposition
SPMD applications in heterogeneous multi-domain environments.
Performance results coupling Grid and Cloud resources for the
execution of such kind of highly communicating and processing
intensive applications have shown an overhead of about 15%,
which is a non-negligible value, but lower enough to consider
using such environments to achieve a better cost-performance
trade-off than using exclusively Cloud resources.

I. INTRODUCTION

Cloud computing is being considered a disruptive technol-

ogy as it is changing the way to manage resource provision-

ing [1]. The idea of extending owned computational resources

with Cloud computing resources, or alternatively to partly

outsource some of the additional computing power needs to a

Cloud has gained attention.

It is not yet clear, however, how much of impact Clouds

will have in HPC [2][3]. In fact, it is very unlikely that

Cloud resources will outperform highly optimized hardware

(e.g clusters with high performance networks, GPUs and spe-

cialized peripherals) in a near future. Besides, most enterprises,

research institutes, government agencies, etc. already count

with in-house HPC resources, which should be used anyway.

For these reasons, hybrid distributed computing environ-

ments, built mixing clusters, computing Grids, and Cloud

resources may provide a better cost-performance trade-off or,

at least, a temporary solution until a viable (i.e. performant

and cost-effective) 100% Cloud usage for HPC be promoted.

The usage of such hybrid environment raises issues related to

multi-domain infrastructures that pertains to: deployment and

dynamic provisioning of resources, multi-protocol and multi-

domain communication, and flexible programming models

capable to adapt to the execution in different environments.

A straightforward solution, inherited from the Grid computing

world is to introduce a middleware that address these issues

given the targeted applications to be supported, like SPMD

ones as considered in this paper.

HPC applications, in particular non embarrassingly par-

allel legacy SPMD applications, have specific requirements,

which are harder to handle in heterogeneous multi-domain

environments compared to homogeneous ones: load balancing

across heterogeneous resources, topology-aware point-to-point

and collective communication, management of heterogeneous

network characteristics and so on. A Grid/Cloud middleware

that handles basic multi-domain issues (like the one we

propose in section III) may not be enough to address all the

requirements of non-embarrassingly parallel applications, but

it is a good starting point to develop a more advanced and

integrated framework (like the one we propose in section IV)

allowing coupling of such legacy SPMD applications.

The contributions of this paper are threefold. First, we

assess the worthiness of using Amazon EC2 Cloud platform

to run HPC applications in different instance configurations,

compared to private resources. Second, motivated by bench-

mark results and the potential benefit of combining private

and Cloud resources for HPC, we advocate the usage of the

well established ProActive Grid middleware [4] and describe

how it had to be extended so to address Grid/Cloud issues.

Third, we provide a solution in the form of a framework,

allowing to deploy and execute coupled domain decomposition

legacy SPMD applications on heterogeneous multi-domain

environments. Its distinctive aim is in the coupling of SPMD

applications that are moreover legacy. However, it takes benefit

of features offered by a lower layer middleware, in our case,

the ProActive middleware extended in section III. That’s why

we advocate that such kind of framework could also be built

by leveraging alternate Grid/Cloud low level middlewares.

Finally we present experimental performance results and cost-

performance analysis of such framework (and, by extension,

of ProActive for mixed Grid/Cloud computing) over a hybrid

Grid/Cloud multi-domain platform.

The remainder of the paper is organized as follows. Sec-

tion II presents the evaluation of the performance offered by

Amazon EC2 Cloud resources to execute HPC applications

in comparison with private resources. Section III presents

the ProActive middleware and the main mechanisms included
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to support the development and execution of applications in

Cloud platforms: resource management and associated deploy-

ment, and multi-protocol and multi-domain communication

mechanisms. Section IV presents the ProActive-based frame-

work for legacy domain-decomposition applications that inte-

grates ProActive features, performance and cost-performance

analysis of the framework on hybrid Grid/Cloud environments.

Section V presents related works and our positioning with

respect to them. Section VI concludes.

II. BENCHMARKING AMAZON EC2

AGAINST PRIVATE CLUSTERS

Cloud platforms are gaining popularity due to their pay-as-

you-use and simplified interface. Besides of being one of the

main IaaS Cloud infrastructures, Amazon EC2 is one of the

best adapted Cloud alternative for HPC for its openness in con-

figuration. In order to assess the worthiness of using Amazon

EC2 Cloud as an HPC platform, we have deployed a series of

HPC benchmarks, the MPI NAS Parallel Benchmarks. Five

different architectures, described in Table I, are compared:

a private cluster and four types of Amazon EC2 instances,

including the Cluster Compute Instances (CCI) which were

designed for HPC applications and comes with a detailed

hardware architecture, unlike other instances [5].

Private Cluster cc1.4xlarge
Proc. Intel Xeon L5420 Intel Xeon X5570

2*4 cores @ 2.5 GHz 2*4 cores @ 2.93 GHz
33.5 EC2 Units

Arch. 64 bits 64 bits
Memory 16 GB 23 GB
HDD 320 GB 1,690 GB
I/O Perf. Gigabit Ethernet Very high (10GbE)

m1.small c1.medium c1.xlarge
EC2 units 1 5 (2*2.5) 20 (8*2.5)
Arch. 32 bits 32 bits 64 bits
Memory 1.7 GB 1.7 GB 7 GB
HDD 160 GB 350 GB 1,690 GB
I/O Perf. Moderate Moderate High

TABLE I
BENCHMARKED RESOURCES

Figure 1 shows a comparison of I/O performances for the

given distributed architectures. Our private cluster showed

standard results for a Gigabit Ethernet network (900MB/sec

for throughput and 55µsec for latency). Regarding Cloud

instances, Amazon defines the I/O performances of its in-

stances as ”Moderate” (for Small and Medium instances),

”High” (for XLarge instances) and ”Very High” (for Cluster

Compute instances) and both throughput and latency reflect

this classification. However, the ”Very High” performance

network, which is a 10 Gigabit Ethernet, provides a higher

latency (80µsec) than the Gigabit Ethernet network of our

private cluster.
Figures 2, 3 and 4 show the performance (mflops) of three

of the NAS Parallel Benchmarks on each architecture, varying

the number of processes, up to 1024 with the Compute Cluster

Instances. Results average 10 runs. We used Intel Fortran 10.1

for compilation and OpenMPI 1.4.2 for distribution.
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Fig. 1. I/O performance comparison between our private cluster and EC2
instances
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Fig. 3. Kernel CG class C

Kernel EP (Fig.2) is an embarrassingly parallel problem

which involves almost no communication between processes.

It is a strong test for pure computational speed. This test

clearly shows the speed difference between all the architec-

tures.

Kernel CG (Fig.3) computes a conjugate gradient involving
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Fig. 4. Kernel MG class C

a large number of small messages, and is a strong test for

communication performance. It confirms the results shown in

Fig.1. The Amazon EC2 instances performances are, in fact,

below what we get with our private cluster, except with the

CCIs.

Kernel MG (Fig.4) is a multi-grid problem. It is a test for

both, computation and communication speed involving large

data transfers. With such a problem, the gap between our

private architecture with standard Amazon instances narrows,

while the 10 Gigabit Ethernet network provided by the CCIs

takes advantage of its higher throughput.

As shown by the previous experiments[3], standard EC2

does not offer good performance for communication intensive

applications, compared to a local cluster. However, recent

benchmarks using the newly introduced Amazon EC2 Cluster

Compute Instances (CCI) indicate that their performance is

comparable with private resources and also exhibit a much

smaller instances deployment time. Results showed, however,

that communication latencies between CCIs are still higher

than within private clusters (70-80 µsec for a 10Gb Ethernet

network Amazon EC2 cluster instance, against 50-55 µsec

of latency on a private 1Gb Ethernet cluster). This can be

annoying with some tightly-coupled processes, but the higher

throughput can lead to better program performance, depending

on the application.

Also, renting costs associated with execution in Amazon

EC2 could be lessen by integrating private resources to the

computation. Based on this assumption, when dealing with ap-

plications requiring a large amount of computational resources,

it might be interesting to have a part on a cluster or Grid and

another on a Cloud, given the application characteristics and

the possibility to decompose the application in separate parts.

If, on one side, the usage of multi-domain environments

may improve cost-performance trade-off, on the other side,

hybrid multi-domain platforms make deployment and execu-

tion of applications more complex. In next section, we present

different mechanisms introduced in the ProActive middleware

that may allow the execution of applications over such hybrid

environments.

III. PROACTIVE: TOWARDS HYBRID

GRID/CLOUD COMPUTING

Complex multi-domain platforms raise aspects that are

hard to handle at the application level: firewalls, NAT-based

networks, heterogeneity of network protocols and resources

performance (computing nodes and network). The introduction

of a middleware to handle these aspects seems to be the natural

approach, inherited from the Grid computing world.

ProActive [4] is a Java middleware which aims to achieve

seamless programming for concurrent, parallel and distributed

computing. It offers both an uniform active object program-

ming model in which objects are remotely accessible via

asynchronous method invocation and an implementation of

the GCM1. Along with programming models, ProActive offers

features which also makes it a middleware. Next subsections

present some of the main features that we contributed to

add/extend to ProActive, which may help users to develop and

deploy mixed Grid/Cloud applications: the ProActive/GCM

Deployment framework, the support to multi-protocol and

multi-domain communication, and the ProActive Resource

Manager.

A. ProActive/GCM Deployment

The ProActive middleware provides an abstract descriptor-

based deployment model and framework [6], giving users the

capability to deploy applications on different platforms without

changing the source code. ProActive/GCM Deployment allows

allocation of resources, creation of remote processes and

input/output data handling. The definition of the deployment

can also encompass security, tunneling of communications,

fault tolerance and support of portable file transfer operations.

The deployment process is defined by means of two XML

descriptors:

• The GCM Application Descriptor (GCMA). A GCMA

descriptor defines applications-related properties, such as

localization of libraries, file transfer, application parame-

ters and non-functional services requirements and configura-

tions(logging, security, checkpoint and fault tolerance). Once

the deployment is done, GCMA descriptors expose the re-

sulting physical environment as a logical network of virtual

nodes (VNs) which are used by applications as an abstract

representation of computing nodes. The GCMA also defines

one or multiple resource providers, described by GCMD

descriptors;

• The GCM Deployment Descriptor (GCMD). A GCMD

descriptor defines and configures access protocols to reach

the resources (e.g. SSH, RSH, GSISSH, etc.), acquisition

protocols and tools which are required to acquire resources

(e.g. Amazon EC2, PBS, LSF, Sun Grid Engine, OAR,

etc.), creation protocols which pertain to “how to launch

processes” i.e. ProActive Runtimes (e.g. SSH, OAR, Globus)

on these resources, and communication protocols for inter-

runtime communication(e.g. RMI, RMISSH and HTTP).

Thanks to the VN abstraction and separation between

GCMA and GCMD, the ProActive deployment process is

1Grid Component Model
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independent of application code. By simply changing resource

providers (i.e. add or replacing GCMDs in GCMA files)

the same application can be deployed in a different set of

resources.

1) ProActive/Amazon EC2 Deployment: In order to ease

Amazon EC2 deployment, the ProActive/GCM deployment

framework was extended with the support to Amazon EC2

deployment. Users willing to deploy ProActive applications

over Amazon EC2 resources need an Amazon Web Services

account, the associated credentials and a pre-configured Ama-

zon Machine Image (AMI). A couple of public images are

provided by the ProActive development team to simplify this

task. Once these requirements are fulfilled, the user can then

configure the deployment process through a GCMD descriptor,

defining the AMI name, the instance type, specifying the

type of Amazon EC2 virtual instance configuration and the

maximum number of instances that can be deployed simultane-

ously. In addition to this configuration expressed in the GCMD

descriptor, the user has also to configure how these Cloud

hosted resources will be able to interact with non Cloud hosted

ones in a way that handles firewalls and NAT issues. The

sub-sections III-B and III-C present details about these new

ProActive built-in mechanisms for inter ProActive runtimes

communications.

2) Resource Manager: The basic approach for ProActive

applications deployment is to programmatically load GCMA

and GCMD files to first deploy ProActive runtimes (i.e.

Virtual Nodes) and then deploy and launch applications over

these VNs. In cases where users do not want to take care

of configuration of the whole deployment process in their

application code and associated deployment configuration, a

more high-level deployment approach is offered by ProActive.

In fact, users can rely upon the ProActive Resource Man-

ager. The ProActive Resource Manager is a full-featured re-

source manager, itself programmed as a ProActive application,

which retrieves and releases computing nodes on demand from

any kind of resource provider supported by the ProActive

deployment framework. In this sense, it completely hides

to users the complexity of using the underlying distributed

platform resources.

The Resource Manager Core is responsible for handling all

requests from clients and delegating them to other components.

Once the request of getting new nodes for computation,

expressed using a resource manager specific API, is received,

the core redirects it to a selection manager, which finds

appropriate nodes in a pool of available nodes based on

criteria provided by the client application (e.g. a specific CPU

architecture). The pool of nodes is formed by one or several

node aggregators. Each aggregator (also named node source)

is in charge of nodes acquisition, deployment and monitoring

from a dedicated infrastructure in line with this infrastructure

usage policies. As an example, by using the Amazon EC2 de-

ployment extension (presented in section III-A1), management

of Amazon EC2 instances is achieved: this includes the on-

demand creation of instances and deployment of applications

over these instances. Aggregators rely on some predefined

GCMDs descriptors, defined by the administrator in charge

of the ProActive resource manager, and not by end-users that

just wish to run an application on the infrastructure.

ProActive/GCM deployment framework has already been

proved to be useful for deploying and then launch ProActive-

based applications in Cloud platforms. In particular, [7]

describes ProActive-based applications which are ProActive

active object based implementations of the NAS benchmarks

we discussed in section II. Besides, performances of the NAS

benchmarks programmed along the ProActive active object

model are close and, in some cases, better compared to

those obtained by the corresponding Fortran-MPI version we

evaluated in II.

In this paper, we address mechanisms to allow seamless

multi-domain Grid/Cloud computing. Deployment plays an

important role in this context, but communication mechanisms

we present in next subsections are equally important.

B. Multi-protocol ProActive Communication

As already mentioned in the section III-A, ProActive de-

ployment includes the definition of the point-to-point commu-

nication protocols, which are to be used to transport messages

among application processes through their corresponding host-

ing ProActive runtime. Currently, the supported communica-

tion protocols are: Java RMI, HTTP, SSH tunneling for RMI

(also called RMISSH), HTTP and SOAP.

The basic principle of the ProActive communication mech-

anism is that ProActive Runtime references hold the infor-

mation about the supported communication protocol. This

makes possible for the ProActive middleware to be agnos-

tic in relation to the communication protocols, i.e. it can

seamlessly perform communications between every pair of

ProActive nodes, despite of the need of relying on different

communication protocols and message forwarding. The multi-

protocol communication, in this context, also means multi-hop

communications which might depend upon multiple protocols

to apply from the origin to the destination, as explained in

more details in the next subsection.

C. Multi-domain Communication: Message Forwarding and

Tunneling

Connecting computing resources gained from more than one

administrative domain raises connectivity problems: resources

are generally not directly accessible and do not possess a pub-

lic IP address. Main connectivity problems include firewalls,

NAT-based addressing and multihoming.

ProActive middleware includes a built-in communication

protocol called ProActive Message Routing (PAMR), that

enables message routing and forwarding. This communication

protocol is very versatile, but requires a single communication

routing node accessible by all nodes of the application. Be-

sides of network restrictions, having a single forwarding node

would certainly generate bottlenecks in highly-communicating

applications composed by a large number of nodes.

For this reason, we decided to introduce a lightweight

solution based on SSH tunneling and forwarding to address

network restrictions like firewalls and NAT. This solution

provides a seamless integration of forwarding and tunneling,
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and it is managed at the application level (i.e. no need of

privileged user account to configure routing at the OS and

network levels).

Figure 5 shows a scenario where a single application runs

over a set of nodes distributed in Amazon EC2 Cloud and

Grid50002. In this scenario, all the nodes located in Amazon

EC2 Cloud offer inbound and outbound communication, but

nodes located on Grid5000 are isolated from the external

network. However ProActive extension for multi-domain com-

munication enables the usage of these resources as if every

node would be accessible by every other node by forwarding

incoming and outgoing messages through the use of the

adequately configured Grid5000 gateway.

EC2 computing

 instances

Grid5000

gateway

Computing 

nodes

INTERNET

Firewall
Grid5000Amazon EC2

RMISSH / HTTP / SOAP

Communications

RMI Communications

Fig. 5. Tunneling and forwarding communications on an heterogeneous
Cloud-Grid environment

In a more protected environment, nodes might be also

isolated in both sides. The tunneling/forwarding mechanism

can be configured to act as a double forwarding process

to handle such a situation, only requiring the modification

of the configuration file associated to ProActive Runtimes

configuration files.

In any case, an application remains unchanged and its

execution in different distributed resources settings only re-

quires the modification of the configuration file associated

to each ProActive Runtime to be deployed on the specific

node acting as entry and outgoing point of each involved

domain. Moreover, a ProActive user has the capability to

himself populate those files with such user/application level

specific needs.

IV. DISCOGRID: COUPLING LEGACY SPMD

APPLICATIONS IN GRID/CLOUD PLATFORMS

Features presented in previous sections solve most of the

issues related to high performance Grid/Cloud computing in

a separated manner. By integrating these features in Java

ProActive applications, users are capable of developing dis-

tributed applications for multi-domain (e.g. Grid/Cloud) plat-

forms. However, depending on applications characteristics,

other issues that may impact applications performance must be

treated like heterogeneity of resources, heterogeneous network

performance (latency and lower bandwidth).

Keeping performance of highly communicating legacy

SPMD applications in multi-domain environments is a chal-

lenging task. Besides the solution of basic deployment and

communication issues, these applications are very sensitive to

heterogeneity in resources (i.e. performance of machines and

network). Even if it would be possible to treat these issues

2Grid5000 is a national French Grid of 5000 cores, in 9 sites

directly in application business code, this would increase the

complexity of applications and the solution to these issues

would be hardly reusable.
In this section, we present a GCM component-based frame-

work developed in the context of the DiscoGrid project. This

framework put together most of the features presented in

section III and support coupling of domain-decomposition

legacy Fortran C/C++ applications in heterogeneous multi-

domain platforms through a new paradigm called hierarchical

SPMD (HSPMD).

A. General Approach

Heterogeneity in network and resources is a challenging

issue for domain decomposition based scientific applications.

The main reason comes from the fact that these applications

rely upon a bulk synchronous iterative approach, where appli-

cations loop at the pace of the slowest process. The hierar-

chical network topology and computing power heterogeneity

must, therefore, be considered in the mesh partitioning and

communication process.
The traditional way of designing domain decomposition

based applications is to adopt an SPMD technique combin-

ing mesh partitioning and the message passing programming

model. This approach was extended in the context of the

DiscoGrid project with the hierarchical SPMD (HSPMD)

paradigm and a topology-aware partitioning mechanism.

HSPMD [8] is an evolution of the traditional flat SPMD

parallel programming. It consists in assigning hierarchical

identifiers to processes and treating collective communications

in a topology-aware manner. The implementation we propose

consists in intuitive extensions of the MPI API.
Partitioning is also important to improve load balancing

and the communication process. The multi-level partitioner is

capable of taking into account resources characteristics (CPU

power, amount of memory) and topology to partition a global

mesh so that each process presents an equivalent processing

time, yet minimizing the amount of communication through

slower links [8].

B. Automated Multi-domain Deployment

Deployment using ProActive/GCM in multi-domain envi-

ronments requires a knowledge of resources configuration

and the ProActive/GCM deployment framework. The frame-

work we propose includes an automated deployment mech-

anism (based on the ProActive Deployment presented in

section III-A), which simplifies the deployment task.
The automated deployment mechanism consists of a set of

scripts that allows users to reserve resources from multiple do-

mains, generate automatically ProActive deployment descrip-

tors and then use the acquired resources. The configuration

of deployment also encompasses the configuration of multi-

protocol communication, forwarding and communication tun-

neling, once acquired resources are known.

C. Hierarchically Organized Applications and Communica-

tion

The GCM/ProActive-based framework that supports the

DiscoGrid framework is a modular infrastructure composed
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accordingly to the resources hierarchy. It gives the applications

a view of a unique global computing infrastructure, despite of

the localization and access restrictions of resources. In prac-

tice, a DiscoGrid application is composed by independent MPI

applications, each of them running in a different administrative

domain (as shown in Figure 6).

The framework we propose connects independent appli-

cations and offers communication channels to processes of

independent applications. Multi-domain resources present at

least two logical levels: in the first level, the applications

running on physical (or virtual in case of Clouds) nodes , and

in the second level, components that route messages between

the different domains. The framework also offer the possibility

of including more levels, which would allow the representation

(and connection) of more complex multi-domain environ-

ments, e.g. connecting private resources organized in multiple

sites and an already configured multi-domain composed by

Grid and Cloud resources.

Figure 6 shows an example of a two-level component-based

overlay created by the DiscoGrid framework leveraging to

Cloud and Grid resources. On the left, we have a standalone

MPI application running on a Cloud (e.g. a set of Amazon EC2

instances) and on the right another standalone MPI application

running over a multi-cluster based Grid (e.g. the Grid5000).

Each of the MPI processes is wrapped by a GCM wrapper

component which is connected to the encapsulating component

named router component, which represents the next level up

in the infrastructure. Due to the hierarchical composition and

the routing interfaces associated to higher levels, all the nodes

are logically connected, even if indirectly, to every other in the

multi-domain and, consequently, independent MPI executions

are coupled to form a single parallel application along the

HSPMD concept.

Router 1Router 0

MPI MPI

MPI

MPI

MPI

Routing Interface

Primitive Wrapper

 Component
Router Component Binding Between Components

Direct Binding

Fig. 6. Typical GCM/ProActive-Based Multi-domain Runtime Support for
HPC

Collective communications, as required by the HSPMD

API, take profit of the topology to be staged and parallelized.

Whenever possible (e.g. no firewalls to cross) for optimizations

purposes, the GCM component model allows us to create on-

demand direct bindings to perform point-to-point communi-

cations, thus bypassing the component hierarchy, e.g. dashed

line on Figure 6 directly connects processes of the different

domains.

D. Performance Evaluation

In this section, we compare the performance of the

component-based framework supporting the HSPMD model in

three scenarios: a multi-cluster Grid (Grid5000), the Amazon

EC2 Cloud and a multi-domain environment which integrates

resources from both platforms. The comparison is based on a

non-trivial simulation of electromagnetic wave propagation in

three-space dimensions.

Table II presents resources used in these experiments.

Grid5000 Cluster (Grelon)

Processors 2 Intel Xeon 5110 (1.6GHz/64b)

Memory 2 GB

I/O Perfor. Gigabit Ethernet

Small High-CPU XLarge

EC2 Units 1 /32-bits 20 (8*2.5) / 64b

Memory 1.7 GB 7 GB

I/O Perfor. Moderate High

TABLE II
GRID/CLOUD RESOURCES

This simulation is based on a finite element method working

on arbitrarily unstructured tetrahedral meshes for solving a

system of Maxwell equations. From the computational point of

view, the execution is characterized by two types of operations:

purely local operations on tetrahedra for computing integral

values and a calculation involving neighbor subdomains which

involves a gather-compute-scatter sequence. Formulations are

described in more details in [9].
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Fig. 7. Performance over Grid5000, Amazon EC2 and resource mix

Figure 7 presents the overall execution times and MFlops/s

obtained in the different scenarios. The application being

network and CPU intensive, both CPU and network affect
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the overall performance. In average, exclusive use of small

Amazon EC2 instances presents a performance four times

smaller than the one using standard cluster of Grid5000. While

Extra Large instances present a CPU performance close to

the performance of Grid5000 machines and a slower network

interconnection, the resulting application performance using

only this kind of node is comparable to the pure Grid5000’

one. A mix of Grid5000 resources and Small Amazon EC2

does not perform well, compared to single-site execution

over Grid5000, because of the heterogeneous network and

load unbalances, even with the usage of the load-balancing

partitioner. Adding to Grid5000 resources some Extra Large

EC2 instances is the most effective configuration because

presenting, in average, only 15% of overhead for such inter-

domain execution compared to the average of the best single

domain ones. This overhead is mainly due to high-latency

communication and message tunneling.

From a cost-performance tradeoff point of view, the usage

of Small EC2 instances provides a better MFlops/s per dollar

spent ratio, but the overall execution time is much bigger

than the one obtained using Extra Large instances for instance

which might not be acceptable for certain applications. Previ-

ous performance evaluations of Amazon EC2 [3] showed that

MFlops/sec obtained per dollar spent decrease exponentially

with increasing the number of computing cores and corre-

spondingly, the cost for solving a linear system increases ex-

ponentially with the problem size. As summarized by Figure 8,

our results point in the same direction. Figure 8 also shows

that regarding our benchmarked application, when mixing

resources, costs associated to Cloud usage lessen, compared

to a situation using only Cloud nodes. This general remark is

obvious at first glance because in-house resources are assumed

to be available for free for an end-user3, however this can root

some finer analysis of the mixture configurations and so justify

mixture decisions. For example, average node performance per

dollar spent is increased due to the good performance level

of the nodes subset acquired from Grid5000 despite of the

associated overhead due to inter-domain communications. For

such kind of reasons, we believe the mixture of resources to

be relevant in practice, since a trade-off between performance

and cost can be reached, considering budget, performance

requirements and available amount of in-house resources.

V. RELATED WORK

A large number of related works in Grid/Cloud computing

exists, depending on the issue that is addressed. In next para-

graphs we present a summary of some of them, classified in

three main categories: multi-domain communication solutions,

middlewares for hybrid Grid/Cloud computing and Grid/Cloud

programming frameworks.

a) Multi-domain communication solutions: The main

existing solutions to handle multi-domain communications are

either based on Virtual Private Networks (VPNs) or overlay

networks. On one side, VPNs have been one of the main

3machines buying, their housing costs plus system administrator(s)
salaries can not be avoided but are not charged to end-users in general
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solutions to connect resources in multiple administrative do-

mains as they are easy to use, giving the impression that

resources pertain to a single local network and secure the

communications (i.e. providing authentication and messages

encryption), e.g. Amazon VPC [10] allows the extension of

private resources with Amazon EC2 ones. On the other side,

overlay networks provide a communication support that can be

customized with resources usage policies and deployed at ap-

plication level, e.g. SmartSockets [11] offers an efficient Java

socket library, capable to automatically discover connectivity

problems and solve them through different connection setup

mechanisms. Our solution to handle multi-domain communi-

cations is an overlay network that is deployed at the application

level and it can be easily adapted to complex heterogeneous

resources configuration.

b) Middleware for Hybrid Grid/Cloud Computing: A

large number of middlewares for hybrid Grid/Cloud Comput-

ing propose solutions to manage Grid/Cloud resources, e.g.

OpenNebula Toolkit [12] is an open source virtual infrastruc-

ture engine that allows a dynamic deployment and realloca-

tion of virtual machines by leveraging existing virtualization

platforms. RightScale [13] offers a set of tools that ease the

deployment, management and monitoring of Cloud instances

despite of the underlying Cloud providers. Nimbus [14],

originated from the Globus Grid middleware, includes a set

of open source tools that together provide an Infrastructure-

as-a-Service (IaaS) Cloud computing solution to turn private

resources into a Cloud. CometCloud [15] implements auto-

nomic computing engine based in workflow scheduling over

Grid and Cloud environments. ProActive integrates an abstract

deployment model which can be completely customized by

users and integrated on applications. The ProActive Resource

Manager also can be integrated on the applications to manage

dynamically resources not only from Clouds but also from

any private resources. By using tunneling and forwarding

mechanisms, the Resource Manager can also be easily used in

multi-domain environments. To our knowledge this integration

of application development and resource management is not

yet available in other Cloud resource managers.

c) Hybrid Grid/Cloud Programming Frameworks: Some

middlewares for distributed computing also provide program-

ming libraries with an associated programming model, e.g.

Grid-aware implementations of the MPI standard: MPICH-
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G2 [16] and GridMPI [17] offer mechanisms to deploy MPI

applications in multi-domain environments with optimizations

in collective communications but they are exclusively ded-

icated to MPI applications, and require connectivity among

resources. GridGain middleware [18] allows the deployment

of applications on both public or private Clouds, applications

developed along a map/reduce programming model, through

deamons installed on Grid/Cloud nodes. ProActive approach

for multi-domain computing consists in offering solutions

to such computing platforms main issues, and allows the

integration of these solution into applications, without the need

of software installation or a platform running beforehand. The

DiscoGrid framework goes further than basic solution of multi-

domain issues, by proposing a new paradigm based in SPMD

and supporting the coupling of legacy applications.

VI. CONCLUSION

In this paper, we have advocated two main ideas: that

hybrid cluster/Grid/Cloud platforms may provide a better cost-

performance trade-off than pure Cloud platforms and that

the Grid middlewares improved with adequate extensions can

provide basic elements to HPC applications willing to use

these multi-domain hybrid platforms.

HPC benchmarks performed in the Amazon EC2 Cloud

showed that, effectively, performance of Cloud resources is

generally lower than the performance private resources can

offer. This fact, added to the fact that HPC users already have

private resources, motivated the development of extensions

in the ProActive middleware to support the deployment and

efficient execution of applications in Cloud platforms and

in hybrid environments composed by private clusters, Grid

nodes and public Clouds. Main mechanisms integrated into

ProActive include extensions to the ProActive abstract de-

ployment model to support the deployment of EC2 instances,

the support to multi-protocol communication in multi-domain

environments, including tunneling and forwarding techniques

to handle firewalls and NAT traversal.

While we believe these mechanisms should be enough to

develop basic multi-domain ProActive applications, we also

believe that these simple solutions to multi-domain issues

may not be enough to run more complex tightly-coupled

applications, like legacy SPMD applications. Therefore, we

introduced a framework, developed in the context of the

DiscoGrid project which offers support to automated deploy-

ment, point-to-point and collective communication in multi-

domain platforms

The implementation of such versatile and complex frame-

work has shown that the mechanisms introduced in ProActive

are powerful enough to build a modular Grid/Cloud frame-

work to support complex scientific domain-decomposition

applications. Since no modifications at application codes are

necessary to port applications between different platforms,

these mechanisms can also be considered to smoothly allow

to migrate, even partly, applications from clusters and Grids

to Clouds.

Performance results obtained with the DiscoGrid frame-

work (and, by extension, of ProActive for mixed Grid/Cloud

computing) showed that, although the Cloud performance is

slightly lower than the dedicated cluster for computational

intensive codes, this performance can be improved by the

addition of private resources. The empirical overhead of using

a hybrid platform for the execution of a specific non-trivial

HPC application was around 15%, which is a non-negligible

value, but lower enough to consider using such environments

in production and obtain more processing power, yet reducing

costs compared to the pure usage of Cloud platforms.
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