-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Uncertainty Quantification for
Eigenvalue-Realization-Algorithm, A Class of Subspace
System Identification

Xuan-Binh Lam, Laurent Mevel

» To cite this version:

Xuan-Binh Lam, Laurent Mevel. Uncertainty Quantification for Eigenvalue-Realization-Algorithm,
A Class of Subspace System Identification. [Research Report] RR-7462, INRIA. 2010, pp.16. inria-

00538941
HAL Id: inria-00538941
https://hal.inria.fr /inria-00538941
Submitted on 3 Mar 2011
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50037861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00538941
https://hal.archives-ouvertes.fr

%I 1IN RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Uncertainty Quantification for
Eigensystem-Realization-Algorithm,
A Class of Subspace System Identification

Xuan-Binh Lam — Laurent Mevel

N° 7462

Novembre 2010

Stochastic Methods and Models

apport
de recherche

ISRN INRIA/RR--7462--FR+ENG

ISSN 0249-6399







INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;‘(I N RIA RENNES - BRETAGNE ATLANTIQUE

ET EN AUTOMATIQUE

Uncertainty Quantification for
Eigensystem-Realization- Algorithm,
A Class of Subspace System Identification

Xuan-Binh Lamf] Laurent Mevel

Theme : Stochastic Methods and Models
Applied Mathematics, Computation and Simulation
Equipe 14S

Rapport de recherche n® 7462 — Novembre 2010 — [16] pages

Abstract: In Operational Modal Analysis, the modal parameters (natural fre-
quencies, damping ratios and mode shapes), obtained from Stochastic System
Identification of structures, are subject to statistical uncertainty from ambient
vibration measurements. It is hence necessary to evaluate the confidence in-
tervals of these obtained results. This paper will propose an algorithm that
can efficiently estimate the uncertainty on modal parameters obtained from the
Eigensystem-Realization-Algorithm (ERA).

Key-words: Operational Modal Analysis, Stochastic System Identification,
Error Quantification, Mechanical and Aerospace

This work was supported by the European project FP7-NMP CPIP 213968-2 IRIS.

* INRIA, Centre Rennes - Bretagne Atlantique
T INRIA, Centre Rennes - Bretagne Atlantique

Centre de recherche INRIA Rennes — Bretagne Atlantique

IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex
Téléphone : +33 2 99 84 71 00 — Télécopie : +33 299 84 71 71



Calculs d’incertitude pour la méthode
d’identification ERA

Résumé : En Analyse modale, les paramétres modaux (fréquences, amortissements
et déformeées), obtenus & partir des methodes stochastiques sont sujet a des
erreurs d’incertitude. Il est nécessaire d’évaluer les intervalles de confiance
correspondants. Ce calcul est fait pour une classe d’algorithmes sous espaces
appelés ERA (Eigensystem-Realization-Algorithm).

Mots-clés : Analyse modale, identification des systémes stochastiques, calcul
d’incertitudes, mécanique et aerospatiale
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1 Introduction

The design and maintenance of mechanical structures subject to noise and vi-
brations is an important topic in mechanical engineering. It is an important
component of comfort (cars and buildings) and contributes signicantly to the
safety related aspects of design and maintenance (aircrafts, aerospace vehicles
and payloads, civil structures). Requirements from these application areas are
numerous and demanding. Laboratory and in-operation tests are performed on
the prototype structure, in order to get so-called modal models, i.e., to extract
the modes and damping factors (these correspond to system poles), the mode
shapes (corresponding eigenvectors), and loads. These results are used for up-
dating the design model for a better fit to data, and sometimes for certification
purposes (e.g., in flight domain opening for new aircrafts).

The estimation of modal parameters of structures can easily be carried out
by using Stochastic System Identification methods on sensor measurements. [3]
proved that the Instrumental Variable method and what was called the Balanced
Realization method for linear eigenstructure identification are consistent in a
nonstationary context. From that on, the family of subspace algorithms has
been extensively studied (see in [9, 14]) and has expanded rapidly. There are
a number of convergence studies on subspace methods in the literature (see
[6, 2, [T, B]) to mention just a few of them. These papers provide deep and
technically difficult results including convergence rates. Our objective is to
derive simple formula for such sensitivities. Sensitivities for the algorithms
considered in this paper, ERA, are not addressed by those papers.

The uncertainty on modal parameters appears for many reasons, e.g. finite
number of data samples, undefined measurement noises, nonstationary exci-
tations, nonlinear structure, model order reduction,..., then the system iden-
tification algorithms do not yield the exact system matrices. Practically, the
statistical uncertainty of the obtained modal parameters at a chosen system
order can be computed from the uncertainty of the system matrices, which de-
pends on the covariance of the corresponding subspace matrix. Not knowing
the model order yields to use empirical multi-order procedure such as the sta-
bilization diagram ([I0]), where modes of the system are assumed to stabilize
when the model order increases.

In [12], it has been shown how confidence intervals of modal parameters can
be determined from the covariances of the system matrices and the covariances
of subspace matrices. The current paper will expand on this and compare sen-
sitivities for two output-only system identification methods, namely output-only
Stochastic Subspace Identification (SST) and Eigensystem-Realization-Algorithm
(ERA) System Identification. Subspace identification is based on the compu-
tation of one subspace matrix from the correlation tail. Unlike subspace algo-
rithm, ERA computes the system matrices using the information of both (k)-
and (k+1)-lag of shifted correlation tails.

In this paper, following the lines of (J[12]), an algorithm will be developed for
estimating the confidence intervals in ERA system identification. The uncer-
tainty on state transition matrix is derived, based on the uncertainties of (k)-
and (k+1)-lag subspace matrices.

A relevant industrial example is applied to ERA estimates. The efficiency
of these algorithms and lag effect are also taken into account. Comparison with
subspace algorithm estimates is also performed.

RR n°® 7462



Uncertainty quantification 4

2 Stochastic System Identification
2.1 The General SSI Algorithm

The discrete time model in state-space form is:

Xiy1 = AXp+ Vi (1)
Y., = CX,

with the state X € R", the output Y € R", the state transition matrix A € R™*"
and the observation matrix C € R"*"™. The state noise V is unmeasured and
assumed to be Gaussian, zero-mean, white.

Let r be the number of sensors, p and ¢ be chosen parameters with (p+1)r >
qr > n. From the output data, a matrix H,, 1, € RPHD7x" ig built according
to a chosen SSI algorithm, see e.g. [4] for an overview. The matrix H,41,, will
be called “subspace matrix” in the following, and the SSI algorithm is chosen
such that the corresponding subspace matrix enjoys (asymptotically for a large
number of samples) the factorization property

Hpt1,q = Op+1 Z, (2)

into the matrix of observability

CAP
and a matrix Z, depending on the selected SSI algorithm.
Let N be the number of available samples and Y, € R", {k € 1,..., N} the

vector containing the sensor data. Then, the “forward” and “backward” data
matrices

Youi Yy ... Yno,
y+ _ 1 Yq+2 )/q_;'_g N YN—p+1
p+1 N—p—gq : : : ’
L Yotpt1 Yoipy2 - Y
Y, Yy ... Ynopo
) Yooi Yy ... Yn_po
v, = ——— | N N (4)
! VN —-p—gq : A :
i Y . Yao,

are built. For the covariance-driven SSI (see also [3], [10]), the subspace matrix
Hz(ff‘f?q =V, " is built, which enjoys the factorization property @), where
Z, is the controllability matrix.
For simplicity, let p and ¢ be given, skip the subscripts of Hp41,4, Op+1 and
Z,. The eigenstructure of the system is retrieved from a given matrix H.
The observability matrix O is obtained from a thin Singular Value Decom-

position (SVD) of the matrix H and its truncation at the desired model order

RR n°® 7462



Uncertainty quantification 5

n:
H = UzvT

= [ UO][% E?O]VT’ (5)

0o = U’ (6)

Note that the singular values in ¥; € R?®*? must be non-zero and hence O is of

full column rank. The observation matrix C' is then found in the first block-row
of the observability matrix O. The state transition matrix A is obtained from
the shifting invariance property of O, namely as the least squares solution of

C CA
def cA def CA2
O1A = 0], where O = . , 0 = . . (7
CAr-1 CAP
The eigenstructure (A, ¢y ) results from
det(A — XI) =0, Apy = A, @r = Coy, (8)

where A ranges over the set of eigenvalues of A. From A, the natural frequency
and damping ratio are obtained, and () is the corresponding mode shape.
There are many papers on the used identification techniques. A complete
description can be found in [3], [14], [I0], [4], and the related references. A proof
of non-stationary consistency of these subspace methods can be found in [4].

2.2 ERA (Eigensystem-Realization-Algorithm)

Another variant of realization algorithm based on the computation of the sub-
space matrices is called ERA (Eigensystem-Realization-Algorithm) (see in [8]).
It is based on the general remark that one can compute the subspace matrix H
not using the first lags of the correlation tail. Defining H*) as

Rk+1 Rk+2 - Rk+q
R R ... R

'H(k) _ : k+2 : k+3 . - k+q+1 ’ (9)
Rk+p+1 e e Rk+p+q

in which the correlations are related to the factorization
R, YE (viy, V) =cala (10)
with the cross-covariance between the state and the observed outputs G =
E [X; V7).
Then, a Singular Value Decomposition is performed on H®*) as

k 21 0 VT
H® = U, Uy ][ 0 % V(I)T (11)
The state transition matrix will be defined as
a = (of)nn (2), (12)

RR n°® 7462



Uncertainty quantification 6

where T means Moore-Penrose pseudo-inverse, and

of = (z)*uT, (13)

(NI

zZl = Wi(3h)” (14)

If the correlations are computed from cross spectra, the method is called
NEXT-ERA; but without loss of generality, it is just assumed that the corre-
lations are computed from time samples. The dimensions of A relates to the
dimensions of Uy, Y1, V;. And as such, a stabilization diagram is obtained by
performing the computation of A for multiple model orders and keeping as stable
poles the modes which repeat over multiple model orders.

3 Confidence intervals

3.1 Descriptions of SSI Confidence Intervals algorithm

The statistical uncertainty of the obtained modal parameters at a chosen system
order can be computed from the uncertainty of the system matrices, which
depends on the covariance of the corresponding subspace matrix H. The latter
can be evaluated by cutting the sensor data into blocks on which instances of
the subspace matrix are computed. So, this offers a possibility to compute the
confidence intervals of the modal parameters at a certain system order without
repeating the system identification. In [12], this algorithm was described in
detail for the covariance-driven SSI. The uncertainty AA and AC of the system
matrices A and C are connected to the uncertainty of the subspace matrix
through a Jacobian matrix

vecAA
vecAC

] = Ja,c vecAH, (15)

where vec is the vectorization operator. Then, the uncertainty of the modal
parameters (natural frequency f, damping ratio d and mode shape ¢) is derived
from

vecAA vecAA
Afu ="y, [ vecAC } » Ady =g, { vecAC ] ’ (16)
and
vecAA
Adu=Jo, [ vecAC } ’ (17)

The Jacobians Jy,, Jg, and Jy, are computed for each mode . Finally, the
covariances of the modal parameters are obtained as

cov(fu) =J5, Jac cov(vec H) T} o Jﬁ
cov(d,) =Ja, Jac cov(vec H) J} o JdT“

cov(py) = Jp, Jac cov(vec H) Jj o Jgu (18)

RR n°® 7462



Uncertainty quantification 7

where cov(vecH) is the covariance of the vectorized subspace matrix. After
retrieving the uncertainties on the system matrices A and C, the calculation of
the uncertainties on the frequency and damping is straightforward. However,
for the mode shape, there is an issue of normalization as each one is defined up
to an unknown constant. This was addressed in [7].

3.2 Derivation of ERA Confidence Intervals

In this section, for ERA, it is investigated how the covariances of modal param-
eters can be derived from the covariance of subspace matrices taking care of the
uncertainties of observability, controllability and system matrices.

Firstly, the uncertainty on the system matrix A is a function of the sensitiv-
ities of H*+1, OF and Z:

AA:A[

+ (o) nna(z2])]. (19)
The uncertainty on the vectorized system matrix A is rewritten as
veeAA = ((2]"HT) @ 1y) vee (A (0]))
+ (2" © 0f) vecan D
+ (Id ® (OIH(’““))) vec (A (Z{)) , (20)

where 1; is identity matrix with dimension d. ® is the Kronecker product.
The uncertainty of H**1 can simply be estimated by cutting the signals.

The uncertainty on the pseudo-inverse of observability O; can be defined
directly from the singular values and singular vectors by

A (0{)

A (z;%UlT)

NOR LR RN

1__3 _1
—5%1 7 (A%) U +S72A(U7) (21)
The uncertainty of OI is now vectorized as

vee (8 (0})) (U1 ® <_;zl—§ ) vecAY,

+ (T 05 F) vee (4 (07))

1__3
(Ul ® (—221 : ) vecAYq

+ (I(erl)T ®%, ) Py, vecAU, (22)

| |
N

Nl

RR n°® 7462



Uncertainty quantification 8

where Py, is a matrix that can permutate vecAU; to vec (A (UY)).
Similarly, the uncertainty on the pseudo-inverse of controllability Z; can be
descibed as

a(zl) = a (Vlzl‘%)
= (an)sF+na(sr?)
— (AV)S 41 (;) STEAY, (23)
and reconstructing it in vectorized form leads to
vec (A (ZI)) = (El_% ® Iqr> vecAV;
+ (Id ® (—;Vlz;g» VecAY . (24)

The sensitivity of the left singular vectors can be related to the uncertainty
of subspace matrix H*) (see in [11])

By
vecAU, = Lig vecAH™) (25)
Bicy
with a selection matrix defined by
L = la® [ Tpryr  Optyrxgr ] (26)
and
)
I( +1)r 7Ho-v
Bi=| gy 7| (27)
- oj qr
1 [ ol @ T pinyr —ujul)
C. = J p+1)r ] , 28
T [ (u @ (Igr — vj0] )P (28)
(p+D)r gr ) .
Po= 3 D BT e BT (20)
ki=1 ky=1
where o, is the eigenvalue at system order j {j € 1,...,d}, u; (resp. v;) is
column number j of U (resp. V). E,(fl’:;)”qr is a (p + 1)r x ¢r matrix whose
element is 1 at position (k1, k2) and zero elsewhere.
The sensitivity of eigenvalues is addressed as (see in [I1])
(v1 @up)T
vec(AX)) = Ssq vecAH"®, (30)
(va ® ug)”

RR n°® 7462



Uncertainty quantification 9

in which S34 is a selection matrix

d
d?xd
Ss¢ = D Bl ares (31)
s=1

The sensitivity of right eigenvectors (see in [II]) is then specified by

Bicy
vecAV, = Log vecAH®) (32)
BliC,
with selection matrix
Lyg = 1a® [ Ogrxprnyr  Ior |- (33)

Especially, vecAH*) can be simplified by making use of a block-storing
matrix M *)

vecAH® = Sik)vecAM(k) (34)
where
Ry
Ry
M® = . (35)
Rptqvk
e
s¢ = o (36)
Lost,
sk — [0 I 10
bt [ Owrvyrx—1ttyr Loty Owinyrxta—oyr ]
(37)

Finally, the uncertainty of system matrix A can be shown in vectorization
form

veeAA = Ju veeAM®), (38)
in which J4 is a Jacobian matrix
(1 ®@up)"
Ja = N : S
(va @ uq)”
Bicy
R O I
BlCy
+ (2l 2 0f) sV (39)

RR n°® 7462



Uncertainty quantification 10
with the matrices
T 1_-3
N, = ((zj H<’f+1>T) ®Id) <U1 ® (—221 )) S
1 _3
+ (Id ® (OIH(’””)) (Id ® <2V121 >) Ssd,
(40)
T T _1
Ny = (2l HE) @ 1) (Ipsn, ©507) Py Lua
1
+ (1@ (0H*)) (7% @ Iy ) Laa.
(41)
Likewise, the uncertainty of the vectorized system matrix C is
vecAC = Jo vecAM® (42)
with Jacobian matrix
Jo = (Ia®Sc)(Ba+Ca) 55", (43)
where
Sc = [ I, Orxpr ]7 (44)
) (01 @up)”
L B B
(va ® ua)”
Bicy
1
Co = (Bf@Ipine)Lua| (46)
BlC,
Finally, the uncertainty of system matrices can be joined together
vecAA _ Ja (k)
{ vecAC } o [ Jo }vecAM
= Jac veeAM® (47)
Then, the covariances of the modal parameters are obtained as
cov(fu) =Js, Jac cov(vec M*) Jac Jﬁ
cov(d,) = Ja, Ja,c cov(vec M) JZ;C Jg;
cov(dy) =Jy, Ja,c cov(vec M*) Jac Jgu (48)

RR n°® 7462
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4 Numerical Examples

The S101 bridge ([13]) connected Salzburg - Vienna carriage way in Austria.
That is a post-tensioned concrete bridge with main span of 32 m, side spans
of 12 m, and the width of 6.6 m. The deck is continuous over the piers. This
bridge, contructed in 1960, has been a typical overpass bridge in Austria national
highway. In the current paper, the ambient vibration data is collected on 15
sensors. The original sampling frequency is 500 Hz with 165000 time samples
available. The data is decimated to 35.7 Hz and only five modes are taken into
account.

Figure 1: S101 bridge in Reibersdorf, Austria

4.1 Modal analysis

For the output-only modal analysis of the ambient vibration data of the S101
bridge, similar parameters for both subspace algorithm and ERA are employed.
64 correlations (p + 1 = ¢ = 32) are used, leading to Hankel matrices with 32
block rows and columns. The resulting multi-order diagrams are presented in
Figure 2] and Figure

RR n°® 7462
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Figure 2: Stabilization diagram with subspace algorithm (natural frequency vs.

model order)
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Figure 3: Stabilization diagram with ERA (natural frequency vs. model order)

The summary of the frequencies and damping ratios of the five identified
modes is given in Table [I] and Table [2] for both subspace identification and
ERA. ERA-fl is the ERA which uses first-lag and second-lag subspace matrices,

ERA-sl is the ERA which utilizes second-lag and third-lag subspace matrices,

ERA-tl is the ERA which employs third-lag and fourth-lag subspace matrices.

The differences in the obtained frequencies between subspace identification

less than 0.5%, for all five modes. In the case of damping

ratios, the differences are bigger because of higher uncertainty in the estimation

and ERA are small,
of damping ratios.

RR n°® 7462
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Mode Frequency f (Hz)

Subspace | ERA-fl | ERA-sl | ERA-tl
4.039 4.038 4.037 4.037
6.282 6.283 6.284 6.283
9.682 9.684 9.683 9.684
13.284 13.283 | 13.290 | 13.307
15.721 15.720 | 15.763 | 15.630

U | W IN| -

Table 1: Identified frequencies with subspace algorithm and ERA

Mode Damping Ratio d (%)
Subspace | ERA-fl | ERA-s]l | ERA-t]
0.759 0.754 0.762 0.756
0.617 0.608 0.588 0.573
1.193 1.189 1.185 1.228
1.436 1.424 1.309 1.135
1.638 1.966 2.360 2.475

Y | W N

Table 2: Identified damping ratios with subspace algorithm and ERA

4.2 Confidence Intervals

For the computation of confidence intervals on modal parameters, 24 time lags,
leading to p+1 = ¢ = 12, and 40 model orders are utilized due to the limitation
in computer memory.

Mode Frequency confidence intervals (%)
Subspace | ERA-fl | ERA-s]l | ERA-t]
0.115 0.110 0.122 0.100
0.092 0.093 0.092 0.089
0.133 0.134 0.156 0.159
0.471 0.300 0.247 0.573
1.148 1.825 2.485 1.442

O | W N =

Table 3: Frequency confidence intervals with subspace algorithm and ERA

Mode | Damping-ratio confidence intervals (%)
Subspace | ERA-fl | ERA-sl | ERA-tl
17.791 17.819 | 17.757 | 16.352
19.383 19.239 | 20.401 19.900
16.845 13.302 11.332 11.960
28.919 15.012 | 56.777 | 65.019
60.522 70.800 | 161.749 | 130.691

O | W N =

Table 4: Damping-ratio confidence intervals with subspace algorithm and ERA

In Table [3| and Table [4, the confidence intervals of the natural frequencies
and damping ratios of the five modes are presented, respectively. Confidence

RR n°® 7462
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intervals of the frequencies are much smaller than those of damping ratios. This
is coherent with statistical theory, since the lower bound of the covariance given
by Fisher information matrix is smaller for the frequencies than for the damping
ratios. Besides, for this application, confidence bounds on modal parameters
of ERA are relatively similar as those obtained with the subspace algorithm.
While shifting the lags of ERA, the confidence interval fluctuations seem to be
stable, and the ERA-fl may supply the most comparable results to subspace
identification.

5 Conclusions

In this paper, the output-only system identification and confidence intervals on
modal parameters are derived and implemented for both subspace algorithm
and ERA. All the methods were successfully applied and tested on the ambient
vibration data of the S101 overpass bridge.

The subspace algorithm and ERA give comparable results. The quality of
stabilization diagrams as well as frequencies of subspace algorithm and ERA are
almost similar. The damping ratios are slightly different due to an expectedly
higher uncertainty on estimation.

The confidence intervals on modal parameters are also computed. It is ob-
served that the uncertainty for ERA is relatively similar with that associated to
subspace algorithm. When taking into account the lag effect for ERA, ERA-fl
seems to be the most reasonable selection for the designers dealing with ERA.

RR n°® 7462
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