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FRACTAL STRINGS AND MULTIFRACTAL ZETA
FUNCTIONS

MICHEL L. LAPIDUS, JACQUES LÉVY-VÉHEL
AND JOHN A. ROCK

Abstract. For a Borel measure on the unit interval and a se-
quence of scales that tend to zero, we define a one-parameter family
of zeta functions called multifractal zeta functions. The construc-
tion of this family is motivated by the continuous large deviation
spectra in multifractal analysis and the geometric zeta functions of
fractal strings. The parameter value ∞ recovers the geometric zeta
function of the complement of the support of a given measure. The
parameter value −∞ is shown to yield the topological zeta func-
tion of a fractal string, providing information on the structure of
a given string in addition to that provided by the geometric zeta
function. The multifractal zeta functions are the first of several
new notions of zeta functions which are now being used in the
analysis of fractal sets and measures.
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0. Introduction

For a measure and a sequence of scales, we define a family of multi-
fractal zeta functions parameterized by the extended real numbers and
investigate their properties. We restrict our view to results on frac-
tal strings, which are bounded open subsets of the real line. For a
given fractal string, we define a measure whose support is contained
in the boundary of the fractal string. This allows for the use of the
multifractal zeta functions in the investigation of the geometric and
topological properties of fractal strings. The current theory of geo-
metric zeta functions of fractal strings (see [26, 29]) provides a wealth
of information about the geometry and spectrum of these strings, but
the information is independent of the topological configuration of the
open intervals that comprise the strings. Under very mild conditions,
we show that the parameter α = ∞ yields the multifractal zeta func-
tion which precisely recovers the geometric zeta function of the fractal
string. Other parameter values are investigated and, in particular, for
certain measures and under further conditions, the parameter α = −∞
yields a multifractal zeta function whose properties depend heavily on
the topological configuration of the fractal string in question.

This paper is organized as follows:
Section 1 provides a brief review of fractal strings and geometric

zeta functions, along with a description of a few examples which will
be used throughout the paper, including the Cantor String. Work on
fractal strings can be found in [2, 10, 11, 17, 18, 19, 20, 24, 25] and work
on geometric zeta functions and complex dimensions can be found in
[26, 27, 28, 29].

Section 2 provides a brief review of two approaches to multifractal
analysis that can be found in [38]. One of these approaches lends itself
to the definition of the multifractal zeta functions. Other approaches
to multifractal analysis can be found in [1, 3, 4, 6, 7, 8, 12, 13, 14, 15,
16, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47].

Section 3 contains the definition of the main object of study, the
multifractal zeta function.

Section 4 contains a theorem describing the recovery of the geo-
metric zeta function of a fractal string for parameter value α = ∞.

Section 5 contains a theorem describing the topological configura-
tion of a fractal string for parameter value α = −∞ and the definition
of topological zeta function.

Section 6 investigates the properties of various multifractal zeta
functions for the Cantor String and a collection of fractal strings which
are closely related to the Cantor String.
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Figure 1. The lengths of the Cantor String.

Section 7 concludes the paper with a summary of results obtained
herein and a few words on other approaches to fractal analysis that
utilize zeta functions.

1. Fractal Strings and Geometric Zeta Functions

In this section we review the current results on fractal strings, geometric
zeta functions and complex dimensions (all of which we define below).
Results on fractal strings can be found in [2, 10, 11, 17, 18, 19, 20, 24, 25]
and results on geometric zeta functions and complex dimensions can
be found in [26, 27, 28, 29].

Definition 1.1. A fractal string Ω is a bounded open subset of the real
line.

Unlike [26, 29], it will be necessary to distinguish between a fractal
string Ω and its sequence of lengths L (with multiplicities). That is,
the sequence L = {`j}∞j=1 is the nonincreasing sequence of lengths of
the disjoint open intervals Ij = (aj, bj) where Ω = ∪∞j=1Ij. (Hence,
the intervals Ij are the connected components of Ω.)We will need to
consider the sequence of distinct lengths, denoted {ln}∞n=1, and their
multiplicities {mn}∞n=1. Two useful examples of fractal strings are the
a-String and the Cantor String, both of which can be found in [26, 29].
The lengths of the Cantor String appear in Figure 1.

Below we recall a generalization of Minkowski dimension called
complex dimensions which are used to study the properties of certain
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fractal subsets of R. For instance, the boundary of a fractal string Ω,
denoted ∂Ω, can be studied using complex dimensions.

Let us now describe some preliminary notions. We take Ω to be a
fractal string and L its associated sequence of lengths. The one-sided
volume of the tubular neighborhood of radius ε of ∂Ω is

V (ε) = λ({x ∈ Ω | dist(x, ∂Ω) < ε}),
where λ(·) = | · | denotes the Lebesgue measure. The Minkowski di-
mension of L is

D = DL := inf{α ≥ 0 | lim sup
ε→0+

V (ε)εα−1 < ∞}.

Note that we refer directly to the sequence L, not the boundary of Ω,
due to the translation invariance of the Minkowski dimension.

If limε→0+ V (ε)εα−1 exists and is positive and finite for some α, then
α = D and we say that L is Minkowski measurable. The Minkowski
content of L is then defined by M(D,L) := limε→0+ V (ε)εD−1.

The Minkowski dimension is also known as the box-counting dimen-
sion because, for a bounded subset F of Rd, it can also be expressed
in terms of

lim sup
ε→0+

Nε(F )

− log ε
,

where Nε(F ) is the smallest number of cubes with side length ε that
cover F . In [17], it is shown that if F = ∂Ω is the boundary of a
bounded open set Ω, then d − 1 ≤ dimH(F ) ≤ D ≤ d where d is the
dimension of the ambient space, dimH(F ) is the Hausdorff dimension
of F and D is the Minkowski dimension of F (with “1” replaced by “d”
in the above definition). In particular, in this paper, we have d = 1
and hence 0 ≤ dimH(F ) ≤ D ≤ 1.

The following equality describes an interesting relationship between
the Minkowski dimension of a fractal string Ω (really the Minkowski
dimension of ∂Ω) and the sum of each of its lengths with exponent
σ ∈ R. This was first observed in [18] using a key result of Besicovitch
and Taylor [2], and a direct proof can be found in [29], pp. 17–18:

D = DL = inf

{
σ ≥ 0 |

∞∑
j=1

`σ
j < ∞

}
.

We can consider DL to be the abscissa of convergence of the Dirichlet
series

∑∞
j=1 `s

j , where s ∈ C. This Dirichlet series is the geometric zeta
function of L and it is the function that we will generalize using notions
from multifractal analysis.
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Definition 1.2. The geometric zeta function of a fractal string Ω with
lengths L is

ζL(s) =
∞∑

j=1

`s
j =

∞∑
n=1

mnlsn,

where Re(s) > DL.

We may consider lengths `j = 0, in which case we use the convention
that 0s = 0 for all s ∈ C.

One can extend the notion of the dimension of a fractal string Ω
to complex values by considering the poles of ζL. In general, ζL may
not have an analytic continuation to all of C. So we consider regions
where ζL has a meromorphic extension and collect the poles in these
regions. Specifically, consider the screen S where

S = r(t) + it,

for some continuous function r : R → [−∞, DL] and consider the
window W which are the complex numbers to the right of the screen.
That is,

W = {s ∈ C | Re(s) ≥ r(Im(s))}.
Assume that ζL has a meromorphic extension to an open neighborhood
of W and there is no pole of ζL on S.

Definition 1.3. The set of complex dimensions of a fractal string Ω
with lengths L is

DL(W ) = {ω ∈ W | ζL has a pole at ω}.
The following is a result characterizing Minkowski measurability which
can be found in [26, 29].

Theorem 1.4. If a fractal string Ω with lengths L satisfies certain
mild conditions, the following are equivalent:

(1) D is the only complex dimension of Ω with real part DL, and it
is simple.

(2) ∂Ω is Minkowski measurable.

The above theorem applies to all self-similar strings, including the Can-
tor String discussed below.

Earlier, the following criterion was obtained in [24].

Theorem 1.5. Let Ω be an arbitrary fractal string with lengths L and
0 < D < 1. The following are equivalent:

(1) L := limj→∞ `j · j1/D exists in (0,∞).
(2) ∂Ω is Minkowski measurable.
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Figure 2. The first four distinct lengths, with multi-
plicities, of the Cantor String Ω1 and the fractal string
Ω2.

Remark 1.6. When one of the conditions of either theorem is satisfied,
the Minkowski content of L is given by

M(D,L) =
21−DLD

1−D
.

Further, under the conditions of Theorem 1.4, we also have

M(D,L) = res(ζL; D).

Example 1.7 (Cantor String). Let Ω1 be the Cantor String, defined
as the complement in [0, 1] of the ternary Cantor Set, so that ∂Ω1 is
the Cantor Set itself. (See Figure 2.) The distinct lengths are ln = 3−n

with multiplicities mn = 2n−1 for every n ≥ 1. Hence,

ζL(s) =
∞∑

n=1

mnlsn =
∞∑

n=1

2n−13−ns

=
3−s

1− 2 · 3−s
, for Re(s) >

log 2

log 3
.

Upon meromorphic continuation, we see that

ζL(s) =
3−s

1− 2 · 3−s
, for all s ∈ C,

and hence

DL =

{
log2 3 +

2imπ

log 3
| m ∈ Z

}
.

Note that DL = log2 3 is the Minkowski dimension, as well as the
Hausdorff dimension, of the Cantor Set ∂Ω1. From Theorem 1.4, it is
then immediate that the Cantor Set is not Minkowski measurable. The
latter fact can also be deduced from Theorem 1.5, as was first shown
in [24].

Example 1.8 (A String with the Lengths of the Cantor String).
Let Ω2 be the fractal string that has the the same lengths as the Cantor
String, but with the lengths arranged in non-increasing order from right
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to left. (See Figure 2.) This fractal string has the same geometric zeta
function as the Cantor String, and thus the same Minkowski dimension,
log3 2; however, the Hausdorff dimension of the boundary of Ω2 is zero,
whereas that of Ω1 is log3 2 (by the self-similarity of the Cantor Set,
see [8]). This follows immediately from the fact that the boundary is a
set of countably many points. The multifractal zeta functions defined
in Section 3 below will illustrate this difference and hence allow us to
distinguish between the fractal strings Ω1 and Ω2.

The following key result, which can be found in [26, 29], uses the
complex dimensions of a fractal string in a formula for the volume of
the inner ε-neighborhoods of a fractal string.

Theorem 1.9. Under mild hypotheses, the volume of the one-sided
tubular neighborhood of radius ε of the boundary of a fractal string Ω
(with lengths L) is given by the following explicit formula with error
term:

V (ε) =
∑

ω∈DL(W )∪{0}
res

(
ζL(s)(2ε)1−s

s(1− s)
; ω

)
+R(ε),

where the error term can be estimated by R(ε) = O(ε1−sup r) as ε → 0+.

Remark 1.10. In particular, in Theorem 1.9, if all the poles of ζL are
simple and 0 /∈ DL(W ), then

V (ε) =
∑

ω∈DL(W )

21−ω

ω(1− ω)
res(ζL, ω)ε1−ω +R(ε).

Remark 1.11. If L is a self-similar string (e.g., if its boundary is a
self-similar subset of R), then the conclusion of Theorem 1.9 holds with
R(ε) ≡ 0. This is the case, in particular, for the Cantor String Ω1 and
for Ω2 discussed in Examples 1.7 and 1.8.

2. Multifractal Analysis

The material in this section is from [38]. In some of the following
sections, we restrict our view to certain types of measures whose struc-
tures are motivated by the examples in this section and investigate the
way they vary with respect to the Lebesgue measure. This can be done
using several different notions of multifractal spectra, garnering a num-
ber of relationships between the different perspectives. We discuss here
just two of the tools used in [38], namely the large deviation spectrum
and one of the continuous large deviation spectra. The large deviation
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spectrum is a classical tool in multifractal analysis which yields statisti-
cal information about the structure of the singularities of a measure (or
a function). The continuous large deviation spectra are introduced to
help deal with some of the difficulties in computing the large deviation
spectrum. The construction of one of the continuous large deviation
spectra lends itself readily to the construction of a one-parameter fam-
ily of geometric zeta functions, which we define in the next section. For
now, let us discuss some of the basic instruments of this approach to
multifractal analysis. There is a variety of other approaches to multi-
fractal analysis, including those in [1, 3, 4, 6, 7, 8, 12, 13, 14, 15, 16,
30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45]. Other approaches
that use zeta functions can be found in [31, 32, 35, 47].

Let X([0, 1]) denote the space of closed subintervals of [0, 1].

Definition 2.1. The regularity A(U) of a Borel measure µ on U ∈
X([0,1]) is

A(U) =
log µ(U)

log |U | ,

where | · | = λ(·) is the Lebesgue measure on R.

Regularity A(U) is also known as the coarse Hölder exponent α which
satisfies

|U |α = µ(U).

We will consider regularity values α in the extended real numbers
[−∞,∞], where

α = ∞ = A(U) ⇔ µ(U) = 0 and |U | > 0,

and
α = −∞ = A(U) ⇔ µ(U) = ∞ and |U | > 0.

For α ∈ R, let Nα(ε, n) be the number of dyadic intervals of length
2−n which have regularity near α, that is |A(U)−α| ≤ ε for U a closed
subinterval of [0, 1].

Definition 2.2. The large deviation spectrum is

fg(α) = lim
ε→0+

(
lim sup

n→∞

log Nα(ε, n)

n log 2

)
,

with the convention that log Nα(ε, n)/n log 2 = −∞ if Nα(ε, n) = 0.

There are two drawbacks to fg; it depends on the choice of the interval
partition of [0, 1] and it uses two limiting operations, making its evalua-
tion difficult for a given set of data. The continuous spectra are defined
to help deal with these difficulties. The dependence on the choice of
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intervals is a general problem in multifractal analysis. Similarly, some
of the functions defined in the following sections depend on a chosen
sequence of scales that determine the lengths of certain intervals.

We need some more tools before defining the continuous spectrum
which is most pertinent to this paper. Let the collection of closed
intervals with length η ∈ (0, 1) and regularity α be denoted by Rη(α).
Namely,

Rη(α) = {U ∈ X([0, 1]) | |U | = η and A(U) = α}.
Consider the union of the sets in Rη(α),

⋃

Rη(α)

U :=
⋃

U∈Rη(α)

U.

Definition 2.3. The continuous large deviation spectrum is

f̃ c
g (α) = lim sup

η→0+

log (|⋃Rη(α) U |/η)

| log η|

= 1 + lim sup
η→0+

log |⋃Rη(α) U |
| log η| .

Note that Nα(ε, n) from the definition of fg is replaced by a number
and there is no longer any dependence on ε. In many applications, A is
continuous and Rη(α) is nonempty, making the definition of f̃ c

g viable.

Example 2.4 (A Simple Multifractal Measure). In [38], the fol-
lowing measure ν is presented as an example of a multifractal measure
which behaves differently when examined using different types of spec-
tra. A description of the precise spectra under which this measure
exhibits different behavior is beyond the scope of this paper. Nonethe-
less, this example is the motivation for the structure of the measures
examined throughout this work. Let

ν = λ +
∞∑

j=1

cjδj−1 ,

where λ is the Lebesgue measure on R and
∑∞

j=1 cj < ∞, with cj > 0
for all j ≥ 1.

The following result is taken from Proposition 7 in [38].

Proposition 2.5. If µ is a multinomial measure, then f̃ c
g = fg.

Analysis of multinomial measures using other families of zeta func-
tions, whose definitions were motivated in part by those defined in the
next section, has been done in [31, 32, 35, 47].
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3. Multifractal Zeta Functions

Given α ∈ [−∞,∞] and η ∈ (0, 1), let

Rη(α) =
⋃

Rη(α)

U,

where Rη(α) is defined as in Section 2. For a scale η > 0, Rη(α) is
a disjoint union of a finite number of intervals, each of which may be
open, closed or neither and are of length at least η when Rη(α) is non-
empty. We will consider only discrete sequences of scales N = {ηn}∞n=1,
with ηn > 0 for all n ≥ 1 and the sequence strictly decreasing to zero.
So for n ∈ N, let

Rηn(α) = Rn(α).

We have

Rn(α) =

rn(α)⋃
p=1

Rn
p (α),

where rn(α) is the number of connected components Rn
p (α) of Rn(α).

We denote the left and right endpoints of each interval Rn
p (α) by

an
R(α, p) and bn

R(α, p), respectively.
Given a sequence of positive real numbers N = {ηn}∞n=1 that tend

to zero and a Borel measure µ on [0,1], we wish to examine the way µ
changes with respect to a fixed regularity α between stages n− 1 and
n. Thus we consider the symmetric difference (ª) between Rn−1(α)
and Rn(α). Let J1(α) = R1(α), and for n ≥ 2, let

Jn(α) = Rn−1(α)ªRn(α).

For all n ∈ N, Jn(α) is also a disjoint union of intervals Jn
p (α), each of

which may be open, closed, or neither. We have

Jn(α) =

jn(α)⋃
p=1

Jn
p (α),

where jn(α) is the number of connected components Jn
p (α) of Jn(α).

The left and right endpoints of each interval Jn
p (α) are denoted by

an
J(α, p) and bn

J(α, p), respectively.
For a given regularity α ∈ [−∞,∞] and a measure µ, the sequence

N determines another sequence of lengths corresponding to the lengths
of the connected components of the Jn(α). That is, the Jn(α) describe
the way µ behaves between scales ηn−1 and ηn with respect to α. How-
ever, there is some redundancy with this set-up. Indeed, a particular
regularity value may occur at all scales below a certain fixed scale in
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the same location. The desire to eliminate this redundancy will be
clarified with some examples below. The next step is introduced to
carry out this elimination.

Let K1(α) = J1(α) = R1(α). For n ≥ 2, let Kn(α) be the union of
the subcollection of intervals in Jn(α) comprised of the intervals that
have left and right endpoints distinct from, respectively, the left and
right endpoints of the intervals in Rn−1(α). We have

Kn(α) =

kn(α)⋃
p=1

Kn
p (α) ⊂ Jn(α),

where kn(α) is the number of connected components Kn
p (α) of Kn(α).

That is, the Kn
p (α) are the Jn

p (α) such that an
J(α, p1) 6= an−1

R (α, p2) and

bn
J(α, p1) 6= bn−1

R (α, p2) for all p1 ∈ {1, ..., jn(α)} and p2 ∈ {1, ..., rn(α)}.
Collecting the lengths of the intervals Kn

p (α) allows one to define
a new geometric zeta function without specifying an open set. Let

Kµ
N (α) = {|Kn

p (α)| | n ∈ N, p ∈ {1, ..., kn(α)}}.
We now define a generalization of the geometric zeta function of a
fractal string by considering a family of geometric zeta functions pa-
rameterized by the regularity values of the measure µ.

Definition 3.1. The multifractal zeta function of a measure µ, se-
quence N and with associated regularity value α ∈ [−∞,∞] is

ζµ
N (α, s) =

∞∑
n=1

kn(α)∑
p=1

|Kn
p (α)|s,

for Re(s) large enough.

If we assume that, as a function of s ∈ C, ζµ
N (α, s) admits a mero-

morphic continuation to an open neighborhood of a window W , then
we may also consider the poles of these zeta functions, as in the case
of the complex dimensions of a fractal string (see Section 1).

Definition 3.2. For a measure µ, sequence N which tends to zero and
regularity value α, the set of complex dimensions with parameter α is
given by

Dµ
N (α,W ) = {ω ∈ W | ζµ

N (α, s) has a pole at ω}.
When W = C, we simply write Dµ

N (α).

The following sections consider two specific regularity values. In
Section 4, the value ∞ generates the geometric zeta function for the
complement of the support of the measure in question. In Section 5,
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Figure 3. Key for the construction of the lengths used
to define the multifractal zeta functions.

the value −∞ generates the topological zeta function which detects
some topological properties of fractal strings that are ignored by the
geometric zeta functions when certain measures are considered.

4. Regularity Value ∞ and Geometric Zeta Functions

The geometric zeta function is recovered as a special case of multi-
fractal zeta functions. Specifically, regularity value α = ∞ yields the
geometric zeta function of the complement of the support of a given
positive Borel measure µ on [0, 1].

To see how this is done, let Ec denote the complement of E in
[0, 1] and consider the fractal string (supp(µ))c = Ωµ whose lengths Lµ

are those of the disjoint intervals (aj, bj) where Ωµ = ∪∞j=1(aj, bj). Let
{`j}∞j=1 be the lengths of Lµ and let {ln}∞n=1 be the distinct lengths of
Lµ with multiplicities {mn}∞n=1.

The following technical lemma is used in the proof of the theorem
below which shows the recovery of the geometric zeta function as the
multifractal zeta function with regularity ∞. See Figures 3 and 4 for
an illustration of the construction of a multifractal zeta function with
regularity ∞ for a measure which is supported on the Cantor set.

Lemma 4.1. Suppose {x} = supp(µ) ∩ U for some U ∈ X([0, 1]).
Then

A(U) = ∞⇔ µ({x}) = 0.

Proof. µ({x}) 6= 0 ⇔ µ(U) > |U | ⇔ A(U) 6= ∞. ¤

The lemma helps deal with the subtle interactions between the
closed intervals U of size ηn and the support of µ, essentially allowing us
to prove a single case of the following theorem without loss of generality.
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[0,1]

String

K1

R1

J1

K4

R4

J4

K2

R2

J2

K3

R3

J3

Figure 4. Construction of the multifractal zeta function
ζµ
N (∞, s) as in the proof of Theorem 4.2.

Theorem 4.2. The multifractal zeta function of a positive Borel mea-
sure µ, any sequence N such that ηn ↘ 0 and regularity α = ∞ is the
geometric zeta function of (supp(µ))c. That is,

ζµ
N (∞, s) = ζLµ(s).

Proof. Recall the notation introduced at the beginning of Section 3.
For all n ∈ N,

U ∈ Rηn(∞) ⇔ A(U) =
log(µ(U))

log |U | = ∞ and |U | = ηn.

Therefore, ∀n ∈ N, U ∈ Rηn(∞) only if µ(U) = 0.
The setsRηn(∞) depend further upon whether any of the endpoints

of the intervals Ij = (aj, bj) which comprise Ωµ = (supp(µ))c contain
mass as singletons. If µ({aj}) 6= 0 and µ({bj}) 6= 0 for all j ∈ N, then
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Rn(∞) =
⋃

`j>ηn

Ij ⊂ Ωµ.

Lemma 4.1 implies that, without loss of generality, we need only
consider the case where every endpoint contains mass. Suppose µ({aj}) 6=
0 and µ({bj}) 6= 0 for all j ∈ N. Then Rn(∞) =

⋃
`j>ηn

Ij implies that,

for n ≥ 2,

Jn(∞) =


 ⋃

`j>ηn−1

Ij


ª


 ⋃

`j>ηn

Ij




=


 ⋃

`j>ηn

Ij


 \


 ⋃

`j>ηn−1

Ij




=
⋃

ηn−1≥`j>ηn

Ij.

Since Rn−1(∞) ⊂ Rn(∞) for all n ≥ 2, the intervals Jn(∞) have no
redundant lengths. That is, an

J(∞, p1) 6= an−1
R (∞, p2) and bn

J(∞, p1) 6=
bn−1
R (∞, p2) for all n ≥ 2 and p1, p2 ∈ {1, ..., jn(∞)}. This implies

Kn(∞) = Jn(∞) =
⋃

ηn−1≥`j>ηn

Ij.

Furthermore,

|Kn(∞)| =
kn(∞)∑
p=1

|Kn
p (∞)| =

∑
`j,

where the last sum is taken over all j such that ηn−1 ≥ `j > ηn. Since
ηn ↘ 0, each length `j is eventually picked up. Therefore,

ζµ
N (∞, s) =

∞∑
n=1

kn(∞)∑
p=1

|Kn
p (∞)|s =

∞∑
n=1

∑
`s
j

=
∞∑

n=1

mnl
s
n = ζLµ(s).

¤

Corollary 4.3. Under the assumptions of Theorem 4.2, the complex
dimensions of the fractal string Ωµ = (supp(µ))c coincide with the poles
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of the multifractal zeta function ζµ
N (∞, s). That is,

Dµ
N (∞,W ) = DLµ(W )

for every window W .

The key in Figure 3 will be used for the examples that analyze
the fractal strings below. Figure 4 shows the first four steps in the
construction of a multifractal zeta function with regularity ∞ for a
measure supported on the Cantor set.

Remark 4.4. Assume supp(µ) has empty interior, as is the case, for
example, if supp(µ) is a Cantor set. It then follows from Theorem 4.2
that DLµ, the abscissa of convergence of ζµ

N (∞, s), is the Minkowski
dimension of ∂Ωµ = supp(µ). Note that as long as the sequence
decreases to zero, the choice of sequence of scales N does not affect
the result of Theorem 4.2. This is not the case, however, for other
regularity values.

The following section describes a measure which is designed to illu-
minate properties of a given fractal string and justifies calling the multi-
fractal zeta function with regularity −∞ the topological zeta function.

5. Regularity Value −∞ and Topological Zeta Functions

The remainder of this paper deals with fractal strings that have a
countably infinite number of lengths. If there are only a finite num-
ber of lengths, it can be easily verified that all of the corresponding
zeta functions are entire because the measures taken into consideration
are then comprised of a finite number of unit point-masses. Thus we
consider certain measures that have infinitely many unit point-masses.
More specifically, in this section we consider a fractal string Ω to be
a subset of [0, 1] comprised of countably many open intervals (aj, bj)
such that |Ω| = 1 and ∂Ω = [0, 1]\Ω (or equivalently, Ωc = [0, 1]\Ω has
empty interior). We also associate to Ω = ∪∞j=1(aj, bj) its sequence of
lengths L. For such Ω, the endpoints of the intervals (aj, bj) are dense
in ∂Ω. Indeed, if there were a point in ∂Ω away from any endpoint,
then it would be away from Ω itself, meaning it would not be in ∂Ω.
This allows us to define, in a natural way, measures with a countable
number of point-masses contained in the boundary of Ω. Let

µΩ :=
∞∑

j=1

(δaj
+ δbj

),

where, as above, the (aj, bj) are the open intervals whose disjoint union
is Ω.
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Let us determine the nontrivial regularity values α. For α = ∞,
Rηn(∞) is the collection of closed intervals of length ηn which contain
no point-masses. For α = −∞, Rηn(−∞) is the collection of closed
intervals of length ηn which contain infinitely many point-masses. In
other words, Rηn(−∞) is the collection of closed intervals of length ηn

that contain a neighborhood of an accumulation point of the endpoints
of Ω. This connection motivates the following definition.

Definition 5.1. Let Ω be a fractal string and consider the correspond-
ing measure µΩ =

∑∞
j=1(δaj

+ δbj
). The topological zeta function of

Ω with respect to the sequence N is ζµΩ

N (−∞, s), the multifractal zeta
function of µΩ with respect to N and regularity −∞.

When the open set Ω has a perfect boundary, there is a relatively
simple breakdown of all the possible multifractal zeta functions for
the measure µΩ. Recall that a set is perfect if it is equal to its set
of accumulation points. For example, the Cantor set is perfect; more
generally, all self-similar sets are perfect (see, e.g., [8]). The boundary
of a fractal string is closed; hence, it is perfect if and only if it does
not have any isolated point. The simplicity of the breakdown is due to
the fact that every point-mass is a limit point of other point-masses.
Consequently, the only parameters α that do not yield identically zero
multifractal zeta functions are ∞, −∞ and those which correspond to
each length of N and one or two point-masses.

Theorem 5.2. For a fractal string Ω =
⋃∞

j=1(aj, bj) with sequence of

lengths L and perfect boundary, consider µΩ =
∑∞

j=1(δaj
+δbj

). Suppose
that N is a sequence such that ln > ηn ≥ ln+1 and ln > 2ηn, for all
n ∈ N. Then

ζµΩ

N (∞, s) = ζL(s)

and

ζµΩ

N (−∞, s) = h(s) +
∞∑

n=2

mn(ln − 2ηn)s,

where h(s) is the entire function given by h(s) =
∑k1(−∞)

p=1 |K1
p(−∞)|s.

Moreover, for every real number α (i.e., for α 6= ∞,−∞), ζµΩ

N (α, s) is
entire.

Proof. ζµΩ

N (∞, s) = ζL(s) holds by Theorem 4.2. Since ln > 2ηn, we
have
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Rn(−∞) =


 ⋃

`j>ηn

[aj + ηn, bj − ηn]




c

.

For n ≥ 2, Jn(−∞) is made up of mn intervals of length ln − 2ηn and
2
∑n−1

p=1 mp intervals of length ηn−1 − ηn. That is, at each stage n ≥ 2,
we pick up two ηn−1 − ηn terms for each `j ≥ ln−1 from the previous
stage and one ln− 2ηn term for each `j = ln. By construction, the sets
Kn(−∞) do not include the redundant ηn−1 − ηn terms. Therefore,

ζµΩ

N (−∞, s) =

k1(−∞)∑
p=1

|K1
p(−∞)|s +

∞∑
n=2

mn(ln − 2ηn)s.

To prove the last statement in the theorem, note that any given
interval U ∈ X([0,1]) may contain 0, 1, 2 or infinitely many end-
points, each of which have a unit point-mass. Thus, there are at most
two stages contributing lengths to the multifractal zeta function with
the same regularity. It follows that the multifractal zeta function has
finitely many terms of the form `s where ` ∈ [0, 1], and hence is entire.

¤
For certain fractal strings with perfect boundaries and a naturally cho-
sen sequence, Theorem 5.2 has the following corollary.

Corollary 5.3. Assume that Ω is a fractal string with perfect bound-
ary, total length 1, and distinct lengths L given by ln = ca−n with
multiplicities mn for some a > 2 and c > 0. Further, assume that N
is a sequence of scales where ηn = ln+1 = ca−n−1, then

ζµΩ

N (−∞, s) = f0(s) + f1(s)ζL(s),
where f0(s) and f1(s) are entire.

Proof. By Theorem 5.2,

ζµΩ

N (−∞, s) = h(s) +
∞∑

n=2

mn(ln − 2ln+1)
s

= h(s) + cs

∞∑
n=2

mn(a−n − 2a−n−1)s

= h(s) + cs

(
a− 2

a

)s ∞∑
n=2

mna−ns

= h(s) + cs

(
a− 2

a

)s (
ζL(s)−m1a

−s
)
.
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Therefore, the result holds with

f0(s) := h(s)−m1c
s

(
a− 2

a2

)s

and

f1(s) := cs

(
a− 2

a

)s

.

¤
Remark 5.4. Corollary 5.3 clearly shows that, in general, the topo-
logical zeta functions of the form ζµΩ

N (−∞, s) may have poles. Indeed,
since f1(s) has no zeros, we have that Dµ

N (−∞,W ) = DL(−∞, W ) for
any window W .

Remark 5.5. There are a few key differences between the result of
Theorem 4.2 and the results in this section. For regularity α = ∞,
the form of the multifractal zeta function is independent of the choice
of the sequence of scales N and the topological configuration of the
fractal string in question. For other regularity values, however, this is
not the case. In particular, regularity value α = −∞ sheds some light
on the topological properties of the fractal string in a way that depends
on N . (Recall from Section 2 that the dependence on the scales is a
very common feature in multifractal analysis.)

We now define a special sequence that describes the collection of
accumulation points of the boundary of a fractal string Ω.

Definition 5.6. The sequence of effective lengths of a fractal string Ω
with respect to the sequence N is

KµΩ

N (−∞) := {|Kn
p (−∞)| | n ∈ N, p ∈ {1, ..., kn(−∞)}},

where µΩ =
∑∞

j=1(δaj
+ δbj

).

This definition is motivated by a key property of the Hausdorff
dimension dimH : it is countably stable, that is,

dimH(∪∞n=1An) = sup
n≥1

dimH(An).

(For this and other properties of dimH , see [8].) Consequently, count-
able sets have Hausdorff dimension zero. As such, countable collec-
tions of isolated points do not contribute to the Hausdorff dimension
of a given set. Regularity −∞ picks up closed intervals of all sizes
ηn ∈ N that contain an open neighborhood of an accumulation point
of the boundary of the fractal string Ω. The effective sequence (and
hence its multifractal zeta function) describes the gaps between these
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accumulation points as detected at all scales ηn ∈ N , which we now
define.

The distinct gap lengths are the distinct sums gk :=
∑

`j where k ∈
N and the sums are taken over all j’s such that the disjoint subintervals
Ij = (aj, bj) of Ω are adjacent and have rightmost and/or leftmost
endpoints (or limits thereof) which are 0, 1 or accumulation points of
∂Ω. The effective lengths have the following description: For the scale
η1, K1(−∞) is the union of the collection of connected components of
R1(−∞). For ηn such that n ≥ 2, |Kn

p (−∞)| = gk − ηn if ηn is the
scale that first detects the gap gk, that is, if ηn is the unique first scale
ηE

k such that 2ηn−1 > gk ≥ 2ηn.
Under appropriate re-indexing, the effective lengths with multiplic-

ities mE,k (other than K1(−∞)) are {lE,k}k≥2, given by lE,k := gk−2ηE
k ,

where the gaps gk are those such that 2η1 > gk and the ηE
k ∈ NE ⊂ N

are the effective scales with respect to N that detect these gaps. The
result is summarized in the next theorem, which gives a formula for the
multifractal zeta function of the measure µΩ with sequence of scales N
at regularity −∞. The second formula in Theorem 5.2 above can be
viewed as a corollary to this theorem. Note that the assumption of a
perfect boundary is not needed in the following result.

Theorem 5.7. For a fractal string Ω with sequence of lengths L and
a sequence of scales N such that ηn ↘ 0, the topological zeta function
is given by

ζµΩ

N (−∞, s) =

k1(−∞)∑
p=1

|K1
p(−∞)|s +

∞∑

k=1

mE,kl
s
E,k

for Re(s) large enough.

The next section investigates the application of the results of Sec-
tions 4 and 5 to the Cantor String, as defined in Section 1, and the
variants thereof.

6. Variants of the Cantor String

Let L be the sequence of lengths in the complement of the Cantor
Set, which is also known as the Cantor String Ω1. (See Example 1.7
and Figure 2.) Then ln = 3−n and mn = 2n−1 for all n. We will
discuss several examples involving this sequence of lengths, but for
now consider the following one.

Let Ω2 be the open subset of [0, 1] whose lengths are also L but
arranged in non-increasing order from right to left, as in Example 1.8.
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[0,1]

K1

R1

J1

K2

R2

J2

K3

R3

J3

(α)

(α)

(α)

(α)

(α)

(α)

(α)

(α)

(α)

Ω1

Figure 5. The first three stages in the construction of
the topological zeta function of Ω1, ζµ1

N (−∞, s), where N
is the set of distinct lengths of the Cantor String begin-
ning with 1/9.

That is, the only accumulation point of ∂Ω2 is 0 (see Figures 3, 5 and
6). In each figure, portions of the approximation of the string that
appear adjacent are actually separated by a single point in the support
of the measure. Gaps between the different portions and the points 0
and 1 contain the smaller portions of the string, isolated endpoints and
accumulation points of endpoints.

Consider the following measures which have singularities on a por-
tion of the boundary of Ω1 and Ω2, respectively: µq = µΩq , with q = 1
or 2, where µΩq is defined as in Section 5. These measures have a unit
point-mass at every endpoint of the intervals which comprise Ω1 and
Ω2, respectively.

Let N be such that ln > ηn ≥ ln+1 and ln > 2ηn. Such sequences
exist for the Cantor String. For instance, ∀n ∈ N, let ηn = ln+1 =
3−n−1. Theorem 4.2 yields

ζµ1

N (∞, s) = ζµ2

N (∞, s) = ζCS(s).
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[0,1]

K1

R1

J1

K2

R2

J2

K3

R3

J3

(α)

(α)

(α)

(α)

(α)

(α)

(α)

(α)

(α)

2Ω

Figure 6. The first three stages in the construction of
the topological zeta function of Ω2, ζµ2

N (−∞, s), where N
is the set of distinct lengths of the Cantor String begin-
ning with 1/9.

When α = −∞ the topological zeta functions for Ω1 and Ω2 are,
respectively,

ζµ1

N (−∞, s) = 2(l1 + η1)
s +

∞∑
n=2

2n−1(ln − 2ηn)s

and

ζµ2

N (−∞, s) = ηs
1.

In either case,

−∞ = A(U) =

∑
aj ,bj∈U 1

log |U |
if and only if

#{j | aj ∈ U}+ #{j | bj ∈ U} = ∞.

In the case of µ2, the only closed interval of length ηn that contains
infinitely many unit point-masses is [0, ηn]. So,

Rn(−∞) = [0, ηn]
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which means
J1(−∞) = K1(−∞) = [0, η1]

and for n ≥ 2,
Jn(−∞) = (ηn, ηn−1].

All of the terms from Jn(−∞) = (ηn, ηn−1] are redundant. Therefore,

Kn(−∞) = ∅
and

ζµ2

N (−∞, s) = ηs
1.

The case of µ1 for regularity α = −∞ is more complicated and is a
result of Theorem 5.2. This is due to the fact that every point-mass is
a limit point of other point-masses. That is, the Cantor set is a perfect
set, thus Corollary 5.3 applies when N is chosen so that ηn = 3−n−1

for all n ∈ N.

Remark 6.1. Clearly, for every N chosen as above in the discussion of
µ2, Dµ2

N (−∞) is empty. In contrast, it follows from the above discussion
that it is easy to find a sequence N such that Dµ1

N (−∞) is non-empty
and even countably infinite.

Shortly we will consider two more examples of fractal strings, Ω3

and Ω4, in addition to the Cantor String Ω1 and the string Ω2. All of
these fractal strings have the same sequence of lengths. As such, these
strings all have the same Minkowski dimension, namely log3 2. How-
ever, their respective Hausdorff dimensions do not necessarily coincide,
a fact that is detected by certain of our multifractal zeta functions but
the theory of fractal strings developed in [26, 29] does not describe.
For a certain, natural choice of sequence of scales N , the topological
zeta functions of the fractal strings Ωq (as above) have poles on a dis-
crete line above and below the Hausdorff dimension of the boundaries
of these fractal strings (see Figures 3 and 5–8). In [26, 29] it is shown
that the complex dimensions of the fractal strings Ωq, for q = 1, 2, 3, 4
are

DCS =

{
log3 2 +

2iπm

log 3
| m ∈ Z

}
.

These are the poles of

ζ
µq

N (1, s) = ζCS(s) =
3−s

1− 2 · 3−s
.

(See Section 1 above.) As noted earlier, the geometric zeta function
of the Cantor String does not see any difference between the open sets
Ωq, for q = 1, 2, 3, 4. However, the multifractal zeta functions of the
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[0,1]

K1

R1

J1

K2

R2

J2

K3

R3

J3

(α)

(α)

(α)

(α)

(α)

(α)

(α)

(α)

(α)

Ω 3

Figure 7. The first three stages in the construction of
the topological zeta function of Ω3, ζµ3

N (−∞, s), where N
is the set of distinct lengths of the Cantor String begin-
ning with 1/9.

measures µq with the same such N and regularity α = −∞ are quite
different. For the remainder of this section, unless explicitly stated
otherwise, we choose N = {3−n−1}∞n=1.

We now consider more specifically the two fractal strings Ω3 and
Ω4 mentioned above. Ω3 is a fractal string whose boundary has accu-
mulation points at 0, 1 and the numbers 3−n for every n ∈ N. Each
3−n is the left endpoint of an interval of length 3−n and the remaining
lengths are placed in non-increasing order from left to right so as to
make 0, 1 and the 3−n accumulation points of the point-masses. (See
Figure 7.) The chosen sequence N along with the fact that the gap
lengths are 3−n − 3−n−1 = 2 · 3−n−1 imply that the effective lengths
are all zero, except for the components K1

p(−∞). (See Definition 5.6.)
This yields an entire multifractal zeta function described below.

Ω4 is a fractal string comprised of a Cantor-like string and an iso-
lated accumulation point at 1. The lengths comprising the Cantor-like
string are constructed by connecting two intervals with consecutive
lengths. The remaining lengths are arranged in non-increasing order
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(α)

(α)

(α)

(α)

Ω 4

Figure 8. The first three stages in the construction of
the topological zeta function of Ω4, ζµ4

N (−∞, s), where N
is the set of distinct lengths of the Cantor String begin-
ning with 1/9.

from left to right, accumulating at 1. That is, for n ≥ 1, the gap lengths
are 3−2n+1 + 3−2n = 4 · 3−2n with multiplicities 2n−1 and therefore the
effective lengths are 2 · 3−2n with multiplicities 2n−1. (See Figure 8.)

The Hausdorff dimension of the boundary of each fractal string Ωq

(q = 1, 2, 3, 4) is easily determined. For a set F , denote the Hausdorff
dimension by dimH(F ) and the Minkowski dimension by dimM(F ).
We have, for q = 1, 2, 3, 4,

dimH(∂Ω1) = dimM(∂Ωq) = log3 2,

dimH(∂Ω2) = dimH(∂Ω3) = 0,

dimH(∂Ω4) = log9 2.

The first equality above holds because the Minkowski dimension de-
pends only on the lengths of the fractal strings and, furthermore, the
Cantor set ∂Ω1 is a strictly self-similar set whose similarity transfor-
mations satisfy the open set condition, as defined, for example, in [8].
Thus, the Minkowski and Hausdorff dimensions coincide for ∂Ω1. The
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second equality holds because ∂Ω2 and ∂Ω3 are countable sets. The
third one holds because ∂Ω4 is the disjoint union of a strictly self-similar
set and a countable set, and Hausdorff dimension is (countably) stable.
We justify further below.

Theorem 5.2, Corollary 5.3 and Theorem 5.7 will be used to gen-
erate the following closed forms of the zeta functions ζ

µq

N (−∞, s).
For the Cantor String Ω1 and the corresponding measure µ1, we

have by Corollary 5.3,

ζµ1

N (−∞, s) = 2

(
1

3
+

1

9

)s

+
∞∑

n=2

2n−1

(
1

3n
− 2

3n+1

)s

= 2

(
4

9

)s

+
2

27s

∞∑
n=0

2n3−ns

= 2

(
4

9

)s

+
2

27s

(
1

1− 2 · 3−s

)
.

The poles of ζµ1

N (−∞, s) are the same as the poles of the geometric zeta
function of the Cantor String. They are given by

Dµ1

N (−∞) =

{
log3 2 +

2iπm

log 3
| m ∈ Z

}
= DCS.

Remark 6.2. Note that the above computation of ζµ1

N (−∞, s) is jus-
tified, a priori, for Re(s) > log3 2. However, by analytic continuation,
it clearly follows that ζµ1

N (−∞, s) has a meromorphic continuation to
all of C and is given by the same resulting expression for every s ∈ C.
Analogous comments apply to similar computations elsewhere in the
paper.

Since ∂Ω2 has only one accumulation point, there is only one term
in the corresponding topological zeta function for Ω2. We immediately
have

ζµ2

N (−∞, s) =
1

9s
,

which, of course, is entire and has no poles.
Theorem 5.2 does not apply to µ3 since ∂Ω3 is not perfect, but ∂Ω3

is not as trivial as ∂Ω2. The proof of the second formula in Theorem
5.2 illustrates how the regularity value −∞ detects the accumulation
points and the distances between accumulation points as the scales
decrease to zero. For N = {3−n−1}∞n=1, the effective lengths are zero



26 MICHEL L. LAPIDUS, JACQUES LÉVY-VÉHEL AND JOHN A. ROCK

for n ≥ 2. This results in the following formula, in accordance with
Theorem 5.7.

ζµ3

N (−∞, s) =

(
1

9

)s

+

(
4

9

)s

.

This is misleading in that different choices of N can yield an infi-
nite number of nonzero terms for the resulting multifractal zeta func-
tion, thus the latter function may not be entire. For instance, N =
{1/(3n+1 + 1)}∞n=1 satisfies the following inequalities;

3−n−2 < 1/(3n+1 + 1) < 3−n−1

and
3−n − 3−n−1 = 2 · 3−n−1 > 2/(3n+1 + 1).

Therefore, the effective lengths `E,k would be positive for every k ∈ N
and, according to Theorem 5.7, the multifractal zeta function would
have infinitely many terms of the form `s

E,k. The case of Ω2 is quite
different because regardless of the choice of scales N , the topological
zeta function consists of a single term, namely ηs

1.
For Ω4, we have

ζµ4

N (−∞, s) = h4(s) +
∞∑

n=2

mn (l2n−1 + l2n − 2η2n−1)
s

= h4(s) +
∞∑

n=2

2n−1

(
1

32n−1
+

1

32n
− 2

32n

)s

= h4(s) +
2s · 2
81s

∞∑
n=0

2n

9ns

= h4(s) +

(
2s+1

81s

) (
1

1− 2 · 9−s

)
,

where h4(s) is entire. Therefore, the poles of ζµ4

N (−∞, s) are given by

Dµ4

N (−∞) =

{
log9 2 +

2iπm

log 9
| m ∈ Z

}
.

Let us summarize the results of this section. We chose the sequence
of scales N to be {3−n−1}∞n=1. For q = 1, 2, 3, 4, the multifractal zeta
function of each measure µq with regularity α = ∞ is equal to the
geometric zeta function of the Cantor String, as follows from Theorem
4.2. Thus, obviously, the collections of poles Dµq

N (∞) each coincide
with the complex dimensions of the Cantor String.



FRACTAL STRINGS AND MULTIFRACTAL ZETA FUNCTIONS 27

For regularity α = −∞, the multifractal zeta functions are the
topological zeta functions for the fractal strings Ωq. Their respective
poles differ for each q = 1, 2, 3, 4. Specifically, ζµ1

N (∞, s) and ζµ1

N (−∞, s)
have the same collection of poles, corresponding to the fact that ∂Ω1

has equal Minkowski and Hausdorff dimensions. Both ζµ2

N (−∞, s) and
ζµ3

N (−∞, s) are entire multifractal zeta functions and both ∂Ω2 and
∂Ω3 have Hausdorff dimension equal to zero. However, if a differ-
ent sequence of scales were chosen, then ζµ3

N (−∞, s) could have poles,
whereas, regardless of the choice of scales, ζµ2

N (−∞, s) would be entire.
This reflects the fact that ∂Ω3 is topologically more complicated than
∂Ω2 in that ∂Ω3 contains countably many accumulation points and
∂Ω2 only contains one. Finally, ζµ4

N (−∞, s) has poles on a discrete line
above and below the Hausdorff dimension of ∂Ω4, which is log9 2. In
all of these cases, the multifractal zeta functions with regularity −∞
and their corresponding poles depend heavily on the choice of sequence
of scales N .

This section further illustrates the dependence of the multifractal
zeta function with regularity α = −∞ on the topological configuration
of the fractal string in question as well as the choice of scales N used to
examine the fractal string. As before, following Theorem 4.2, regularity
α = ∞ corresponds to a multifractal zeta function that depends only
on the lengths of the fractal string in question.

7. Concluding Comments

The main object defined in this paper, the multifractal zeta function,
was originally designed to provide a new approach to multifractal anal-
ysis of measures which exhibit fractal structure in a variety of ways.
In the search for examples with which to work, the authors found that
the multifractal zeta functions can be used to describe some aspects
of fractal strings that extend the existing notions garnered from the
theory of geometric zeta functions and complex dimensions of fractal
strings developed in [26, 29].

Regularity value α = ∞ has been shown to precisely recover the
geometric zeta function of the complement in [0,1] of the support of a
measure which is singular with respect to the Lebesgue measure. This
recovery is independent of the topological configuration of the fractal
string that is the complement of the support and occurs under the mild
condition that the sequence of scalesN decreases to zero. The fact that
the recovery does not depend on the choice of sequence N (as long as
it decreases to zero) is unusual in multifractal analysis, as mentioned
in Section 2.
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Regularity value α = −∞ has been shown to reveal more topolog-
ical information about a given fractal string by using a specific type of
measure whose support lies on the boundary of the fractal string. The
results depend on the choice of sequence of scales N (as is generally
the case in multifractal analysis) and the topological structure inher-
ent to the fractal string. Moreover, the topological configuration of the
fractal string is illuminated in a way which goes unnoticed in the ex-
isting theories of fractal strings, geometric zeta functions and complex
dimensions, such as the connection to the Hausdorff dimension.

We close this paper by pointing out several directions for future
research, some of which will be investigated in later papers:

Currently, examination of the families of multifractal zeta functions
for truly multifractal measures on the real line is in progress, measures
such as the binomial measure and mass distributions which are sup-
ported on the boundaries of fractal strings. Preliminary investigation
of several examples suggests that the present definition of the multi-
fractal zeta functions may need to be modified in order to handle such
measures. Such changes take place in [31, 32, 35, 47].

In the longer term, it would also be interesting to significantly
modify our present definitions of multifractal zeta functions in order
to undertake a study of higher-dimensional fractal and multifractal
measures. A useful guide in this endeavor should be provided by the
recent work of Lapidus and Pearse on the complex dimensions of the
Koch snowflake curve (see [21], as summarized in [29], §12.3.1) and
more generally but from a different point of view, on the zeta functions
and complex dimensions of self-similar fractals and tilings in Rd (see
[22, 23] and [46], as briefly described in [29], §12.3.2).

In [10], the beginning of a theory of complex dimensions and ran-
dom zeta functions was developed in the setting of random fractal
strings. It would be worth extending the present work to study ran-
dom multifractal zeta functions, first in the same setting as [10], and
later on, in the broader framework of random fractals and multifractals
considered, for example, in [1, 8, 9, 14, 41, 42].

These are difficult problems, both conceptually and technically,
and they will doubtless require several different approaches before be-
ing successfully tackled. We hope, nevertheless, that the concepts in-
troduced and results obtained in the present paper can be helpful to
explore these and related research directions.
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[36] J. Lévy Véhel and R. Riedi, Fractional Brownian motion and data traffic mod-
eling: The other end of the spectrum, in: Fractals in Engineering (J. Lévy
Véhel, E. Lutton and C. Tricot, eds.), Springer-Verlag, Berlin, 1997.
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