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Dependency analysis is a technique to identify and deterrdata dependencies between service
protocols. Protocols evolving concurrently in the serndgoenposition need to impose an order in
their execution if there exist data dependencies. In thiskywawe describe a model to formalise
context-aware service protocols. We also present a cotquotanguage to handle dynamically the
concurrent execution of protocols. This language addsedata dependency issues among several
protocols concurrently executed on the same user deviogy ogechanisms based on data semantic
matching. Our approach aims at assisting the user in esitétndj priorities between these dependen-
cies, avoiding the occurrence of deadlock situations. Nbeess, this process is error-prone, since
it requires human intervention. Therefore, we also propesiication techniques to automatically
detect possible inconsistencies specified by the user whilding the data dependency set. Our
approach is supported by a prototype tool we have implerdente

1 Introduction

Service composition is a crucial paradigm in Service Oddr@omputing (SOC), since it allows to build
systems as a composition of pre-existing software enti@3TS Commercial-Off-The-Shelf applica-
tions) rather than programming applications from scratch. Andrtgnt issue of service composition
is to find out services with capabilities compatible to therugquirements in order to compose them
correctly. In a traditional distributed environment, inialihall the requests are served in the same way,
service composition is straightforward. The introducta@nNVeb-enabled hand-held devices has created
the necessity of a more context oriented composition in kvtiie produced response is aware of certain
user and environment information on the requesting cli€htis, context-awareness enables a new class
of applications in mobile and pervasive computing, prawgdielevant information to users. Therefore,
context information can help users to find nearby serviaedgetide the best service to use, to control
reaction of systems depending on certain situations, amd.so

Services are accessed through their public interfacestthgitdistinguish four interoperability lev-
els [9]: (i) thesignature levebrovides operation names, type of arguments and returresalii) the
behavioural or protocol levespecifies the order in which the service messages are exathavith its
environment, (iii) theservice leveteals with non-functional properties like temporal regmients, re-
sources, security, etc., and (iv) teemantic levels concerned about service functional specifications
(i.e., what the service actually does). In industrial platforseryvice interfaces are usually specified us-
ing signaturesd.g, WSDLE|), but some recent research workd 1, 6,11, 27] have extantathces with
a behavioural description or protocol. Protocols are d&ddrecause erroneous executions or deadlock

*This work is partially supported by the projects TIN200888 and P06-TIC-02250 funded by the Spanish Ministry of
Science and Innovation (MICINN) and FEDER, and the Andalusbcal Government, respectively.
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situations may occur if the designer does not take them iotount while composing clients and ser-
vices [18/24]. In this way, service protocols evolving comently in a composition need to impose an
order in their execution if there exist data dependenciepedency analysis is a technique to identify
and determine data dependencies between service protdmkhe best of our knowledge, not many
works have tackled the handling of concurrent interactiohservice protocols through dependency
analysis[[bl 10, 14, 17, 26].

In this work, we focus on systems that consist of cI@r@tfsers with a mobile device such as a PDA
or a smart phone) and services modelled with interfacestitatiesl by context information, a signature,
and a protocol description (taking conditions into acchuwife also consider a semantic representation
of service instead of only a syntactic one. We use OWL-S ogte to capture the semantic description
of services by means of relationships between conceptswvétbpecific domain. In order to address the
concurrency in the service composition in these systemdjratformalise a model for context-aware
clients and service protocols. Second, we propose an agptoahandle dynamically the concurrent
execution of context-aware service protocols on the samedevice, using mechanisms based on data
semantic matching. Our approach aims at assisting the misstablishing priorities between these de-
pendencies, avoiding the occurrence of deadlock situatiGonstraints on the concurrent execution can
be specified using a composition language which defines wpsifar executing a sequence of protocols,
a non-deterministic choice between protocols, and forrotlimg the data dependencies existing among
several protocols executed at the client level at the same. tin addition, since this process requires
human intervention (error-prone), we use analysis teclasdo automatically verify the correct execu-
tion order of the protocols with respect to the built dataadefency sets. Our approach is supported by
a prototype tool we have implemented. To evaluate the berdfibur approach, we have applied it to
different case studies. We analyse the experimental sesbtined either with manual or interactive
specification of data dependencies and their corresporekiagution priorities.

The rest of this paper is structured as follows. Sed¢flon &pres our model formalising context-aware
clients and service protocols. In Sectldn 3, we introducase study we use throughout the paper for
illustration purposes. Sectidh 4 presents the handlingoéarrent interactions of context-aware service
protocols. Sectionl5 describes thenTexTive prototype tool that implements our approach, and shows
some experimental results. Sectidn 6 compares our apptoaetated works. Finally, Sectidd 7 ends
the paper with some concluding remarks.

2 Context-Aware Service Model

2.1 Interface Model

Our model describes client and service interfaces usingegbprofiles, signatures and protocols. Con-
text profiles define information which may change accordmglient preferences and service environ-
ment. Signatures correspond to operations profiles. Rilstace represented using transition systems.
A context is defined a%he information that can be used to characterise the sitaibf an entity.
An entity is a person, place, or object that is consideredvaht to interaction between a user and an
application including the user and application themselvigsg]. Context information can be represented
in different ways and can be classified in four main categdd€]: (i) user context: role, preferences,
language, calendar, social situation or privileges, @yide/computing context: network connectivity,

2|n the sequel, we use client as general term covering bathtcind user with a mobile device.
Shitp://www.daml.org/services/owl-s/
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device capabilities or server load, (iii) time context: reunt time, day, month or year, and (iv) physical
context: location, weather or temperature. For our purpaseonly need a simple representation where
contexts are defined by context attributes with associaaites. In addition, we differentiate between
static context attributese(g, role, preferences, day, ...) and dynamic oreeg,(network connectivity,
current time, location, privileges, ...). Dynamic attitisi can change continuously at run-time, so they
have to be dynamically evaluated during the service cortipasi Last, both clients and services are
characterised by publie(g, weather, temperature, ...) and privageg( personal data, bandwidth, ...)
context attributes. Thus, we represent the service coimtfxtmation by using @ontext profilewhich is
aset of tuplesCA CV,CK,CT), where:CAis a context attribute or simply context with its correspiogd
valueCV, CK determines ifCA is static or dynamic, an@T indicates ifCA is public or private €.g,
(priv, Guest, dynamic, publicwherepriv is a public and dynamic context which corresponds to user
privileges withGuestas value).

A signaturecorresponds to a set of operation profiles. This set is aidigjmion of provided and
required operations. An operation profile is the name of araion, together with its argument types
(input/output parameters) and its return type.

A protocol is represented using a Labelled Transition System (LTS)rekdd with value passing,
context variables and conditions, that we call Context-#an@ymbolic Transition System (CA-STS).
Conditions specify how applications should reacg( to context changes). We take advantage of using
ontologies to determine the relationship among the diffeoc®ncepts that belong to a domain. Let us
introduce the notion of variable, expression, and labelireq by our CA-STS protocol. We consider
two kinds of variables those representing regular variables or static contdsibaties, and variables
corresponding to dynamic context attributes (named contiables). In order to distinguish between
them, we will mark the context variables with the symbelover the specific variable. Aexpressioris
defined as a variable or a term constructed with a functiorbgyrh(an identifier) applied to a sequence
of expressions, € f(F,...,F,), K being expressions.

Definition 1 (CA-STS label) A label corresponding to a transition of a CA-STS is eitherirgernal
action 1 (tau) or a tuple(B,M,D,F) representing an event, where: B is a condition (represemted
a boolean expression), M is the operation name, D is the tiimecf operations (! and ? represent
emission and reception, respectively), and F is a list ofesgions if the operation corresponds to an
emission, or a list of variables if the operation is a recepti

Definition 2 (CA-STS Protocol) A Context-Aware Symbolic Transition System (CA-STS) &ubis a
tuple (A,S 1,Fc, T), where: A is an alphabet which corresponds to the set of C848bels associated
to transitions, S is a set of states¢ IS is the initial state, F€ S are correct final states (deadlock final
states are not considered), andTSx A x S is the transition function whose elemefsisa,s;) € T are
usually denoted by;s25 s,.

Finally, aCA-STS interfacés constituted by a tupléCP, S|, P), where:CP is a context profile, and
Sl is the signature corresponding to a CA-STS protdoBoth clients and services consist of a set of
interfaces. We assume they have several protocols with ¢bheiesponding signatures, and a context
profile for each one. For instance, let us consider a clietit two different protocol$, andP,. This
client consists of two interfaces such &s:= (CR.,, Sk,,P;,) andlc, = (CR,,,Sk,, P, ).

We adopt a synchronous and binary communication model @et@82.2 for more details). Clients
can execute several protocols simultaneously (concuimggriactions). Client and service protocols can
be instantiated several times. At the user level, client sedice interfaces can be specified using:
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() context information into XML files for context profilesjiY WSDL for signatures, and (iii) busi-
ness processes defined in industrial platforms, such agsasb&PEL (ABPEL) [2] or WF workflows
(AWF) [12], for protocols. Here, we assume context inforimratis inferred by means of the client re-
quests (HTTP header of SOAP messages), and we considespesdelients and services) implemented
as business processes which provide the WSDL and protosotipggons.

2.2 Operational Semantics of CA-STS

We formalise first the operational semantics of one CA-ST#ce and second af CA-STS services.
Next, we use a paifs,E) to represent an active state Sand an environmer. An environment is a
set of pairs(x,v) wherex is a variable, and is the corresponding value &f(it can be also represented
by E(x)). The functiontypereturns the type of a variable. We use boolean expres$icdagiescribe
CA-STS conditions. Regular and context variables are at@tlin emissions and receptions (by con-
sidering the current value of the contegtg, the current date), respectively. Therefore, two evabmati
functions are used in order to evaluate expressions intonaroement: (i)evevaluates regular variables
or expressions, and (i@ evaluates context variables changing dynamically. We defiras follows:

E(x) ifxis aregular variable
X if X is a context variable

evE,x) £ {

evE, f(va,...,Vn)) = f(eME,v1),...,eVE,Vy))

Functioney; is defined in a similar way tev, but it only considers context variables. This is because
we first applyevin order to evaluate all the regular variables:

ew(E,x) = E(x)

wherex is a context variable. We also define an environment oveirtigaaperation ©” such that, given
an environmenE, E @ (x,v) denotes a new environment, where the value correspondixg to

We present in Figurlgl 1 the semantics of one CA-SESG)( with three rules that formalise the mean-
ing of each kind of CA-STS labels: internal actiondNT), emissions (EM), and receptions (REC); and
one rule to consider the dynamic update of the environmezdrding to the context changes at run-time
(DYN). Note thatw.r.t. Definition[d,b € B is a condition,a € M is an operation name, and< F and
v € F correspond to a list of variables and expressions, resgdctiConditionb may contain regular
and/or context variables and both of them must be evaluatédei environment of the source service
(sender), because the decision is taken in the sender. ovesaluation of expressionsonly affects
regular variables (rule EM), since context variables wdldvaluated in the target service (receiver) to
consider the context values when the message is receiveed{seCOM in FiguréR). We assume that the
dynamic modification of the environment will be determingddifferent external elements depending
on the type of contexte(g, user intervention, location update by means of a GPS, timtenoperature
update, and so on). Then, we model this situation by assuentransition relation which indicates the
environment update, denoted By-» 4E’, whereE'(x) # E(x) only if x is a dynamic context variable.

The operational semantics of(n > 1) CA-STSs ) is formalised using two rules. A first syn-
chronous communication rule (COM, Figlie 2) in which vahaessing and variable substitutions rely on
a late binding semantics [21] and where the environnieistupdated. A second independent evolution
rule (INE;, Figure2). A list of pairgs, E;) is represented bjas, .. .,as,|. Rule COM uses the function
ey to evaluate dynamically in the receiver the context chamgleged to the dynamic context attributes
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(s2L9)eT e\f(ev(E,b),b) —tree o m (s=58)eT e\é(eV(E b).b) =true r
(SE) 50 (S,E) (SE) 25, (5,E)
b,alv /
(s——9)eT ew(eVE,b),b)=true V =eVE,v) EM) E“:dE (DYN)
(SE) 25, (5,E) (SE) o (sE)

Figure 1: Operational Semantics of one CA-STS

of the sender. Regular variables have been evaluated psdyim the rule EM when the message is
emitted. This dynamic evaluation handled in the operatisemantics allows to model service protocols
depending on context changes. Rule [NE executed in case of an internal service propagation that
gives rise to either a state (related to the rule INT) or arrenment (rule DYN) change. Thus, transi-
tions —¢ do not distinguish between internal evolutions coming fraither internal actions in services
or dynamic updates in the environment.

je{ln} i#] (8.E) 0 (s.E) (5.E) 0 (8),E))
type(x) = type(v) Ej = Ej @ (x,ew(Ej.V))

@Sty (S, Ei)yee s (81,Ep)s o] 2 [ast, -, (8, Ei)s - (), Ej), -, as)]

(COM)

ie{l.n} (s,E) —>o (§,E)
las, ..., (s,E),...,as) e [asi,....(s,E),

(INEr)

Figure 2: Operational SemanticsCA-STSs

3 Motivating Example

For illustration purposes, we consider a road info systeat ¢lonsists of users travelling by car on a
road and using mobile devices (called Clients), and InforiSes providing information requested by
the Clients. Info Services contain information about reutetels, restaurants, gas stations, multimedia
entertainment such as movies, music, images, shows, armg somuseums. Some of these services are
free (.9, Route or Gas Station Services) and others have to be paygdEntertainment or Museum
Services). For these latter ones the Client needs to cheftiehibank account.

For the sake of comprehension, we consider a reduced paur @fage study. Let us suppose that a
Client, before starting the trip, wants to plan a route. Afterds he/she wants to perform at the same time
the purchase of both a music album to listen during the trig,aticket for a museum located at his/her
destination to visit that same day. Ideally, the first retjomsst be satisfied by the nearest Route Service,
which considers the context information related to theriliecationloc (dynamic context attribute), and
to thetraffic andweatherof the environment (dynamic attributes). The nearest Eaitenent Service
should manage the second request, by taking into accowriegespriv (dynamic attribute) of the Client
(e.q, if the Client has privileges of subscriber he/she will payduced amount for an album), and its
server load(dynamic attribute). The third request has to be repliedhgyMuseum Service that also
takes into account Client privileggwiv, and theday to visit the museum (static attribute). This last
request could also be replied by the Entertainment Sersinee this service can handle the purchase of
any show (museum, concert, cinema, etc) as well. We conaltidre context attributes mentioned are
public and in our scenario they have a default value, thahge ©f the dynamic ones may change.



J. Cubo, E. Pimentel, G. Salaiin & C. Canal 67

This scenario requires to discover automatically the mppta@priate services for each client’s re-
guest among the available services (running at the momesdadt request) from the repository of Road
Info Services. According to the dynamic nature of the caniteformation, context changes at run-time
may occur. Thus, for instance, once the Client has requestedite, when some changes in his/her
dynamic context attribute®(g, loc) occur, the Route Service situated along the Client’'s wagtrau-
tomatically recompute the route according to the new cantalvies (rule DYN, Figurgl1). On the other
hand, we focus on the concurrent executions of several gotst@t run-time, that must be handledd,
the Client requesting concurrently a music alboum and a nmdaket). All these considerations make
our approach appropriate to model this kind of systems aruhtwlle the concurrent interactions of
protocols. For the sake of simplicity, we suppose the abtglaervices from the repository are Route,
Entertainment and Museum Services. In Fidure 3, the intesfaf Client and Info Services are given
for the scenario previously described.

X . Context Profile Route Service
Client Info Services loc (dynamic) :
traffic (dynamic) Route Service
weather (dynamic) [  Protocol ( RS)
C°,"‘e(§‘ P“’”,'e) Entertainment Service
priv (dynamic -
— Irc=getRoute ?route q Entertainment Service Sone Proﬁ.le
Protocol ( ES) priv (dynamlc).
Music Protocol ( AC) serverload (dynamic)

Co»ntext P rofi_le =
priv (dynamic) lesi=setltemp
L
fverload = Context Profile

Museum Protocol ( MC) "excess”]cancel! priv (dynamic) Museum Service
@ Imcz=stop? less=[serverlpad <"excess"] day (static)

N riceltemlitem, pri \_/—\ Museum Service )
Imci=regMuseu prTv priceftengitem,price © Protocol ( MS)

Imcs=priceMuselfm ?museumprice less=checkAgcount?account
Imes=checkAdcount!account less=bankBalance !credit

™ @)
Imes=bankBalance ?credit less=[credfit=price] 18gs=[credit<
purchasgjtem litem pHgelabort ? Im
® ©®

J @) 3
Imes=[balayice=price] Imsg=[balance < lesr= N _
les7=ack! «=[cre e Ims7=ack!
buyMuseym!museum prge]cancel! (Ug)—mss dit2p U — @
perchaseMuseum !museum™ Imss=[cred
mm:confirm’7 price]abort ?
L ! /) N

day="monday"]
cancel!

(r
\

Figure 3: CA-STS Protocols of Client and Info Services for 8uenario

The Client has three interfaces corresponding to the threet's requests (Route, Music (Album)
and Museum), which consist of three protocd®C( AC andMC, respectively), each one with a context
profile, and a signature. The latter one will be left impligiet it can be inferred from the typing of ar-
guments (made explicit here) in CA-STS labels. On the othedheach service (Route, Entertainment
and Museum) has an interface with a context profile, a (intpkignature and a protocoR§ ESand
MS, respectively). We assuniRC should interact witrRS§ AC with ES andMC with MS. It is worth
mentioning that thé& Sprotocol may be instantiated for communicating with diéietr client’s requests
related to movies, music, images, shows and so on. Hfsould also manage the Client's Museum re-
questMC. Let us consider.g, the labelRC: Ic, = reqRoutédest loc from the Client's Route protocoal,
wheredestis a data term which indicates the destination requestethéroute, andoc is a dynamic
context attribute of the Client's Route context profile. Rmute Service protoc&Sreceives the request
through a label such d8S: I;s, = setRout@destloc wheredestandloc are variables.

Figure[4 gives the domain ontology related to this road iyftesm. We present the classes used in
our scenario with their relationships. These classes septeconcepts which may be either a context
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attribute, an operation name, or an argument. This ontdiagybeen generated using Protégé Ho.2

XN o
(dest ) ( traffic ) ( serverload )
O\ N\

getRoute eqRoute ) balance

i

setRoute ) | |L;C ) ( weather Gr;ﬁm ) alance
N7 Nl -

is-a is-a
)

s-a

credit buyMuseum

Figure 4: Road Info System Ontology generated using Peod&@.2

4 Handling Concurrent Interactions

This section describes a composition language that alloesdcute and handle concurrently interactions
between a client and several services at the same time. @yudge addresses data dependency issues
that appear in the concurrent execution of client protoetsce all data received by a client are shared
and can be accessed by several of his/her protocols. Therefior mechanism allows to maintain data
consistency, even if a change occurs at run-time. We candatext problems coming from the data
dependencies, which would result in deadlocks during tleewtion of the protocols if not corrected.

4.1 Composition Language

In this section, we formalise a language to dynamically cosepseveral protocols, with the following
operatorssequencechoiceandparallel dependencyor concurrency).

4.1.1 Syntax

A client can execute aequencef the formP;.P,, whereP; andP, are two protocols: “execut® and
thenP,”. A non-deterministic choice;R- P, can be performed: “ruR; or P,”. The concurrent execution
of two protocolsPy, P, is written Py || pP: “executePy, P, in parallel while respecting data dependencies
specified inLD”. LD is a set ofabel dependencief(id : | >id’:1")}, wherel anl’ are labels, andl and
id” are protocol identifiers prefixing the label<D represents dependencies between arguments involved
in the labels of these two protocols. Symbol™indicates the order of execution in which labels must
be executedd.g, (p1:1 > p2:1’), | is executed befor€), beingl andl’ the dominant and dominated
labels, respectively. If more than two protocols are exatwubncurrently, then we will detect the data
dependencies by pairs of protocols. Here is the syntax atghgposition language:

The goal of our composition language is to illustrate withinimal expressiveness our service com-

position approach. We could have also included for instaepetition operators such & (executes?

4http://protege.stanford.edu/
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P = PP sequence
|  Pi+P>  non-deterministic choice
\ Pi||.LpoP, parallel dependency

several times) oP* (executed xtimes). Nevertheless, repetition can be achieved by langehanually
several times the execution Bf

4.1.2 Operational Semantics

We formalise the operational semantics of the compositmgliage. The rules presented in Fidgdre 5
extend the operational semantics of our model to the opsrai@viously considered. In SEQR¢;
refers to the correct final states of the protoBpl Both 4+ and || p are commutative, therefore the
symmetrical rules are omitted. Lalealepresents either the internal actmmran emissioralv, or a recep-
tion a?x. PLD1 performs the concurrent execution of the protoéglandP, w.r.t. a label dependency
(pr: 1 > p2:1"), and removes the label dependencies which include first element from the label
dependency sé&tD. PLD2 works as PLD1, but without removing label dependes)@ece appears in

a loop in its protocol. Last, PLD3 executes a label which dasdelong to the label dependency set.

(s1,E1) o (5, E1) (s2.E2) 10 (.E2) s1€Fq (s1.E1) o (). En)
(s1,E1).(%2,E2) b0 (SL.E).(2,E2)  (s1,E1).(S2,E2) 250 (%, E) (s1,E1) + (S2.E2) o (51, E1)
(SEQ1) (SEQ2) (NDCH)
(s1,E1) S50 (S).E1) (pr:l>p2:l/)€LD (s1,E1) S50 (S,E1) (pr:l>p2:l") €LD
LD’ = removeél,LD) (s1,E1) Lo #(s1,Eq) (s1,E1) 50 #(s1,Eq)
(s1,E)|Io (82, E2) ~+o (81, E) oy (82, E2) (s1,E)|lo (82, E2) ~+o (81, E1)|Lp (82, E2)
(PLD1) (PLD2)

(s1,E1) |—>0 (s1,E1) Vld € LD(p1 : | ¢ getdominantlabel(ld) A p; : | ¢ getdominatedlabel(ld))

| (PLD3)
(s1,E1)||Lo (2, E2) =0 (S}, En)|[Lp (%2, E2)

Figure 5: Operational Semantics of the Composition Languag

We define formally the functions used in the operational sgics Functionremovél,LD) elim-
inates the label dependencies which includas first element from the label dependency lsBt=

{Idy,...,1dn}: removel, {Idy,...,Idn}) = {Idi|ldic(1. = (11 > 12) € {Idq,....Idn} Al £ 1}
Transition (s, E;) '—>0 x(s1,E1) is equivalent ta(s;, E1) —o * '—>0—>0 x(s1,E1), where—, * represents
any sequence of transitions,. This will determine if the label belongs to a loop in transitions in a

single protocol, starting from stageand ending in the same staeFunctionsget. dominantlabel and
get.dominatedlabel return respectively the dominant and dominated labels fidaibel dependency:

getdominantlabel((id : | >id’:1")) =id : |;getdominatedlabel((id : | >id": 1)) =id’: I’

Next, we describe two algorithms to detect label depenésriniconcurrent executions of protocols.
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4.2 Dependency Analysis

Dependency analysis is a technique to identify and determata dependencies between service pro-
tocols. The main difficulty in analysing dependencies fonaarent executions is how to obtain the
relationship between arguments. Protocols evolving caantly need to impose an order in their execu-
tion if there exist data dependencies. A data dependenay®udchen a protocol receives a data, which
is stored in the user device, and when another client proeumesses this data., wants to send it).
To detect and handle these dependencies, our semi-autotleg&ndency analysis process consists of
three steps: (i) a first algorithm computes a set of pairs ldlldependencies between two protocols,
(i) the user makes a selection among these pairs and de&srtiie order of execution of the selected
ones (using the symbot="), which allows to build an initial label dependency setddni) a second
algorithm expands the dependencies chosen by the user tas sgjuired by the semantic rules PLD1,
PLD2 and PLD3 formalised in Figufé 5.

The first step is performed by Algorithinh 1, that takes as iwoatprotocols, and a domain ontology.
It returns all the label dependencies among the argumees tyfithe operation profiles of both protocols.
Our algorithm determines that two labels are dependentibg tise functiongdegreematch defined by
Paolucciet al. [23] (page 339), antlypeto compare their arguments and types, respectively. Famcti
degreematchdefines four degrees of matching based on semantic matchirgct ,plugIn, subsume,
fail}. The degre€ail indicates that the two arguments compared do not match sialén so we do
not consider that there exists a data dependency betwemn Tree remaining three indicate that there is
a semantic-based data dependency between the argumentsioFargumentsn Algorithm[1 returns

Algorithm 1 pairs_labelLdependencies

returns a set of pairs of label dependencies for two pro®col
inputs protocolsP; = (A1,S,11,Fc1,Th) andP = (A2, S, I2,Fcp, T2), ontologyOnt
output a label dependency sebp

1: LDy := 0 // initial value for set of pairs of label dependency
2: forall Ipy € A; do

3: Ayp, = argumentélpy ) // gets the arguments by

4 for all Ip, € Ap do

5 Ajp, = argumentslpz) // gets the arguments bp,

6: ATD:= false // by default no dependencies

7. for all argip, € Ajp, do

8 for all argp, € Ap, do

9 DMarg := degreematchargp, ,argp,, Ont)

10: DMy :=typgargip, ) = typeargp, )

11: if (DMarg # fail) ADMyp then

12: ATD:= true // argument and type dependency
13: end if

14: end for

15: end for

16: if ATDthen

17: LDp:=LDpU(p1:Ip1,p2:1Ip2) // adds a pair
18: end if

19:  end for

20: end for

21: retun LDy // returns a set of pairs of label dependencies

all the arguments belonging to a latbet (b,m,d, f): argument§(b,m,d, f)) = f

The complexity of AlgorithnilL is quadratic, (®- (I - a)), wherek is a constant that indicates the
number of dependent labels, ahdnda are the average numbers of elements in labels and arguments,
respectively. In the second step, the set of pairs of lahetnidencies returned by the previous algorithm
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is showed to the user. The user selects the pairs of labehdepeies he/she wants to preserve, and
chooses the execution order for each pair. The result isshd@pendency set. GivéD, = {(py: 1, p2:

1), (pe: 1, p2:1")}, if the user: (i) only selects the first pair appearind Dy, i.e.(py: 1, p2:1"), and (ii)
indicates that’ has to be executed befdrethen the result will b&D = {(p2: 1" > p1:1)}.

Last, Algorithm2 takes as input the two protocols of Algnid and the set generated in the former
step, and returns an extended label dependency set. Thelalgexpands the set of label dependencies
required by the semantic rules PLD1, PLD2 and PLD3. For eabhlldependenchd, the algorithm
selects all the labelgl;, i € {1,...,n} preceding the dominant label laf in the corresponding protocol.
Then, for eaclpl; the algorithm adds a new label dependency constituted hypthas dominant label
and the dominated label &d as dominated label. For instance, given two proto8plwith labelsl,|” in
sequence ang, with 1”7, if LD = {(py: I’ > p2:1”)} is the label dependency set obtained in the second
step, then AlgorithnI2 returns a new label dependenciBet={(py: | > p2: "), (pr:l' > p2:1”")}.

Algorithm 2 extendedabel.dependencies

returns an extended set of label dependencies from a lalpelndiency set LD

inputs protocolsP; = (A1,S,11,Fc1,Th) andP = (A2, S, I2,F 2, To), label dependency seD
output a label dependency sebe

1: LDe:= LD // sets the extended set equal.®
2: forall Id € LD do

3: fl ;== getdominantlabel(ld) // gets the dominant label

4:  sl:=getdominatedlabel(ld) // gets the dominated label

5: ps := getid_protocol( fI) // protocolid of dominant label

6: ps := get.id_protocol(sl) // protocolid of dominated label

7. PL := get_previouslabelg fI, Ty, ) // gets the previous labels to the dominant lafleih the transitionsT,, of its protocolps
8: forall pl € PLdo

9: if (ps: pl > ps:sl) ¢ LDethen

10: LDe :=LDeU(ps : pl > ps: sl) // adds a label dependency
11: end if

12:  end for

13: end for

14: return LD // returns the extended set of label dependencies

Functionget.id _protocol gets the protocol identifier of a lab@d : 1): getid_protocol((id : 1)) =id
Functionget previouslabelsreturns the labels preceding a labat transitionsT of a protocol:
getpreviouslabelsl, T) = {I'|3(s-1,li,s) e TAIi={1,....n}Ali=1"Alpy1 =1}

The complexity of Algorithni P is linear, @d - TPL- pl), whereld is the number of label depen-
dencies,T PL the average number of transitions to check in the funajemnpreviouslabels andpl the
number of labels preceding a concrete label.

Example. Going back to our example, the Client wants to execute thempobRC (route request) in
sequence with the parallel execution of the protoé@gmusic album request) adC (museum ticket
request)RC.(AC||_.pMC). Our approach builds the set of label dependencies beth@amdMC. First,
Algorithm 1 takes as input the two protocosC and MC, and the domain ontology presented in Fig-
ure[4. It returns a set of pairs of label dependencies bet&€amdMC: LDp = {(lag:Img); (lags: Img }
(protocol identifiers in labels have been removed), sincehfecheckAccounbperation profile in both
AC and MC, currentAccountexact matchesaccount and forbankBalance balanceis semantically
compatible tocredit, with degree of matclhlugIn. However, for instance, faregAlbumand reqMu-
seumof AC andMC respectively, the degree of match of arguments and typesiis, since although
priv exact matchespriv, album fail with respect tomuseum Then, the resulting set is given to
the user, who selects the pairs of label dependencies heshis to preserve, and chooses the exe-
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cution order for each pair. Let us suppose the user only tsefbe pair(lag,,Imc,) to control the con-
current execution of the operatiaheckAccounin both AC and MC, by executinglye, beforelng,:

LD = {(lag, > Ime,) }- Last, Algorithn{2 take&D as input and extends it with new dependencies needed
to execute the semantic rules PLD1, PLD2 and PLD3. Thus, varothe final label dependency set:
LDe = {(lag, > Img); (lag, > Ime), (lacs > Imey), (lagy > Img,) }- This means thate.g, for (lag, > Img,),

lag, is executed beforbyg,, i.e., the labelAC: 15, = reqAlbumalbum priv is executed before the label
MC : Img, = checkAccouriiccount and so on. In such a way, the algorithm controls thgtwill not be
executed irMC until AC runsl g, .

4.3 \Vrification of Label Dependencies

The label dependencies construction process is erroepiince it requires human intervention. This
process may provoke possible inconsistencies which rasueadlocks during the execution of the
protocols according to the label dependency set computedously. Therefore, in this section we
propose some verification techniques to automaticallyoti¢tese problems.

To illustrate the need of these verification techniques,ages on a simple example. In Figlde 6, we
give,e.g, Client’s Planning and Hotel protocoBC andHC respectively. The Planning protocol requests
for a travel plan to a specific address, and receives a magedrta close to that address. The Hotel
protocol searches for a hotel in that map, and gets the déistinaddress. By applying our dependency
analysis, Algorithn 1L first returns the pairs of label deparay: LDy = {(lps;, Ins,), (Ips, Ins, ) }- Second,
let us suppose the result of the user selectionB:= {(lns, > lps ), (Ips, > Ing)}. Last, the extended
label dependency set iEDe = {(Ihs, > lps,); (In, > lps;): (Ips, > lhsy)s (Ips, > Ins ) }- In this set, the two

Client
Planning Protocol ( PC) Hotel Protocol ( HC)
Ipsi=reqMap !address Ihsi=searchHotel!map
® ®

Ipse=recMap ?map Ihs2=getAddress ?address

Figure 6: Client’'s Planning and Hotel Protocols Executiranurrently

label dependencig@ns, > lps,) and(lps, > lns;) provoke a deadlock, since they are in mutual exclusion.
The two (crossed) label dependencigsg, > lps) and(lps, > Ing ) also generate a deadlock, since the
Planning protocol cannot start without taddressand neither the Hotel protocol without theap The
user will be informed to remove one of the label dependengt@sh provoked this deadlock situation.
Algorithm[3 takes as input two protocols and their label delgmcy set, and returns a set of traces
(pairs of label dependency) leading to deadlock states.oTihat, the algorithm compares all the domi-
nant labels from the label dependency set with the domirated. If for two label dependencies, a same
label is dominant and dominated in both directions or thetist &rossed dependencies as described
above, then there is a deadlock situation. This problem ddee tnotified to the user in order to let
him/her modify the selection or execution ordering of tHeeladependencies to avoid that inconsistency.
The complexity of AlgorithniB is quadratic, (@2 - T PL), whereld indicates the number of label
dependencies, andPL is the average number of transitions to check in the fungeirpreviouslabels
Example. For the scenario of our case study, we applied Algorithm 3dmetked that no problems
exist in the label dependency generated in Seéfidn 4.2 share is no trace (pair of label dependency)
that provokes a deadlock mismatch when executing condiyfeoth protocolsAC andMC, i.e., LDy =
0. Therefore, our label dependency set is correct.
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Algorithm 3 labelLdependencyerification

detects possible inconsistencies specified in a label digpey set

inputs protocolsP; = (A1,S1,11,Fc1,Th) andP = (A2, S, I2,F o, T2), label dependency seD
output a deadlocked label dependency IsBy

1. LDy := 0 // initial value for set of pairs of deadlocked label degemcy
2: forall Idp € LD do

3: fldp := getdominantlabel(ld p) // gets the dominant label
4. sld p:= get.dominatedlabel(ldp) // gets the dominated label
5: Pridp := getid_protocol( fldp) // protocolid of dominant label
6: forall Idge LD do
7. if Idp # Idg then
8: fldg := get dominantlabel(ldg)
9: sldg:= getdominatedlabel(ldg)
10: Pfidg := getid_protocol( fldg) // protocolid of dominant label
11: end if
12: if ((fldp==sldg) A (sldp== fldg))
V(sldge get previouslabelg fldp, Ty, ) A sldp€ get previouslabelg fldg, Ty, ) then
13: LDy :=LDq U (Idp,Idg) // adds the pair of deadlocked label dependencies
14: end if
15:  end for
16: end for

17: return LDgq // returns the set of pairs of deadlocked label dependencies

5 Tool Support and Experimental Results

5.1 Tool Support

Our approach for handling concurrency of context-awareieeprotocols, has been implemented as part
of a prototype tool, calledonTexTive, which is integrated into our toolboXTACA [8]. ConTexTive

has been implemented Rython with the purpose of being incorporated inside a user devicaims

at discovering services related to a client request andlingnthe service composition by means of
our composition language. We have implemented the algosithresented in this work, in order to
automatically detect data dependencies and check thakod&agituations do not occur when executing
protocols concurrently. Figufg 7 gives a tool support oenof how our approach has been encoded.
Our approach takes client and service interfaces specisietVi. CA-STSs, and an XML ontology of

a specific domain as input, and detects a label dependen@y®efor each pair of protocols executing
concurrently, and checks if this set is consistent (freeeafdibcks).

~

-
. ConTexTive .
In_lerface Model : Handling Data-Based Concurrency in Context-Aware Service Protocols Intgrface Model:
Client's requests Available Services
Context Profile m Ontology Context Profile

Signature Signature
Service Monitoring Engine (SME)

CA-STS Protocol | ———» ) CA-STS Protocol

°
Eabel Dependency (LD{)}( Verification of LD %

modify LD #— deadlock

Figure 7: Tool Support Overview

ConTexTive has been validated on several examples, such as an on-tmauter material store, a
travel agency, an on-line booking system or the case stuelepted here: a road info system.
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5.2 Experimental Results

We have conducted a small experimental study with the assistof a group of volunteers. This study
helped us to determine how our approach behaves in termsabfagng the benefits to find out data
dependencies in concurrent executions and to handle tlegpsndencies in terms of effort required, ef-
ficiency and accuracy of the dependencies detected. Usdmsmed tests either in a manual or in an
interactive (using the tool) way. In order to perform thegewe provided them a graphical representa-
tion of the interfaces and a specific domain ontology to bel uséhe concurrent interaction, for each
problem. Each user solved different problems using diffespecifications (manual or interacﬁ)eto
prevent previous user knowledge of a particular case stlidple[1 shows the problems used for our
study, which are organised according to increasing sizecantplexity with respect to the number of
interfaces (client and services) involved and the ontglagywvell as the overall size of client protocols as
a total number of states and transitions. Tests considdréte&lient protocols interacting concurrently.
The table also includes the comparison of experimentalteessing both manual and interactive spec-
ification of data dependencies and their correspondingugixecpriorities. We consider as parameters
the time required to solve the problem (in seconds), the murmmblabel dependencies detected (Depend.
in Table[1), and the number of errors in the specified datardipey set.

Size Parameter
Problem Interfaces Client Protocols Time(s) Depend.| Errors
Client | Services| States| Transitions Mo MTT [MJI
pc-store-v02 2 2 10 8 61,80 | 19,14 | 1 31210
ebooking-v04 2 3 12 13 51,60 | 3,17 1|11]01|0
roadinfo-v06 3 3 16 18 113,62 1651| 5| 4 | 3 |0
travel-agency-v04 3 5 36 36 271,84 | 62,38 12| 12| 4 | O

Table 1: Experimental Results for the Manual (M) and Intevaql) Specifications

As it can be observed in the results, there is a remarkalfierelifce in the amount of time required
to solve the different problems between manual and inteeaspecification. We measure as errors the
number of wrong, unnecessary or non-detected label depeiede Our tool always detects all the data
dependencies and it uses semantic matching to determise dependencies, so this is a clear advantage,
which increases with the complexity of the problem, comg@dmethe manual specification. Thus, the
time elapsed for detecting dependencies by using our tqudrésnces a linear growth with the size of
the problem. Therefore, scalability and performance oftoal are satisfactory, and in the worst case
(travel-agency-v04) the time required is roughly 1 minuthich is a reasonable amount of time.

6 Related Work

This section compares our approach to related works by esigahg our main contributions. We succes-
sively describe works related to service models by usingppads and/or context information, and works
focusing on monitoring of service composition to detechd#pendencies in the protocol interaction.
Context-based protocol models address the design andrimeptation of applications which are
able to be modified at the behavioural interoperability ledepending on context information. Not
many works have been dedicated to model context-awarecegowtocols. Braione and Picdd [7] have

5The scenarios were executed on an Intel Pentium CPU 3GHz,RR@B, with Microsoft Windows XP Professional SP2.
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proposed a calculus to specify contextual reactive syssaparating the description of behaviours and
the definition of contexts in which some actions are enabtedhibited. Related to context-aware adap-
tation, Autili et al.[3] present an approach to context-aware adaptive sen@mvices are implemented
as adaptable components by using the CHAMELEON framewdrkT[Bis approach considers context
information at design time, but the context changes at ime-tire not evaluated. In our approach, we
propose a model to specify protocols based on transitioresgsand extended with value passing, con-
text information and conditions, which has not been stugietdn previous works. We consider context
changes not only at design-time, but also at run-time, simcenodel allows the continuous evaluation
of dynamic context attributes (according to the executibtie operational semantics).

As regards concurrency, models for this discipline emergadh as CSP [15] and CCS [19], which
address concurrent systems from an algebraic perspeciiiie.r-calculus [20] builds on CCS as a
process algebra for communicating systems that allowseegmn of reconfigurable mobile processes.
Related to service concurrency, recent approaches hawvedeelicated to the interaction of services at
run-time with the purpose of composing correctly their exsn. In addition, several works describe
different ways to present data dependencies accordingetoubke for different purposes. Vukovic [25]
presents an approach that focuses on the recompositior obthposite service during its execution, ac-
cording to changes in the context. It provides a failurestht solution, but user preferences and control
of independent requests are not controlled, whereas ouelnsagports that. Mrissat al. [22] present
a context-based mediation approach to solve semanticdgeteeities between composed Web services
by using annotation of WSDL descriptions with contextudbds. Their architecture automatically gen-
erates and invokes service mediators, so data heterogsnedtween services are handled during the
composition using semantics and contexts. These works tbamlle data dependencies during the
concurrent execution of service protocols. Basial. [5] model such dependencies using a directed
edge between nodes. They generate a probabilistic depgndeaph as concatenation of all identi-
fied dependencies. Ensél[14] presents a methodology tonatitally generate service dependency
model considering the direction of dependencies.[In [1Tjakget al. give a formal service specifi-
cation describing two types of dependency: dependency sigramsent (between the input and output
interfaces of an operation), and dependency on sequerder @mong operations of a service). Yan
al. [26], propose an approach to discover operation depeneensing semantic matching of input and
output interfaces and the invoking order among operatidiey construct frequency and dependency
tables in order to derive indirect dependency relatiorshiptransitive closure algorithm. Most of these
approaches do not consider a combination of both the daratdity and the execution order to detect
dependencies. To the best of our knowledge, the only atteakistg both restrictions into consideration
is [26]. Compared to these related works, our approach datesnty detect data dependencies, address-
ing both direction and order, that appeared between conwations, but it also allows context-aware
protocol concurrent executions at run-time by means of oorgosition language. In addition, in order
to analyse dependencies we rely on semantic matching tpefsbetween data.

7 Concluding Remarks

In this paper, we have described a model to formalise coftezre clients and services. We have also
proposed a composition language to handle dynamically agheuwrent execution of service protocols.
We have defined algorithms to detect data dependencies asewatal protocols executed on the same
user device. These algorithms make possible to establisk poiorities on the concurrent execution of
protocols affected by these dependencies. In this way, munoach allows to maintain data consistency,
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even if a parallel change occurs at run-time. Last, we hawpqgsed verification techniques to automat-
ically detect possible inconsistencies specified by the whkde building the data dependency set. We
have implemented a prototype to6hnTexTive, which aims at handling the concurrent interaction of
service protocols at run-time. Our approach focus on meaitepervasive systems.

We are currently working on avoiding the human interventiorihe process of building the data
dependency set by means of priorities previously defined Vi allow to determine automatically the
execution order of the detected dependencies, reducirtgnireequired in the interactive specification.
We are also extending our approach to solve other probleissnain the context-aware service compo-
sition, such as exception or connection loss. As regardsewtork, our main goal is to incorporate our
prototype tool inside a user device in order to support coeogy in real-world applications running on
mobile devices. We also plan to extend our framework to &acdkinamic reconfiguration of services,
handling the addition or elimination of both services andtegt information. In addition, we want to
include the repetition operators in our composition lamguand to handle concurrent execution of more
than two protocols by detecting at the same time all datardBp®ies existing among several protocols.
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