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Dependency analysis is a technique to identify and determine data dependencies between service
protocols. Protocols evolving concurrently in the servicecomposition need to impose an order in
their execution if there exist data dependencies. In this work, we describe a model to formalise
context-aware service protocols. We also present a composition language to handle dynamically the
concurrent execution of protocols. This language addresses data dependency issues among several
protocols concurrently executed on the same user device, using mechanisms based on data semantic
matching. Our approach aims at assisting the user in establishing priorities between these dependen-
cies, avoiding the occurrence of deadlock situations. Nevertheless, this process is error-prone, since
it requires human intervention. Therefore, we also proposeverification techniques to automatically
detect possible inconsistencies specified by the user whilebuilding the data dependency set. Our
approach is supported by a prototype tool we have implemented.

1 Introduction

Service composition is a crucial paradigm in Service Oriented Computing (SOC), since it allows to build
systems as a composition of pre-existing software entities, COTS (Commercial-Off-The-Shelf applica-
tions) rather than programming applications from scratch. An important issue of service composition
is to find out services with capabilities compatible to the user requirements in order to compose them
correctly. In a traditional distributed environment, in which all the requests are served in the same way,
service composition is straightforward. The introductionof Web-enabled hand-held devices has created
the necessity of a more context oriented composition in which the produced response is aware of certain
user and environment information on the requesting client.Thus, context-awareness enables a new class
of applications in mobile and pervasive computing, providing relevant information to users. Therefore,
context information can help users to find nearby services, to decide the best service to use, to control
reaction of systems depending on certain situations, and soon.

Services are accessed through their public interfaces thatmay distinguish four interoperability lev-
els [9]: (i) thesignature levelprovides operation names, type of arguments and return values, (ii) the
behavioural or protocol levelspecifies the order in which the service messages are exchanged with its
environment, (iii) theservice leveldeals with non-functional properties like temporal requirements, re-
sources, security, etc., and (iv) thesemantic levelis concerned about service functional specifications
(i.e., what the service actually does). In industrial platforms,service interfaces are usually specified us-
ing signatures (e.g., WSDL1), but some recent research works [1, 6, 11, 27] have extendedinterfaces with
a behavioural description or protocol. Protocols are essential because erroneous executions or deadlock

∗This work is partially supported by the projects TIN2008-05932 and P06-TIC-02250 funded by the Spanish Ministry of
Science and Innovation (MICINN) and FEDER, and the Andalusian local Government, respectively.

1http://www.w3.org/TR/wsdl
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situations may occur if the designer does not take them into account while composing clients and ser-
vices [18, 24]. In this way, service protocols evolving concurrently in a composition need to impose an
order in their execution if there exist data dependencies. Dependency analysis is a technique to identify
and determine data dependencies between service protocols. To the best of our knowledge, not many
works have tackled the handling of concurrent interactionsof service protocols through dependency
analysis [5, 10, 14, 17, 26].

In this work, we focus on systems that consist of clients2 (users with a mobile device such as a PDA
or a smart phone) and services modelled with interfaces constituted by context information, a signature,
and a protocol description (taking conditions into account). We also consider a semantic representation
of service instead of only a syntactic one. We use OWL-S ontologies3 to capture the semantic description
of services by means of relationships between concepts within a specific domain. In order to address the
concurrency in the service composition in these systems, wefirst formalise a model for context-aware
clients and service protocols. Second, we propose an approach to handle dynamically the concurrent
execution of context-aware service protocols on the same user device, using mechanisms based on data
semantic matching. Our approach aims at assisting the user in establishing priorities between these de-
pendencies, avoiding the occurrence of deadlock situations. Constraints on the concurrent execution can
be specified using a composition language which defines operators for executing a sequence of protocols,
a non-deterministic choice between protocols, and for controlling the data dependencies existing among
several protocols executed at the client level at the same time. In addition, since this process requires
human intervention (error-prone), we use analysis techniques to automatically verify the correct execu-
tion order of the protocols with respect to the built data dependency sets. Our approach is supported by
a prototype tool we have implemented. To evaluate the benefits of our approach, we have applied it to
different case studies. We analyse the experimental results obtained either with manual or interactive
specification of data dependencies and their correspondingexecution priorities.

The rest of this paper is structured as follows. Section 2 presents our model formalising context-aware
clients and service protocols. In Section 3, we introduce a case study we use throughout the paper for
illustration purposes. Section 4 presents the handling of concurrent interactions of context-aware service
protocols. Section 5 describes theConTexTive prototype tool that implements our approach, and shows
some experimental results. Section 6 compares our approachto related works. Finally, Section 7 ends
the paper with some concluding remarks.

2 Context-Aware Service Model

2.1 Interface Model

Our model describes client and service interfaces using context profiles, signatures and protocols. Con-
text profiles define information which may change according to client preferences and service environ-
ment. Signatures correspond to operations profiles. Protocols are represented using transition systems.

A context is defined as“the information that can be used to characterise the situation of an entity.
An entity is a person, place, or object that is considered relevant to interaction between a user and an
application including the user and application themselves” [13]. Context information can be represented
in different ways and can be classified in four main categories [16]: (i) user context: role, preferences,
language, calendar, social situation or privileges, (ii) device/computing context: network connectivity,

2In the sequel, we use client as general term covering both client and user with a mobile device.
3http://www.daml.org/services/owl-s/
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device capabilities or server load, (iii) time context: current time, day, month or year, and (iv) physical
context: location, weather or temperature. For our purpose, we only need a simple representation where
contexts are defined by context attributes with associated values. In addition, we differentiate between
static context attributes (e.g., role, preferences, day, ...) and dynamic ones (e.g., network connectivity,
current time, location, privileges, ...). Dynamic attributes can change continuously at run-time, so they
have to be dynamically evaluated during the service composition. Last, both clients and services are
characterised by public (e.g., weather, temperature, ...) and private (e.g., personal data, bandwidth, ...)
context attributes. Thus, we represent the service contextinformation by using acontext profile, which is
a set of tuples(CA,CV,CK,CT), where:CA is a context attribute or simply context with its corresponding
valueCV, CK determines ifCA is static or dynamic, andCT indicates ifCA is public or private (e.g.,
(priv, Guest, dynamic, public), wherepriv is a public and dynamic context which corresponds to user
privileges withGuestas value).

A signaturecorresponds to a set of operation profiles. This set is a disjoint union of provided and
required operations. An operation profile is the name of an operation, together with its argument types
(input/output parameters) and its return type.

A protocol is represented using a Labelled Transition System (LTS) extended with value passing,
context variables and conditions, that we call Context-Aware Symbolic Transition System (CA-STS).
Conditions specify how applications should react (e.g., to context changes). We take advantage of using
ontologies to determine the relationship among the different concepts that belong to a domain. Let us
introduce the notion of variable, expression, and label required by our CA-STS protocol. We consider
two kinds of variables, those representing regular variables or static context attributes, and variables
corresponding to dynamic context attributes (named context variables). In order to distinguish between
them, we will mark the context variables with the symbol “∼” over the specific variable. Anexpressionis
defined as a variable or a term constructed with a function symbol f (an identifier) applied to a sequence
of expressions,i ∈ f (F1, . . . ,Fn), Fi being expressions.

Definition 1 (CA-STS label) A label corresponding to a transition of a CA-STS is either aninternal
action τ (tau) or a tuple(B,M,D,F) representing an event, where: B is a condition (representedby
a boolean expression), M is the operation name, D is the direction of operations (! and ? represent
emission and reception, respectively), and F is a list of expressions if the operation corresponds to an
emission, or a list of variables if the operation is a reception.

Definition 2 (CA-STS Protocol) A Context-Aware Symbolic Transition System (CA-STS) Protocol is a
tuple (A,S, I ,Fc,T), where: A is an alphabet which corresponds to the set of CA-STS labels associated
to transitions, S is a set of states, I∈ S is the initial state, Fc⊆ S are correct final states (deadlock final
states are not considered), and T⊆ S×A×S is the transition function whose elements(s1,a,s2) ∈ T are
usually denoted by s1

a
−→ s2.

Finally, aCA-STS interfaceis constituted by a tuple(CP,SI,P), where:CP is a context profile, and
SI is the signature corresponding to a CA-STS protocolP. Both clients and services consist of a set of
interfaces. We assume they have several protocols with their corresponding signatures, and a context
profile for each one. For instance, let us consider a client with two different protocolsPc1 andPc2. This
client consists of two interfaces such as:Ic1 = (CPc1,SIc1,Pc1) andIc2 = (CPc2,SIc2,Pc2).

We adopt a synchronous and binary communication model (see Section 2.2 for more details). Clients
can execute several protocols simultaneously (concurrentinteractions). Client and service protocols can
be instantiated several times. At the user level, client andservice interfaces can be specified using:
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(i) context information into XML files for context profiles, (ii) WSDL for signatures, and (iii) busi-
ness processes defined in industrial platforms, such as Abstract BPEL (ABPEL) [2] or WF workflows
(AWF) [12], for protocols. Here, we assume context information is inferred by means of the client re-
quests (HTTP header of SOAP messages), and we consider processes (clients and services) implemented
as business processes which provide the WSDL and protocol descriptions.

2.2 Operational Semantics of CA-STS

We formalise first the operational semantics of one CA-STS service, and second ofn CA-STS services.
Next, we use a pair〈s,E〉 to represent an active states∈ Sand an environmentE. An environment is a
set of pairs〈x,v〉 wherex is a variable, andv is the corresponding value ofx (it can be also represented
by E(x)). The functiontype returns the type of a variable. We use boolean expressionsb to describe
CA-STS conditions. Regular and context variables are evaluated in emissions and receptions (by con-
sidering the current value of the context,e.g., the current date), respectively. Therefore, two evaluation
functions are used in order to evaluate expressions into an environment: (i)evevaluates regular variables
or expressions, and (ii)evc evaluates context variables changing dynamically. We define evas follows:

ev(E,x),

{

E(x) if x is a regular variable

x if x is a context variable

ev(E, f (v1, . . . ,vn)), f (ev(E,v1), . . . ,ev(E,vn))

Functionevc is defined in a similar way toev, but it only considers context variables. This is because
we first applyev in order to evaluate all the regular variables:

evc(E,x), E(x)

wherex is a context variable. We also define an environment overloading operation “⊘” such that, given
an environmentE, E⊘〈x,v〉 denotes a new environment, where the value corresponding tox is v.

We present in Figure 1 the semantics of one CA-STS (−→o), with three rules that formalise the mean-
ing of each kind of CA-STS labels: internal actionsτ (INT), emissions (EM), and receptions (REC); and
one rule to consider the dynamic update of the environment according to the context changes at run-time
(DYN). Note thatw.r.t. Definition 1,b ∈ B is a condition,a∈ M is an operation name, andx ∈ F and
v ∈ F correspond to a list of variables and expressions, respectively. Conditionb may contain regular
and/or context variables and both of them must be evaluated in the environment of the source service
(sender), because the decision is taken in the sender. However, evaluation of expressionsv only affects
regular variables (rule EM), since context variables will be evaluated in the target service (receiver) to
consider the context values when the message is received (see rule COM in Figure 2). We assume that the
dynamic modification of the environment will be determined by different external elements depending
on the type of context (e.g., user intervention, location update by means of a GPS, time or temperature
update, and so on). Then, we model this situation by assuminga transition relation which indicates the
environment update, denoted byE ; dE′, whereE′(x) 6= E(x) only if x is a dynamic context variable.

The operational semantics ofn (n > 1) CA-STSs (−→c) is formalised using two rules. A first syn-
chronous communication rule (COM, Figure 2) in which value-passing and variable substitutions rely on
a late binding semantics [21] and where the environmentE is updated. A second independent evolution
rule (INEτ , Figure 2). A list of pairs〈si ,Ei〉 is represented by[as1, . . . ,asn]. Rule COM uses the function
evc to evaluate dynamically in the receiver the context changesrelated to the dynamic context attributes
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(s
b,τ
−−→ s′) ∈ T evc(ev(E,b),b) = true

〈s,E〉
τ
−→o 〈s′,E〉

(INT)
(s

b,a?x
−−−→ s′) ∈ T evc(ev(E,b),b) = true

〈s,E〉
a?x
−−→o 〈s′,E〉

(REC)

(s
b,a!v
−−−→ s′) ∈ T evc(ev(E,b),b) = true v′ = ev(E,v)

〈s,E〉
a!v′
−−→o 〈s′,E〉

(EM)
E ; dE′

〈s,E〉
τ
−→o 〈s,E′〉

(DYN)

Figure 1: Operational Semantics of one CA-STS

of the sender. Regular variables have been evaluated previously in the rule EM when the message is
emitted. This dynamic evaluation handled in the operational semantics allows to model service protocols
depending on context changes. Rule INEτ is executed in case of an internal service propagation that
gives rise to either a state (related to the rule INT) or an environment (rule DYN) change. Thus, transi-
tions−→c do not distinguish between internal evolutions coming fromeither internal actions in services
or dynamic updates in the environment.

i, j ∈ {1..n} i 6= j 〈si ,Ei〉
a!v
−−→o 〈s′i ,Ei〉 〈sj ,E j〉

a?x
−−→o 〈s′j ,E j〉

type(x) = type(v) E′
j = E j ⊘〈x,evc(E j ,v)〉

[as1, . . . ,〈si ,Ei〉, . . . ,〈sj ,E j〉, . . . ,asn]
a!v
−−→c [as1, . . . ,〈s′i ,Ei〉, . . . ,〈s′j ,E

′
j〉, . . . ,asn]

(COM)

i ∈ {1..n} 〈si ,Ei〉
τ
−→o 〈s′i ,E

′
i 〉

[as1, . . . ,〈si ,Ei〉, . . . ,asn]
τ
−→c [as1, . . . ,〈s′i ,E

′
i 〉, . . . ,asn]

(INEτ )

Figure 2: Operational Semantics ofn CA-STSs

3 Motivating Example

For illustration purposes, we consider a road info system that consists of users travelling by car on a
road and using mobile devices (called Clients), and Info Services providing information requested by
the Clients. Info Services contain information about routes, hotels, restaurants, gas stations, multimedia
entertainment such as movies, music, images, shows, and so on, or museums. Some of these services are
free (e.g., Route or Gas Station Services) and others have to be payed (e.g., Entertainment or Museum
Services). For these latter ones the Client needs to check his/her bank account.

For the sake of comprehension, we consider a reduced part of our case study. Let us suppose that a
Client, before starting the trip, wants to plan a route. Afterwards he/she wants to perform at the same time
the purchase of both a music album to listen during the trip, and a ticket for a museum located at his/her
destination to visit that same day. Ideally, the first request must be satisfied by the nearest Route Service,
which considers the context information related to the Client locationloc (dynamic context attribute), and
to the traffic andweatherof the environment (dynamic attributes). The nearest Entertainment Service
should manage the second request, by taking into account privilegespriv (dynamic attribute) of the Client
(e.g., if the Client has privileges of subscriber he/she will pay areduced amount for an album), and its
server load(dynamic attribute). The third request has to be replied by the Museum Service that also
takes into account Client privilegespriv, and theday to visit the museum (static attribute). This last
request could also be replied by the Entertainment Service,since this service can handle the purchase of
any show (museum, concert, cinema, etc) as well. We considerall the context attributes mentioned are
public and in our scenario they have a default value, that in case of the dynamic ones may change.
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This scenario requires to discover automatically the most appropriate services for each client’s re-
quest among the available services (running at the moment ofeach request) from the repository of Road
Info Services. According to the dynamic nature of the context information, context changes at run-time
may occur. Thus, for instance, once the Client has requesteda route, when some changes in his/her
dynamic context attributes (e.g., loc) occur, the Route Service situated along the Client’s way must au-
tomatically recompute the route according to the new context values (rule DYN, Figure 1). On the other
hand, we focus on the concurrent executions of several protocols at run-time, that must be handled (e.g.,
the Client requesting concurrently a music album and a museum ticket). All these considerations make
our approach appropriate to model this kind of systems and tohandle the concurrent interactions of
protocols. For the sake of simplicity, we suppose the available services from the repository are Route,
Entertainment and Museum Services. In Figure 3, the interfaces of Client and Info Services are given
for the scenario previously described.

Info Services
Route Service

Entertainment Service

Client
Route Protocol ( RC)

Music Protocol ( AC)

lrc1=reqRoute !dest,lõc

r0

lrc2=getRoute?route

lac1=reqAlbum !album ,pr�v

a0

a1

lac3=priceItem?album ,price

a2

lac4=checkAccount!currentAccount

a3

lac5=bankBalance ?balance

Museum Protocol ( MC)

lmc1=reqMuseum !museum,pr�v

m0

m1

lmc3=priceMuseum ?museum,price

m2

lmc4=checkAccount!account

r1

a4

a5

lac6=[balance�price]
buyItem!album

lac7=confirm?
a6

lac8=[balance<
price]cancel! m3

lmc5=bankBalance?credit

m4

m5

lmc6=[balance�price ]
buyMuseum!museum

lmc7=confirm?
m6

lmc8=[balance<
price]cancel!

Route Service 
Protocol ( RS)

lrs1=setRoute?dest,loc

t0

lrs2=sendRoute!route

t1

Entertainment Service 
Protocol ( ES)

les1=setItem?item,priv

e0

e2

les4=checkAccount?account

e3

les5=bankBalance !credit

e4

e5

les6=[credit�price]
purchaseItem !item

les7=ack!
e6

les8=[credit<
price]abort ?

lac2=stop?

lmc2=stop?

e1

les3=[serverload<”excess”]
priceItem!item,price

les2=[serverload �

”excess”]cancel! Museum Service
Museum Service 

Protocol ( MS)

lms1=setMuseum?museum ,priv
u0

u1

lms3=[day<>”monday” ]priceMuseum !museum,price

u2

u3

u4
lms6=[credit�price]

purchaseMuseum !museum
u6

lms4=checkAccount?account

Context Profile
loc (dynamic )

Context Profile
priv (dynamic)

Context Profile
loc (dynamic)

traffic (dynamic )
weather (dynamic)

u5

lms8=[credit<
price]abort ?

lms7=ack!

Context Profile
priv (dynamic)

day (static)

lms2=[day=”monday” ]
cancel!

lms5=bankBalance !credit

Context Profile
priv (dynamic)

serverload (dynamic)

Context Profile
priv (dynamic )

Figure 3: CA-STS Protocols of Client and Info Services for our Scenario

The Client has three interfaces corresponding to the three client’s requests (Route, Music (Album)
and Museum), which consist of three protocols (RC, AC andMC, respectively), each one with a context
profile, and a signature. The latter one will be left implicit, yet it can be inferred from the typing of ar-
guments (made explicit here) in CA-STS labels. On the other hand, each service (Route, Entertainment
and Museum) has an interface with a context profile, a (implicit) signature and a protocol (RS, ESand
MS, respectively). We assumeRC should interact withRS, AC with ES, andMC with MS. It is worth
mentioning that theESprotocol may be instantiated for communicating with different client’s requests
related to movies, music, images, shows and so on. Thus,EScould also manage the Client’s Museum re-
questMC. Let us consider,e.g., the labelRC: lrc1 = reqRoute!dest, ˜loc from the Client’s Route protocol,
wheredestis a data term which indicates the destination requested forthe route, and ˜loc is a dynamic
context attribute of the Client’s Route context profile. TheRoute Service protocolRSreceives the request
through a label such asRS: lrs1 = setRoute?dest, loc wheredestandloc are variables.

Figure 4 gives the domain ontology related to this road info system. We present the classes used in
our scenario with their relationships. These classes represent concepts which may be either a context



68 Handling Data-Based Concurrency in Context-Aware ServiceProtocols

attribute, an operation name, or an argument. This ontologyhas been generated using Protégé 4.0.24.

Figure 4: Road Info System Ontology generated using Protégé 4.0.2

4 Handling Concurrent Interactions

This section describes a composition language that allows to execute and handle concurrently interactions
between a client and several services at the same time. Our language addresses data dependency issues
that appear in the concurrent execution of client protocols, since all data received by a client are shared
and can be accessed by several of his/her protocols. Therefore, our mechanism allows to maintain data
consistency, even if a change occurs at run-time. We can alsodetect problems coming from the data
dependencies, which would result in deadlocks during the execution of the protocols if not corrected.

4.1 Composition Language

In this section, we formalise a language to dynamically compose several protocols, with the following
operators:sequence, choiceandparallel dependency(or concurrency).

4.1.1 Syntax

A client can execute asequenceof the formP1.P2, whereP1 andP2 are two protocols: “executeP1 and
thenP2”. A non-deterministic choice P1+P2 can be performed: “runP1 or P2”. The concurrent execution
of two protocolsP1,P2 is writtenP1||LDP2: “executeP1,P2 in parallel while respecting data dependencies
specified inLD”. LD is a set oflabel dependencies{(id : l > id′ : l ′)}, wherel anl ′ are labels, andid and
id′ are protocol identifiers prefixing the labels.LD represents dependencies between arguments involved
in the labels of these two protocols. Symbol “>” indicates the order of execution in which labels must
be executed (e.g., (p1 : l > p2 : l ′), l is executed beforel ′), beingl and l ′ the dominant and dominated
labels, respectively. If more than two protocols are executed concurrently, then we will detect the data
dependencies by pairs of protocols. Here is the syntax of thecomposition language:

The goal of our composition language is to illustrate with a minimal expressiveness our service com-
position approach. We could have also included for instancerepetition operators such asP∗ (executesP

4http://protege.stanford.edu/
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P ::= P1.P2 sequence
| P1+P2 non-deterministic choice
| P1||LDP2 parallel dependency

several times) orPx (executesP x times). Nevertheless, repetition can be achieved by launching manually
several times the execution ofP.

4.1.2 Operational Semantics

We formalise the operational semantics of the composition language. The rules presented in Figure 5
extend the operational semantics of our model to the operators previously considered. In SEQ2,Fc1

refers to the correct final states of the protocolP1. Both + and ||LD are commutative, therefore the
symmetrical rules are omitted. Labell represents either the internal actionτ , an emissiona!v, or a recep-
tion a?x. PLD1 performs the concurrent execution of the protocolsP1 andP2 w.r.t. a label dependency
(p1 : l > p2 : l ′), and removes the label dependencies which includel as first element from the label
dependency setLD. PLD2 works as PLD1, but without removing label dependencies, sincel appears in
a loop in its protocol. Last, PLD3 executes a label which doesnot belong to the label dependency set.

〈s1,E1〉
l
−→o 〈s′1,E1〉

〈s1,E1〉.〈s2,E2〉
l
−→o 〈s′1,E1〉.〈s2,E2〉

(SEQ1)

〈s2,E2〉
l
−→o 〈s′2,E2〉 s1 ∈ Fc1

〈s1,E1〉.〈s2,E2〉
l
−→o 〈s′2,E2〉

(SEQ2)

〈s1,E1〉
l
−→o 〈s′1,E1〉

〈s1,E1〉+ 〈s2,E2〉
l
−→o 〈s′1,E1〉

(NDCH)

〈s1,E1〉
l
−→o 〈s′1,E1〉 (p1 : l > p2 : l ′) ∈ LD

LD′ = remove(l ,LD) 〈s1,E1〉 6
l
−→o ∗〈s1,E1〉

〈s1,E1〉||LD〈s2,E2〉
l
−→o 〈s′1,E1〉||LD′〈s2,E2〉

(PLD1)

〈s1,E1〉
l
−→o 〈s′1,E1〉 (p1 : l > p2 : l ′) ∈ LD

〈s1,E1〉
l
−→o ∗〈s1,E1〉

〈s1,E1〉||LD〈s2,E2〉
l
−→o 〈s′1,E1〉||LD〈s2,E2〉

(PLD2)

〈s1,E1〉
l
−→o 〈s′1,E1〉 ∀ld ∈ LD(p1 : l 6∈ get dominantlabel(ld)∧ p1 : l 6∈ get dominatedlabel(ld))

〈s1,E1〉||LD〈s2,E2〉
l
−→o 〈s′1,E1〉||LD〈s2,E2〉

(PLD3)

Figure 5: Operational Semantics of the Composition Language

We define formally the functions used in the operational semantics. Functionremove(l ,LD) elim-
inates the label dependencies which includel as first element from the label dependency setLD =
{ld1, . . . , ldn}: remove(l ,{ld1, . . . , ldn}) = {ldi |ldi∈{1,...,n} = (l1 > l2) ∈ {ld1, . . . , ldn}∧ l1 6= l}

Transition〈s1,E1〉
l
−→o ∗〈s1,E1〉 is equivalent to〈s1,E1〉 −→o ∗

l
−→o−→o ∗〈s1,E1〉, where−→o ∗ represents

any sequence of transitions−→o. This will determine if the labell belongs to a loop in transitions in a
single protocol, starting from states and ending in the same states. Functionsget dominant label and
get dominatedlabel return respectively the dominant and dominated labels froma label dependency:

get dominantlabel((id : l > id′ : l ′)) = id : l ;get dominatedlabel((id : l > id′ : l ′)) = id′ : l ′

Next, we describe two algorithms to detect label dependencies in concurrent executions of protocols.
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4.2 Dependency Analysis

Dependency analysis is a technique to identify and determine data dependencies between service pro-
tocols. The main difficulty in analysing dependencies for concurrent executions is how to obtain the
relationship between arguments. Protocols evolving concurrently need to impose an order in their execu-
tion if there exist data dependencies. A data dependency occurs when a protocol receives a data, which
is stored in the user device, and when another client protocol accesses this data (e.g., wants to send it).
To detect and handle these dependencies, our semi-automatic dependency analysis process consists of
three steps: (i) a first algorithm computes a set of pairs of label dependencies between two protocols,
(ii) the user makes a selection among these pairs and determines the order of execution of the selected
ones (using the symbol “>”), which allows to build an initial label dependency set, and (iii) a second
algorithm expands the dependencies chosen by the user to a set as required by the semantic rules PLD1,
PLD2 and PLD3 formalised in Figure 5.

The first step is performed by Algorithm 1, that takes as inputtwo protocols, and a domain ontology.
It returns all the label dependencies among the argument types of the operation profiles of both protocols.
Our algorithm determines that two labels are dependent by using the functionsdegreematch, defined by
Paolucciet al. [23] (page 339), andtypeto compare their arguments and types, respectively. Function
degreematchdefines four degrees of matching based on semantic matching:{exact,plugIn,subsume,
fail}. The degreefail indicates that the two arguments compared do not match semantically, so we do
not consider that there exists a data dependency between them. The remaining three indicate that there is
a semantic-based data dependency between the arguments. Functionargumentsin Algorithm 1 returns

Algorithm 1 pairs label dependencies
returns a set of pairs of label dependencies for two protocols
inputs protocolsP1 = (A1,S1, I1,Fc1,T1) andP2 = (A2,S2, I2,Fc2,T2), ontologyOnt
output a label dependency setLDp

1: LDp := /0 // initial value for set of pairs of label dependency
2: for all lp1 ∈ A1 do
3: Al p1 := arguments(lp1) // gets the arguments oflp1
4: for all lp2 ∈ A2 do
5: Al p2 := arguments(lp2) // gets the arguments oflp2
6: ATD := false // by default no dependencies
7: for all argl p1 ∈ Al p1 do
8: for all argl p2 ∈ Al p2 do
9: DMarg := degreematch(argl p1 ,argl p2 ,Ont)

10: DMtyp := type(argl p1) = type(argl p2)
11: if (DMarg 6= fail)∧DMtyp then
12: ATD := true // argument and type dependency
13: end if
14: end for
15: end for
16: if ATD then
17: LDp := LDp∪ (p1 : lp1, p2 : lp2) // adds a pair
18: end if
19: end for
20: end for
21: return LDp // returns a set of pairs of label dependencies

all the arguments belonging to a labell = (b,m,d, f ): arguments((b,m,d, f )) = f

The complexity of Algorithm 1 is quadratic, O(k · (l ·a)2), wherek is a constant that indicates the
number of dependent labels, andl anda are the average numbers of elements in labels and arguments,
respectively. In the second step, the set of pairs of label dependencies returned by the previous algorithm
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is showed to the user. The user selects the pairs of label dependencies he/she wants to preserve, and
chooses the execution order for each pair. The result is a label dependency set. GivenLDp = {(p1 : l , p2 :
l ′),(p1 : l , p2 : l ′′)}, if the user: (i) only selects the first pair appearing inLDp, i.e.(p1 : l , p2 : l ′), and (ii)
indicates thatl ′ has to be executed beforel , then the result will beLD = {(p2 : l ′ > p1 : l)}.

Last, Algorithm 2 takes as input the two protocols of Algorithm 1 and the set generated in the former
step, and returns an extended label dependency set. The algorithm expands the set of label dependencies
required by the semantic rules PLD1, PLD2 and PLD3. For each label dependencyld, the algorithm
selects all the labelspli , i ∈ {1, . . . ,n} preceding the dominant label ofld in the corresponding protocol.
Then, for eachpli the algorithm adds a new label dependency constituted by that pli as dominant label
and the dominated label ofld as dominated label. For instance, given two protocolsP1 with labelsl , l ′ in
sequence andP2 with l ′′, if LD = {(p1 : l ′ > p2 : l ′′)} is the label dependency set obtained in the second
step, then Algorithm 2 returns a new label dependency setLDe = {(p1 : l > p2 : l ′′),(p1 : l ′ > p2 : l ′′)}.

Algorithm 2 extendedlabel dependencies
returns an extended set of label dependencies from a label dependency set LD
inputs protocolsP1 = (A1,S1, I1,Fc1,T1) andP2 = (A2,S2, I2,Fc2,T2), label dependency setLD
output a label dependency setLDe

1: LDe := LD // sets the extended set equal toLD
2: for all ld ∈ LD do
3: f l := get dominant label(ld) // gets the dominant label
4: sl := get dominatedlabel(ld) // gets the dominated label
5: pf := get id protocol( f l) // protocolid of dominant label
6: ps := get id protocol(sl) // protocolid of dominated label
7: PL := get previouslabels( f l ,Tpf ) // gets the previous labels to the dominant labelf l in the transitionsTpf of its protocolpf

8: for all pl ∈ PL do
9: if (pf : pl > ps: sl) /∈ LDe then

10: LDe := LDe∪ (pf : pl > ps : sl) // adds a label dependency
11: end if
12: end for
13: end for
14: return LDe // returns the extended set of label dependencies

Functionget id protocol gets the protocol identifier of a label(id : l): get id protocol((id : l)) = id

Functionget previouslabelsreturns the labels preceding a labell in transitionsT of a protocol:
get previouslabels(l ,T) = {l ′|∃(si−1, l i ,si) ∈ T ∧ i = {1, . . . ,n}∧ l i = l ′∧ ln+1 = l}

The complexity of Algorithm 2 is linear, O(ld ·TPL· pl), whereld is the number of label depen-
dencies,TPL the average number of transitions to check in the functionget previouslabels, andpl the
number of labels preceding a concrete label.

Example. Going back to our example, the Client wants to execute the protocol RC (route request) in
sequence with the parallel execution of the protocolsAC (music album request) andMC (museum ticket
request):RC.(AC||LDMC). Our approach builds the set of label dependencies betweenACandMC. First,
Algorithm 1 takes as input the two protocols,AC andMC, and the domain ontology presented in Fig-
ure 4. It returns a set of pairs of label dependencies betweenAC andMC: LDp = {(lac4, lmc4),(lac5, lmc5}
(protocol identifiers in labels have been removed), since for thecheckAccountoperation profile in both
AC and MC, currentAccountexact matchesaccount, and forbankBalance, balance is semantically
compatible tocredit, with degree of matchplugIn. However, for instance, forreqAlbumand reqMu-
seumof AC andMC respectively, the degree of match of arguments and types isfail, since although

˜priv exact matches ˜priv, album fail with respect tomuseum. Then, the resulting set is given to
the user, who selects the pairs of label dependencies he/shewants to preserve, and chooses the exe-
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cution order for each pair. Let us suppose the user only selects the pair(lac4, lmc4) to control the con-
current execution of the operationcheckAccountin both AC and MC, by executinglac4 before lmc4:
LD = {(lac4 > lmc4)}. Last, Algorithm 2 takesLD as input and extends it with new dependencies needed
to execute the semantic rules PLD1, PLD2 and PLD3. Thus, we obtain the final label dependency set:
LDe = {(lac1 > lmc4),(lac2 > lmc4),(lac3 > lmc4),(lac4 > lmc4)}. This means that,e.g., for (lac1 > lmc4),
lac1 is executed beforelmc4, i.e., the labelAC : lac1 = reqAlbum!album, ˜priv is executed before the label
MC : lmc4 = checkAccount!account, and so on. In such a way, the algorithm controls thatlmc4 will not be
executed inMC until AC runslac4.

4.3 Verification of Label Dependencies

The label dependencies construction process is error-prone, since it requires human intervention. This
process may provoke possible inconsistencies which resultin deadlocks during the execution of the
protocols according to the label dependency set computed previously. Therefore, in this section we
propose some verification techniques to automatically detect these problems.

To illustrate the need of these verification techniques, we focus on a simple example. In Figure 6, we
give,e.g., Client’s Planning and Hotel protocols,PCandHC respectively. The Planning protocol requests
for a travel plan to a specific address, and receives a map of the area close to that address. The Hotel
protocol searches for a hotel in that map, and gets the destination address. By applying our dependency
analysis, Algorithm 1 first returns the pairs of label dependency:LDp = {(lps1, lhs2),(lps2, lhs1)}. Second,
let us suppose the result of the user selection is:LD = {(lhs2 > lps1),(lps2 > lhs1)}. Last, the extended
label dependency set is:LDe = {(lhs1 > lps1),(lhs2 > lps1),(lps1 > lhs1),(lps2 > lhs1)}. In this set, the two

Client

Hotel Protocol ( HC)
lhs1=searchHotel!map

h0 h1 h2

lhs2=getAddress ?address

Planning Protocol ( PC)

p0 p1 p2

lps1=reqMap !address

lps2=recMap?map

Figure 6: Client’s Planning and Hotel Protocols Executing Concurrently

label dependencies(lhs1 > lps1) and(lps1 > lhs1) provoke a deadlock, since they are in mutual exclusion.
The two (crossed) label dependencies(lhs2 > lps1) and(lps2 > lhs1) also generate a deadlock, since the
Planning protocol cannot start without theaddressand neither the Hotel protocol without themap. The
user will be informed to remove one of the label dependencieswhich provoked this deadlock situation.

Algorithm 3 takes as input two protocols and their label dependency set, and returns a set of traces
(pairs of label dependency) leading to deadlock states. To do that, the algorithm compares all the domi-
nant labels from the label dependency set with the dominatedones. If for two label dependencies, a same
label is dominant and dominated in both directions or there exist crossed dependencies as described
above, then there is a deadlock situation. This problem has to be notified to the user in order to let
him/her modify the selection or execution ordering of the label dependencies to avoid that inconsistency.

The complexity of Algorithm 3 is quadratic, O(ld2 ·TPL), whereld indicates the number of label
dependencies, andTPL is the average number of transitions to check in the functionget previouslabels.

Example. For the scenario of our case study, we applied Algorithm 3 andchecked that no problems
exist in the label dependency generated in Section 4.2, since there is no trace (pair of label dependency)
that provokes a deadlock mismatch when executing concurrently both protocolsAC andMC, i.e., LDd =
/0. Therefore, our label dependency set is correct.
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Algorithm 3 label dependencyverification
detects possible inconsistencies specified in a label dependency set
inputs protocolsP1 = (A1,S1, I1,Fc1,T1) andP2 = (A2,S2, I2,Fc2,T2), label dependency setLD
output a deadlocked label dependency setLDd

1: LDd := /0 // initial value for set of pairs of deadlocked label dependency
2: for all ldp∈ LD do
3: f ldp := get dominant label(ldp) // gets the dominant label
4: sldp:= get dominatedlabel(ldp) // gets the dominated label
5: pf ld p := get id protocol( f ldp) // protocolid of dominant label
6: for all ldg∈ LD do
7: if ldp 6= ldg then
8: f ldg := get dominant label(ldg)
9: sldg:= get dominatedlabel(ldg)

10: pf ldg := get id protocol( f ldg) // protocolid of dominant label
11: end if
12: if (( f ldp== sldg)∧ (sldp== f ldg))

∨(sldg∈ get previouslabels( f ldp,Tpf ldp )∧sldp∈ get previouslabels( f ldg,Tpf ldg )) then
13: LDd := LDd ∪ (ldp, ldg) // adds the pair of deadlocked label dependencies
14: end if
15: end for
16: end for
17: return LDd // returns the set of pairs of deadlocked label dependencies

5 Tool Support and Experimental Results

5.1 Tool Support

Our approach for handling concurrency of context-aware service protocols, has been implemented as part
of a prototype tool, calledConTexTive, which is integrated into our toolboxITACA [8]. ConTexTive

has been implemented inPython with the purpose of being incorporated inside a user device.It aims
at discovering services related to a client request and handling the service composition by means of
our composition language. We have implemented the algorithms presented in this work, in order to
automatically detect data dependencies and check that deadlock situations do not occur when executing
protocols concurrently. Figure 7 gives a tool support overview of how our approach has been encoded.
Our approach takes client and service interfaces specified as XML CA-STSs, and an XML ontology of
a specific domain as input, and detects a label dependency set(LD) for each pair of protocols executing
concurrently, and checks if this set is consistent (free of deadlocks).

OntologyXML file

ConTexTive
Handling Data -Based Concurrency in Context -Aware Service Protocols

Context Profile

Interface Model : 
Client’s requests

Signature

CA-STS Protocol

XML files

Service Monitoring Engine (SME)

Label Dependency (LD) Verification of LD

modify LD       deadlock

Context Profile

Interface Model : 
Available Services

Signature

CA-STS Protocol

XML files

Figure 7: Tool Support Overview

ConTexTive has been validated on several examples, such as an on-line computer material store, a
travel agency, an on-line booking system or the case study presented here: a road info system.



74 Handling Data-Based Concurrency in Context-Aware ServiceProtocols

5.2 Experimental Results

We have conducted a small experimental study with the assistance of a group of volunteers. This study
helped us to determine how our approach behaves in terms of evaluating the benefits to find out data
dependencies in concurrent executions and to handle those dependencies in terms of effort required, ef-
ficiency and accuracy of the dependencies detected. Users performed tests either in a manual or in an
interactive (using the tool) way. In order to perform the tests, we provided them a graphical representa-
tion of the interfaces and a specific domain ontology to be used in the concurrent interaction, for each
problem. Each user solved different problems using different specifications (manual or interactive5) to
prevent previous user knowledge of a particular case study.Table 1 shows the problems used for our
study, which are organised according to increasing size andcomplexity with respect to the number of
interfaces (client and services) involved and the ontology, as well as the overall size of client protocols as
a total number of states and transitions. Tests considered all the client protocols interacting concurrently.
The table also includes the comparison of experimental results using both manual and interactive spec-
ification of data dependencies and their corresponding execution priorities. We consider as parameters
the time required to solve the problem (in seconds), the number of label dependencies detected (Depend.
in Table 1), and the number of errors in the specified data dependency set.

Size Parameter
Problem Interfaces Client Protocols Time(s) Depend. Errors

Client Services States Transitions M I M I M I

pc-store-v02 2 2 10 8 61,80 19,14 1 3 2 0
ebooking-v04 2 3 12 13 51,60 3,17 1 1 0 0
roadinfo-v06 3 3 16 18 113,62 16,51 5 4 3 0

travel-agency-v04 3 5 36 36 271,84 62,38 12 12 4 0

Table 1: Experimental Results for the Manual (M) and Interactive (I) Specifications

As it can be observed in the results, there is a remarkable difference in the amount of time required
to solve the different problems between manual and interactive specification. We measure as errors the
number of wrong, unnecessary or non-detected label dependencies. Our tool always detects all the data
dependencies and it uses semantic matching to determine those dependencies, so this is a clear advantage,
which increases with the complexity of the problem, compared to the manual specification. Thus, the
time elapsed for detecting dependencies by using our tool experiences a linear growth with the size of
the problem. Therefore, scalability and performance of ourtool are satisfactory, and in the worst case
(travel-agency-v04) the time required is roughly 1 minute,which is a reasonable amount of time.

6 Related Work

This section compares our approach to related works by emphasising our main contributions. We succes-
sively describe works related to service models by using protocols and/or context information, and works
focusing on monitoring of service composition to detect data dependencies in the protocol interaction.

Context-based protocol models address the design and implementation of applications which are
able to be modified at the behavioural interoperability level depending on context information. Not
many works have been dedicated to model context-aware service protocols. Braione and Picco [7] have

5The scenarios were executed on an Intel Pentium CPU 3GHz, 3GBRAM, with Microsoft Windows XP Professional SP2.
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proposed a calculus to specify contextual reactive systemsseparating the description of behaviours and
the definition of contexts in which some actions are enabled or inhibited. Related to context-aware adap-
tation, Autili et al. [3] present an approach to context-aware adaptive services. Services are implemented
as adaptable components by using the CHAMELEON framework [4]. This approach considers context
information at design time, but the context changes at run-time are not evaluated. In our approach, we
propose a model to specify protocols based on transition systems and extended with value passing, con-
text information and conditions, which has not been studiedyet in previous works. We consider context
changes not only at design-time, but also at run-time, sinceour model allows the continuous evaluation
of dynamic context attributes (according to the execution of the operational semantics).

As regards concurrency, models for this discipline emerged, such as CSP [15] and CCS [19], which
address concurrent systems from an algebraic perspective.The π-calculus [20] builds on CCS as a
process algebra for communicating systems that allows expression of reconfigurable mobile processes.
Related to service concurrency, recent approaches have been dedicated to the interaction of services at
run-time with the purpose of composing correctly their execution. In addition, several works describe
different ways to present data dependencies according to their use for different purposes. Vukovic [25]
presents an approach that focuses on the recomposition of the composite service during its execution, ac-
cording to changes in the context. It provides a failure-tolerant solution, but user preferences and control
of independent requests are not controlled, whereas our model supports that. Mrissaet al. [22] present
a context-based mediation approach to solve semantic heterogeneities between composed Web services
by using annotation of WSDL descriptions with contextual details. Their architecture automatically gen-
erates and invokes service mediators, so data heterogeneities between services are handled during the
composition using semantics and contexts. These works do not handle data dependencies during the
concurrent execution of service protocols. Basuet al. [5] model such dependencies using a directed
edge between nodes. They generate a probabilistic dependency graph as concatenation of all identi-
fied dependencies. Ensel [14] presents a methodology to automatically generate service dependency
model considering the direction of dependencies. In [17], Kuanget al. give a formal service specifi-
cation describing two types of dependency: dependency on assignment (between the input and output
interfaces of an operation), and dependency on sequence (order among operations of a service). Yanet
al. [26], propose an approach to discover operation dependencies using semantic matching of input and
output interfaces and the invoking order among operations.They construct frequency and dependency
tables in order to derive indirect dependency relationships by transitive closure algorithm. Most of these
approaches do not consider a combination of both the directionality and the execution order to detect
dependencies. To the best of our knowledge, the only attempttaking both restrictions into consideration
is [26]. Compared to these related works, our approach does not only detect data dependencies, address-
ing both direction and order, that appeared between communications, but it also allows context-aware
protocol concurrent executions at run-time by means of our composition language. In addition, in order
to analyse dependencies we rely on semantic matching techniques between data.

7 Concluding Remarks

In this paper, we have described a model to formalise context-aware clients and services. We have also
proposed a composition language to handle dynamically the concurrent execution of service protocols.
We have defined algorithms to detect data dependencies amongseveral protocols executed on the same
user device. These algorithms make possible to establish some priorities on the concurrent execution of
protocols affected by these dependencies. In this way, our approach allows to maintain data consistency,
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even if a parallel change occurs at run-time. Last, we have proposed verification techniques to automat-
ically detect possible inconsistencies specified by the user while building the data dependency set. We
have implemented a prototype tool,ConTexTive, which aims at handling the concurrent interaction of
service protocols at run-time. Our approach focus on mobileand pervasive systems.

We are currently working on avoiding the human interventionin the process of building the data
dependency set by means of priorities previously defined. This will allow to determine automatically the
execution order of the detected dependencies, reducing thetime required in the interactive specification.
We are also extending our approach to solve other problems arisen in the context-aware service compo-
sition, such as exception or connection loss. As regards future work, our main goal is to incorporate our
prototype tool inside a user device in order to support concurrency in real-world applications running on
mobile devices. We also plan to extend our framework to tackle dynamic reconfiguration of services,
handling the addition or elimination of both services and context information. In addition, we want to
include the repetition operators in our composition language, and to handle concurrent execution of more
than two protocols by detecting at the same time all data dependencies existing among several protocols.
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