
HAL Id: hal-00539226
https://hal.archives-ouvertes.fr/hal-00539226

Submitted on 24 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolutionary multifractal signal/image denoising
Evelyne Lutton, Jacques Lévy Véhel

To cite this version:
Evelyne Lutton, Jacques Lévy Véhel. Evolutionary multifractal signal/image denoising. Evolutionary
Computer vision, EURASIP, pp.1-25, 2007, EURASIP Book Series. �hal-00539226�

https://hal.archives-ouvertes.fr/hal-00539226
https://hal.archives-ouvertes.fr


12
Evolutionary
multifractal

signal/image
denoising

Evelyne Lutton and
Jacques Lévy Véhel

This chapter investigates the use of Evolutionary techniques for mul-
tifractal signal/image denoising. Two strategies are considered: using evo-
lution as a pure stochastic optimiser, or using interactive evolution for a
meta-optimisation task. Both strategies are complementary as they allow
to address different aspects of signal/image denoising.

12.1. Introduction

We deal with enhancement – or denoising – of complex signals, based on
the analysis of the local Hölder regularity. Our methods do not make ex-
plicit assumptions on the type of noise nor on the global smoothness of
original data, but rather supposes that signal enhancement is equivalent
to increasing the Hölder regularity at each point. Such methods are well
adapted to the case where the signal to be recovered is itself very irregular,
e.g. nowhere differentiable with rapidly varying local regularity.

We describe two techniques. The first one tries to find a signal close
to the observations and such that its local Hölder function is prescribed.
A pure optimisation approach is convenient in this case, as this problem
does not admit a closed form solution in general (although attempts have
been previously done on an analytical basis for simplified cases [17, 19]). In
addition, the number of variables involved is huge. Genetic Algorithms have
been found to be efficient in this case, and yield better results than other
algorithms. The principles and example results are presented in section
12.2.

However, it appears that the question of results evaluation is critical: A
precise (and general !) definition of what good denoising – or enhancement
– is, is questionable. Medical doctors indeed may have different opinions
on the quality of a given result, as well as remote sensing specialists, or
art photographers. The perception of quality is extremely dependent on
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the end-user, the context and the type of application. A simple signal-to-
noise-ratio (when computable) is certainly not able to capture the subtle
perceptive judgment of a human end-user.

To investigate this issue, we describe another regularity-based enhance-
ment technique: Multifractal Bayesian denoising acts by finding a signal
close to the observations and such that its multifractal spectrum is pre-
scribed. This method relies on the tuning of a small set of parameters
that are able to provide various improvements of the observed noisy image.
An interactive evolutionary approach has been designed in order to cope
with the meta-optimisation problem of tuning the parameters set, and is
described in section 12.7.

In order to get acceptable computation times, the underlying optimi-
sation problem and its parameters have been designed to be solved by a
deterministic method. The evolutionary approach is used in an interactive
way, at a meta-level.

Going further into this direction, a scheme has been designed (and
tested!) in order to reduce the number of user interactions, in other words
to limit the famous “user fatigue,” see section 12.9.

The schemes and tools developed on the signal and image denoising
problem can be extended to other image analysis tasks, such as multifractal
image segmentation (see section 12.11).

12.2. Signal enhancement/denoising

The problem may be set in the following way: Someone observes a signal
Y which is a certain combination F (X,B) of the signal of interest X and
a “noise” B. Making various assumptions on the noise, the structure of X
and the function F , one then tries to derive a method to obtain an estimate
X̂ of the original signal which is optimal in some sense. Most commonly, B
is assumed to be independent of X , and, in the simplest case, is taken to
be white, Gaussian and centred. F usually amounts to convoluting X with
a low pass filter and adding the noise. Assumptions on X are related to its
regularity, e.g.X is supposed to be piecewise Cn for some n ≥ 1. Techniques
proposed in this setting resort to two domains: functional analysis and
statistical theory. In particular, wavelet based approaches, developed in the
last ten years, may be considered from both points of view [7, 8].

In this work, we do not make explicit assumptions on the type of noise
and the coupling between X and B through F . Furthermore, we are not
interested in the global smoothness of X , but rather concentrate on its
local regularity: Enhancement will be performed by increasing the Hölder
function αY (see next section for definitions) of the observations. Indeed, it
is generally true that the local regularity of the noisy observations is smaller
than the one of the original signal, so that, in any case, αX̂ should be greater

than αY . We thus define our estimate X̂ to be the signal “closest” to the
observations which has the desired Hölder function. Note that since the
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Hölder exponent is a local notion, this procedure is naturally adapted for
signals which have sudden changes in regularity, like discontinuities. From a
broader perspective, such a scheme is appropriate when one tries to recover
signals which are highly irregular and for which it is important that the
denoising procedure yields the right regularity structure (i.e. preserves the
evolution of αX along the path).

12.3. The local Hölder exponent

We shall measure the local irregularity of signals with the help of the Hölder
exponent. To simplify notations, we assume that our signals are nowhere
differentiable. Generalisation to other signals require technicalities which
are unessential to our purposes.

Let α ∈ (0, 1), Ω ⊂ R. One says that f ∈ Cα
l (Ω) if:

∃ C : ∀x, y ∈ Ω :
|f(x) − f(y)|

|x− y|α
≤ C

Let: αl (f, x0, ρ) = sup {α : f ∈ Cα
l (B (x0, ρ))}. Note that αl (f, x0, ρ) is

non increasing as a function of ρ.
We are now in position to give the definition of the local Hölder exponent :

Definition 1. Let f be a continuous function. The local Hölder expo-
nent of f at x0 is the number αl (f, x0) = limρ→0 αl (f, x0, ρ).

Since αl is defined at each point, we may associate to f the function
x → αl(x) which measures the evolution of its regularity.

This regularity characterization is widely used in fractal analysis be-
cause it has direct interpretations both mathematically and in applications.
For instance, the computation of the Hölder exponent at each point of an
image allows to perform edge detection[16].

12.4. Signal enhancement based on increasing the local Hölder function

Let X denote the original signal and Y the degraded observations. We seek
a regularized version X̂ of Y that meets the following constraints: a) X̂ is

close to Y in the L2 sense, b) the (local) Hölder function of X̂ is prescribed.
If αX is known, we choose αX̂ = αX . In some situations, αX is not

known but can be estimated from Y . Otherwise, we just set αX̂ = αY + δ,

where δ is a user-defined positive function, so that the regularity of X̂ will
be everywhere larger than the one of the observations. We must solve two
problems in order to obtain X̂ . First, we need a procedure that estimates
the local Hölder function of a signal from discrete observations. Second, we
need to be able to manipulate the data so as to impose a specific regularity.

We will use a wavelet based procedure for estimating and controlling
the Hölder function. We let {ψj,k}j,k be an orthonormal wavelet basis,
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where as usual j represents scale and k position. Denote cj,k the wavelet
coefficient of X . Results in [11] and [10] indicate that, assuming that ψ
is regular enough and has sufficiently many vanishing moments, one may
estimate αX(t) by linear regression of log(|cj,k|) w.r.t. to the scale j (log
denotes base 2 logarithm), considering those indices (j, k) such that the
support of ψj,k is centred above t: Roughly speaking, those coefficients

should decay in scale as 2−j(α+1/2) (more precisely, all the |cj,k| are bounded

by C2−j(α+1/2) for some C > 0, and some of the coefficients |cj,k| are of

the order of C2−j(α+1/2)).
The use of wavelets then allows to perform the reconstruction in a

simple way: Starting from the coefficient (dj,k) of the observations, we shall
define a procedure that modifies them to obtain coefficients (cj,k) that fulfil

the decay condition with the desired α, and then reconstruct X̂ from those
(cj,k).

We may now reformulate our problem as follows: For a given set of
observations Y = (Y1, . . . , Y2n) and a target Hölder function α , find X̂

such that ||X̂ − Y ||L2 is minimum and the regression of the logarithm of

the wavelet coefficients of X̂ above any point i w.r.t. scale is −(α(i) + 1
2 ).

Note that we must adjust the wavelet coefficients in a global way. Indeed,
each coefficient at scale j subsumes information about roughly 2n−j points.
Thus we cannot consider each point i sequentially and modify the wavelet
coefficients above it to obtain the right regularity, because point i + 1,
which shares many coefficients with i, requires different modifications. The
right way to control the regularity is to write the regression constraints
simultaneously for all points. This yields a system which is linear in the
logarithm of the coefficients:

∆L = A

where ∆ is a (2n, 2n+1 − 1) matrix of rank 2n, and

L = (log |c1,1|, log |c2,1|, log |c2,2|, . . . log |cn,2n |),

A = −
n(n− 1)(n+ 1)

12

(

α(1) +
1

2
, . . . , α(2n) +

1

2

)

Since we use an orthonormal wavelet basis, the requirements on the (cj,k)
may finally be written as:

minimize
∑

j,k

(dj,k − cj,k)2 subject to: ∀ i = 1, . . . , 2n,

n
∑

j=1

sj log(|cj,E((i−1)2j+1−n)|) = −Mn(α(i) +
1

2
) (12.1)

where E(x) denotes the integer part of x and the coefficients sj = j− n+1
2 ,

Mn = n(n−1)(n+1)
12 and equation (2) are deduced from the requirement that
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the linear regression of the wavelet coefficients of X̂ above position i should
−(α(i) + 1

2 ).
Finding the global solution to the above program is a difficult task; in

particular, it is not possible to find a closed form formula for the cj,k. In [19],
a method is described, that allows explicit computations under simplifying
assumptions. In the following, we show how this problem can be addressed
with an evolutionary algorithm.

12.5. Evolutionary signal enhancement with EASEA

An evolutionary technique seems to be appropriate for the optimisation
problem described in equation (12.1): a large number of variables are in-
volved, and the function to be optimised as well as the constraint are non
linear. We describe in this section an implementation based on the EASEA
[5] language and compiler.

EASEA (EAsy Specification of Evolutionary Algorithms) is a language
dedicated to evolutionary algorithms. Its aim is to relieve the programmer
of the task of learning how to use evolutionary libraries and object-oriented
programming by using the contents of a user-written .ez source file.

EASEA source files only need to contain the ”interesting” parts of
an evolutionary language, namely the fitness function, specification of the
crossover and mutation operators, the initialisation of a genome plus a
set of parameters describing the run. With this information, the EASEA
compiler creates a complete C++ source file containing function calls to
an evolutionary algorithms library (either the GALIB or EO for EASEA
v0.6). Therefore, the minimum requirement necessary to write evolution-
ary algorithms is the capability of creating non-object-oriented functions,
specific to the problem which needs to be solved.

In our case, the evolutionary optimisation involved to enhance a signal
(1D or 2D) was implemented using a simple structure on which genetic
operators were defined. We used GALib [35] as the underlying evolutionary
library.

We describe below the implementation for 1D signals. An implemen-
tation for image denoising was also produced based on the same principles
[23].

The Haar wavelet transform has been used to produce the dj,k associ-
ated to the observed signal Y . We also suppose that we know the desired
Hölder exponents α(i) (either α(i) = αY (i) + δ where the αY (i) are the
Hölder exponents of Y and δ is a user defined regularisation factor, or α(i)
is set a priori).

Our unknowns will be the multiplicative factors uj,k such that cj,k =
uj,k ∗ dj,k, j ∈ [0..n − 1], k ∈ [0..2j − 1]. As is usual in wavelet denoising,
we leave unchanged the first l levels and seek for the remaining uj,k in
[0, 1]. The genome is made of the uj,k coefficients, for j ∈ [l..n − 1] and



6 Evolutionary multifractal signal/image denoising

k ∈ [0..2j − 1]. These coefficients are encoded as a real numbers vector of
size SIZE MAX = 2n − 2l, which can be written using EASEA syntax as :

GenomeClass { double U[SIZE_MAX]; }

The EASEA Standard functions sections contain the specific genetic op-
erators, namely:

(1) The initialisation function: Each uj,k coefficient is randomly
set to a value in [0, 1]. Two initial solutions are also put in the
initial population : uj,k = 1. and uj,k = 2−kδ .

(2) The crossover function: a barycentric crossover has been easily
defined as follows : Let parent1 and parent2 be the two genomes
out of which child1 and child2 must be generated, and let alpha
be a random factor:

\GenomeClass::crossover:

double alpha = (double)random(0.,1.);

if (&child1) for (int i=0; i<SIZE_MAX; i++)

child1.U[i] = alpha*parent1.U[i]

+ (1.-alpha)*parent2.U[i];

if (&child2) for (int i=0; i<SIZE_MAX; i++)

child2.U[i] = alpha*parent2.U[i]

+ (1.-alpha)*parent1.U[i];

\end

(3) The mutation function: Mutation is a random perturbation of
radius SIGMA = 0.01, applied with probability PMut on each
gene.

\GenomeClass::mutator: // Must return the number of

// mutations as an int

int NbMut=0;

for (int i=0; i<SIZE_MAX; i++)

if (tossCoin(PMut)){ NbMut++;

Genome.U[i]+=SIGMA*(double)random(-1.,1.);

Genome.U[i] = MIN(1.,Genome.U[i]);

Genome.U[i] = MAX(0.,Genome.U[i]);}

if (NbMut==0) identicalGenome=true; // saves evaluation

// time

return NbMut;

\end

(4) The evaluation function: The fitness function has two aims:
minimise

∑

((1 − uj,k) ∗ cj,k)2, making sure constraint (12.1) is
satisfied, i.e. the Hölder exponents are the ones we want. The con-
straint is integrated into the fitness function using a high penalty
factor W :

Fitness =
∑

j,k

((1 − uj,k) ∗ cj,k)2 +W ∗
∑

i

|αu(i) − α(i)|
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Genome Size SIZE MAX = 496
Population Size 25
Number of generations 50000
Computation time 1438.52 seconds for 744897 evaluations
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We use the GALib steady state genetic engine with replacement per-
centage of 60% and selection by ranking. Crossover and mutation probabil-
ities are fixed respectively to 0.9 and 0.001. Genome size, population size,
and number of generations are fixed for each experiment, see section 12.6.

12.6. Numerical Experiments

Results of enhancement on synthetic 1D data are shown in figure 12.1. The
original signal is a generalised Weierstrass function [6] with αX (t) = 0.2
for t < 0.5, αX(t) = 0.8 for t > 0.5 that has been corrupted by additive
white Gaussian noise. Figure 12.1 shows the original signal, the noisy one,
and the result of the enhancement procedure. For comparison, a denoising
using a classical wavelet hard thresholding is also displayed (i.e. all coeffi-
cients with absolute value smaller than a given threshold are put to 0). For
both procedures, the parameters were set so as to obtain the best fit to the
known original signal. It is seen that, for such irregular signals, the Hölder
regularity based enhancement yields more satisfactory results. One should
however remark that we have placed ourselves in a favourable situation
for the evolutionary algorithm, since the constraint was to find the (gen-
erally unknown) correct Hölder function. Parameters of the evolutionary
algorithm are given in figure 12.1.

12.7. Interactive schemes and multifractal Bayesian denoising

There are several ways to improve the method. To begin with, more precise
estimations of Hölder exponents yield more accurate results. For instance,
in [21], an estimation based on the analysis of local oscillations of the sig-
nal has been used. The associated inverse problem is then more complex,
and necessitates the use of specific genetic operators. Improved results are
obtained at the expense of more complex computations.

Progress on this topic are however more related to the design of an
efficient analysis of the quality of the results. But computational measure-
ment of denoising results are difficult to design, as the evaluation of a good
denoising is strongly dependent on the end-user as well as the application
framework. Signal-to-noise ratio is unable to reflect all the subtle compo-
nents of a human expert appreciation on a denoising result. Remote sensing,
medical imaging, sound restoration, data filtering have very different con-
straints, and expert users of these domains have different needs.

A way to cope with this discrepancy is to involve the human user in
the optimisation loop in order to let him accurately guide the search mech-
anism towards what he wishes. The artificial evolution framework allows
one to introduce human evaluation in the algorithmic loop, and to cope
with human judgment irregularity (or even inconsistency). Actually inter-
active evolution is a research topic that is rapidly growing : first attempts
were oriented toward artistic applications [31, 30, 34, 1], but now many
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other applications domains are explored: Hearing Aids fitting [33], smooth,
human-like, control rules design for a robot arm [13], or design of HTML
style sheets [25]. An overview of this vast topic can be found in [32].

Interaction with humans raises several problems mainly related to hu-
man fatigue. Three types of solutions have been considered [27, 32, 2] : (1)
reduce the size of the population and the number of generations, (2) choose
specific models to constrain the research in a priori “interesting” areas of
the search space, or (3) perform automatic learning (based on a limited
number of characteristic quantities) in order to assist the user and only
display the most interesting individuals in the population, with respect to
previous votes of the user.

In order to implement (1) and (2), we adopt an approach different from
the one in the previous sections: Instead of prescribing the Hölder exponent
at each point, we shall rather try to control the multifractal spectrum of the
denoised image. This allows to reduce dramatically the number of variables.
A first experiment where a small population is evolved using a multifractal
scheme is presented in section 12.8. We then experimented an approach
integrating item (3), i.e. we extend fitness rating to individuals in a larger
population via the analysis of the user judgment on a small sample of
individuals (section 12.9).

12.7.1. Description of the multifractal Bayesian denoising method

The multifractal analysis of a signal consists in measuring its regularity at
each sample point, in grouping the points having the same irregularity, and
then in estimating the “size” (through some “fractal dimension”) of each
iso-regularity set. Irregularity is measured via the Hölder exponent

The multifractal spectrum f is a representation of the irregularity of
the signal over its definition domain: For each irregularity value, i.e. for
each α, one estimates the speed of exponential decay of the probability of
finding a point with regularity α as resolution tends to infinity. In some
cases, this speed is also the Hausdorff dimension of the corresponding iso-α
set (see [3] for details).

For example, for an image, a value of f(α) ' 1 corresponds to a set
of points with same regularity and dimension 1 (i.e. it will most of the
times look like a set of lines), f(α) ' 0 is a set of scattered points (singular
points), and f(α) ' 2 is a typically an area of positive measure.

Multifractal analysis is a tool widely used in image and signal analysis,
as it provides at the same time a local (α) and a global (f(α)) viewpoint
on data. It has been exploited with success in many applications where
irregularity bears some important informations (image segmentation [15],
signal and image denoising [16, 20], etc ... )

The principle of the denoising method is the following: For a noisy
image I1, we search for a denoised image I2 that satisfies two conditions:

• I2 has a given multifractal spectrum,
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• the probability that the addition of a white Gaussian noise (with
variance σ) to I2 produces the observed image I1, is maximal.

As we mentioned before, the wavelet transform is a convenient tool for
the estimation of the Hölder exponents. This second denoising method is
thus also based on the discrete wavelet transform.

12.7.2. The search space is the set of free parameters of the method

We explain here the algorithm for image denoising. Recall that the aim is
to find a denoised image I2 close to the noisy observations I1, under the
constraint that I2 has a given multifractal spectrum g. The noise is assumed
to be white, centred, and Gaussian with variance σ.

The problem may be reformulated as follows: If we denote by y a wavelet
coefficient of the noisy image at scale j, then the corresponding wavelet
coefficient x̂ of the denoised image at the same scale j can be calculated by
solving the following equation (for details, see [18]):

x̂ = argmax
x>0



j · g





log2

(

K̂ · x
)

−j



 −
(|y| − x)2

2σ2



 sgn (y)

where

• K̂ is a constant for which K̂ · |y| < 1 holds and may be set in-

dependently for each scale. In what follows, K̂ has been taken as
the inverse of the maximum coefficient in each scale j.

• g is a function which defines the multifractal spectrum of the de-
noised image. If we choose to represent it by a linear-by-parts
function, its shape is determined by 5 values αmin ,αnod ,αmax,
g (αmin) and g (αmax). More precisely, the spectrum has been cho-
sen to fulfil the following constraints:

– g is defined on the interval [αmin, αmax],
– g (x) ∈ [0, 1],
– αnod ∈ [αmin, αmax] and g (αnod) = 1,
– g is affine on [αmin;αnod] and on [αnod;αmax].

In most cases, but not necessarily, the multifractal spectrum calculated
from the denoised coefficients x̂ should show a slight spectral shift to the
right. This shift is a sign of an overall increase of regularity.

Consequently, we have 7 free parameters:

• the 5 values defining the a priori spectrum g,
• the variance σ of the noise,
• the wavelet used for the discrete (inverse) wavelet transformation.
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The choice of the wavelet is less critical than the choice of the other
6 parameters. Usually Daubechies 6 to 12 offer equivalent denoising re-
sults in terms of visual reception whereas Daubechies wavelets with smaller
supports yield unsatisfactory results in some cases.

Especially in cases where we want to treat very noisy images and sub-
sequently have to set the parameters σ and αnod to relatively high values,
the denoising algorithm leads to artefacts in the denoised image when us-
ing wavelets with a small support, see figure 12.2. The regularity of those
wavelets is low. They are therefore not able to model very irregular parts
of an image.

Figure 12.2. Original Image without noise (u.l.), Multifractal denoising using
wavelet Daubechies 2 (u.r.), Multifractal denoising using wavelet Daubechies 18

(l.l.), Noisy Image (l.r.), all parameters except wavelets are constant.

It should be mentioned that the number of calculated wavelet scales is
fixed to a value obtained from the image dimensions [N ×M ]:

scales = blog2(max(N,M))c

The setup of the 7 resulting free parameters is nontrivial in the sense
that they are strongly dependent on the amount of noise in the noisy image
and the subjective opinion of the human observer about which result reflects
best the desired denoised image.

A solution is therefore to build an interactive evolutionary algorithm
(IEA) to interactively find suitable settings of the free parameters.
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12.8. An interactive approach with a small population

This first implementation does not include the choice of the wavelet basis
as a free parameter but considers a shift to the a priori spectrum g for
diagonal wavelet coefficients. It has been noticed that the diagonal wavelet
coefficients are more sensitive to additive noise and therefore may need a
different spectrum g.

The genomes that are evolved by this IEA are made of 7 real genes:

• 5 values to define the g function for the horizontal and vertical
wavelet coefficients: αmin ∈ [0, 0.5], g(αmin) ∈ [0, 1], αnod > αmin,
αnod ∈ [0, 2], αmax > αnod, αmax ∈ [0.01, 20], g(αmax) ∈ [0.2, 1]

• the shift of the g function for the diagonal coefficients (range
[0, 0.5]),

• the variance of Gaussian noise, σ (range [0, 100.0]).

Fitness and user interaction

The fitness function is given by the user via sliders attached to each de-
noised sample. Evaluations range from −10 to +10. The default value 0
corresponds to a neutral judgment.

Figure 12.3. The interface of the small population IEA, written in C++.
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Additionally, the user may directly edit the genotypes of each image, see
figure 12.3, and thus participate in the evolutionary loop as an additional
genetic operator.

Genetic Engine

The population has a fixed size of 6 individuals. Each individual carries
a set of 7 parameters and therefore represents a potential solution for the
aforementioned optimisation problem. All individuals are presented as an
image, resulting from the denoising algorithm with corresponding free pa-
rameters. The basic evolutionary cycle is presented in figure 12.4, and the
operators are the following:

Figure 12.4. The small population denoising IEA genetic engine.

• Parents Selection is performed by deterministic selection of the
3 best individuals in the population.

• Genetic Operators:
– Barycentric crossover is performed by weighted combina-

tion of parents with a randomly chosen weight in [0, 1].
– Mutation is an independent perturbation of each gene value

by addition of a Gaussian noise with a given variance.
• Survivor Selection scheme replaces the 3 worst parents by off-

springs.
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A sharing scheme is applied before parent selection: the user marks
are weighted to maintain diversity inside the small population. The shar-
ing is based on a genotypic distance. The parent selection then chooses the
3 individuals with the best weighted fitness and is therefore fully deter-
ministic. Crossover and mutation operators then produce 3 children. The
survivor selection substitutes parents with offspring and thereby closes the
evolutionary cycle.

12.9. An interactive approach with a large population

In the previous interactive scheme, the user has access to 6 individuals (or
images) per generation, and the genetic engine only considers the current
user evaluations to calculate the next generation. This IEA is driven by a
fitness sample – or let us say a fitness map – made of only 6 points.

In order to increase the reactivity of the system while being able to
handle populations of any size (this increases the search capabilities), we
consider the use of a larger fitness sample, while considering techniques to
approximate user evaluation. However, a dynamic approximation of the in-
teractive fitness is a delicate task, and necessitates rather large samples. We
have proposed a method based on the use of past user marks, collected in a
set, the fitness map. The fitness of new individuals produced by the genetic
engine can be preliminarly estimated from the fitness map by smooth inter-
polation (flat or polynomial, see below). This preliminary fitness estimation
can serve as a preselection tool in order to show to the user only the 6 best
individuals of a larger current population.

The use of larger population sizes offers some major advantages, of
which an obviously easier maintenance of diversity, a more extensive explo-
ration of the given search space and a possible speedup of convergence are
the most significant.

Genome

The genomes are made of 7 genes:

• 5 values to define the g function for the horizontal and vertical
wavelet coefficients: αmin ∈ [0, 0.5], g(αmin) ∈ [0, 1], αnod > αmin,
αnod ∈ [0, 2], αmax > αnod, αmax ∈ [0.01, 20], g(αmax) ∈ [0.2, 1]

• the wavelet used for the discrete wavelet transformation (Daube-
chies 2 to 20),

• the variance of Gaussian noise, σ ∈ [0, 100].

Fitness and user interaction

The user evaluations are given the same way as in 12.8 with range:
[−6(verybad), ...0(neutral), ...+ 6(verygood)].
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Figure 12.5. The extended genetic engine supports a fitness map.

The genetic engine is highly customisable for parameters setting. In
contrast to the small population IEA, it is possible that all 6 images in the
user interface are changed from a generation to the next. As loosing good
images may be frustrating for the user, it is possible to mark images as
“Super Individuals” that remain in the user interface and in the population.
The user may toggle this state at any time see figure 12.6.

Additionally, to increase user interactivity, two new dialogues have been
created: to view and manipulate the individuals in the population (figure
12.7), as well as the samples in the fitness map (figure 12.8). These dialogues
both provide plots of the gene values of the individuals in the current pop-
ulation, or in the fitness map. By toggling checkboxes, additional curves,
such as an interpolation of fitness and sharing values, are available.

“User ranges” (figure 12.9) have been introduced, as soft thresholds
that constrain the search space of genes, and can be set independently for
each of the 7 genes.

Genetic Engine

Enlarging the population size and using a fitness map requires major chan-
ges: The selection step now strongly depends on the fitness map, as well as
crossover and mutation operators. The generation cycle includes an “image
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Figure 12.6. Clicking the star button toggles an individual as “Super Individual”. From
thereon it is “immortal” in the population.

selection” step, i.e. 6 individuals are selected to be shown to the user, see
figure 12.5.

The fitness map is a matrix of size [8xN ]. N is the number of samples
that are saved in the fitness map. These samples are vectors of size [8x1],
and include a genotype and its corresponding fitness value. The fitness map
is used to interpolate between the available samples in order to predict the
fitness values of unknown genotypes. Two interpolation methods have been
implemented:

• “nearest’: The fitness value of the nearest sample in the fitness
map is returned as the fitness value of the unknown sample.

• “interpolation”: Interpolating polynomials of order 8 are calcu-
lated for each gene using the samples of the fitness map (small
stars interpolated by smooth curves in figure 12.10). The approx-
imated fitness value for an unknown sample (see vertical markers
in figure 12.10) is the mean value of the 7 polynomials for the
genes values of the unknown sample.

Various selection algorithms have been implemented. These selection
operators can be deployed by the parent-, offspring- and image selection.
The selection operator that is actually used in a certain stage of the genetic
cycle is set off-line with help of a configuration file.

The available selection methods are the following:

• “fittest”: The individual with the best fitness value is selected.
• “cycle”: n individuals are selected by cycling through m indi-

viduals among the fittest. This method can be used to generate
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Figure 12.7. The population editor. Individuals may be added to the population,
existing individuals may be deleted and their genotype can be manipulated. The gene
values are plotted on 7 curves as small stars. The plotted curves are interpolations of
the fitness (or shared fitness) samples values.

an offspring from a small number of parent individuals (as in the
small population IEA).

• “roulette”: Randomized variant of fitness-proportionate selec-
tion.

• “rank”: Randomized variant of rank-proportionate selection. The
selection probability for an individual is pressure−rank, where
“pressure” adjusts the strength of selection and “rank” is the po-
sition of the individual inside the population (sorted by decreasing
fitness values).

A sharing algorithm has been implemented. Similarly to the sharing
algorithm of the small population IEA, fitness values are weighted with a
sharing factor that is calculated from mean genotype distances within the
population. Genotypes with a high mean distance to other genotypes in the
population consequently have a bigger increase in their fitness. The pressure
of this sharing method can be set in a configuration file, independently for
each selection method. Distinct selection of individuals is also implemented
and configurable.
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Figure 12.8. The fitness map editor. Samples may be deleted and their fitness can
be reevaluated.

Figure 12.9. Plot of sample fitness for the values of αmin . An interpolation of the fitness
values is plotted (line). The sharing estimation is plotted as a curve. Setting an user

preferred range for individual genes is done by drag and drop of the thick vertical
brackets.

Different versions of the genetic operators (crossover and mutation)
have been implemented:

• crossover: “random”: New individuals are a weighted combi-
nation of their parents. The weights are randomly chosen in [0, 1].
“swap”: Special case of random crossover. Parent genes are ran-
domly swapped to generate children genotype. “factory”: This
method builds new genotypes out of the best genes from two par-
ent individuals. The necessary fitness for individual genes is taken
from the interpolating polynomials described earlier.
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Figure 12.10. The 2 fitness estimation methods illustrated for a sample genotype (vertical
markers): nearest method (horizontal grey line), interpolation method (horizontal
light line). The y axes represent the fitness values, while the x axes represent the gene
values

• mutation: “random”: Gaussian perturbation of each gene with
a given σ. “preferred area”: Gaussian perturbation of each gene
towards it’s user range. There is no effect on a gene when it is
already located inside the area set by the user.

12.10. Experiments

Quantitative evaluations are rather difficult to perform on interactive evo-
lutionary algorithms. To be able to evaluate the efficiency of the fitness
map scheme or, to some extent, compare the small population IEA with
the large population IEA, experiments were made in a non-interactive way.

The two algorithms were run on several noisy images, for which the
original “non-noisy” images were available, and for various parameter set-
tings.



20 Evolutionary multifractal signal/image denoising

The non-interactive software

For these tests, the software was slightly modified. User evaluations were
replaced by automatic evaluations. A user fitness is therefore imitated by
the calculation of a phenotypic distance between the noisy images and their
corresponding original images (typically a L2 distance between images).
The two presented versions of the IEA were set to run 30 generations on
every noisy image and for every parameter setting. In each generation the
minimum phenodistance was collected in order to produce a convergence
curve. This was repeated for at least 30 times. Afterwards a mean curve of
convergence was calculated. The 2 IEAs have been compared on the basis
of these average curves.

Parameters

The influence of the population size parameter has been analysed, the pa-
rameter setting used for the tests is the following:

• Large population IEA:
– Population size: 16, 32, 64 and 128 Individuals.
– Parent selection: Rank selection (as presented in 12.9).
– Offspring size: 90% of parent generation.
– Image selection: Fittest selection.
– Fitness map interpolation: nearest.
– Use of “Super Individual”: in each generation the image with

the lowest phenodistance to the original image is set as super
individual.

– One generation is equivalent to 5 user interactions.

• Small population IEA:
– Population size: 6 Individuals
– Parent selection: Fittest 3,
– Offspring size: 3 Individuals,
– One generation is equivalent to 3 user interactions.

Results

To ensure a fair comparison between the two algorithms, the average curves
of convergence are plotted with respect to the number of user interactions
(i.e. user evaluations) instead of the generations number.

Figures 12.11, 12.12 and 12.13 show a clear improvement of the min-
imisation behaviour for the fitness map scheme, the larger the population,
the more efficient.

The loss of precision of the fitness calculation based on the fitness map,
which is a very rough approximation of the user – or phenotypic (for the
automated version) – fitness, is compensated by the exploration capabilities
of a larger population.
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This improved exploration capability has also been noticed in a quali-
tative manner by users.

Figure 12.11. Comparison of mean convergence for different population sizes. Original
Image: Sommet 256. Noisy Image: Sommet 256 with Gauss σ = 20.

Figure 12.12. Comparison of mean convergence for different population sizes. Original
Image: Lena 256. Noisy Image: Lena 256 with Gauss σ = 25.
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Figure 12.13. Comparison of mean convergence for different population sizes. Original
Image: Mars 256. Noisy Image: Mars 256 with Gauss σ = 30.

12.11. Conclusion

This work about the use of evolutionary computation schemes for signal and
image denoising leads us to several conclusions that may be considered from
a wider point of view. First of all, it has been made evident – if necessary
– that evolutionary schemes are efficient in signal and image analysis basic
tasks, as far as we deal with complex optimisation problems. But of course,
as this choice implies heavy computational costs, such a technique may not
be convenient in cases where short response time is required.

Another point that has been raised, is the interest and efficiency of
interactive schemes in image and signal processing: For subtle tasks where
computational measurement cannot accurately reflect the judgment of the
end-user, which is actually the case for image denoising, an IEA can be a
solution. Once again, however, a careful design of the EA components and
user interaction schemes, are necessary. For instance, the manipulation of a
much larger population in conjunction with the use of rough approximations
of the user fitness provides a solution to the “user bottleneck” problem.

This work also defends a viewpoint on signal and image analysis tasks,
in terms of semi-automatic procedures where an end-user is involved in
order to constrain the analysis towards aims for which numerical models
are not available. Such an analysis may additionally have backward con-
sequences into non-interactive procedures. For example, the fitness map
scheme can be easily generalised to other applications, including non-inter-
active ones where exact fitness calculation is computationally expensive.
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The IEA presented in this work is freely distributed in the Fraclab
Toolbox, see figure 12.14, available for download at http://complex.inria.fr.

Figure 12.14. The presented IEA integrated with Fraclab.
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