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From N parameter frational Brownian motionsto N parameter multifrational BrownianmotionsErik HerbinINRIA, Domaine de Volueau, Roquenourt, BP 105, 78153 Le Chesnay Cedex, Franeerik.herbin�inria.frandDassault Aviation, 78 quai Marel Dassault, 92552 Saint-Cloud Cedex, Franeerik.herbin�dassault-aviation.frJuly 11, 2002AbstratMultifrational Brownian motion is an extension of the well-knownfrational Brownian motion where the H�older regularity is allowed to varyalong the paths. In this paper, two kind of multi-parameter extensionsof mBm are studied: one is isotropi while the other is not. For eah ofthese proesses, a moving average representation, a harmonizable repre-sentation, and the ovariane struture are given.The H�older regularity is then studied. In partiular, the ase of an ir-regular exponent funtion H is investigated. In this situation, the almostsure pointwise and loal H�older exponents of the multi-parameter mBmare proved to be equal to the orrespondent exponents of H. Eventually,a loal asymptoti self-similarity property is proved. The limit proessan be another proess than fBm.AMS lassi�ation: 62G 05, 60G15, 60G17, 60G18Key words: frational Brownian motion, Gaussian proesses, H�older regu-larity, loal asymptoti self-similarity, multi-parameter proesses1 IntrodutionIn many appliations, frational Brownian motion (fBm) seems to �t very wellto random phenomena. Reall that it an be de�ned by one of the four followingproperties. Let H 2 (0; 1) (H is sometimes alled the Hurst parameter).� BH is a entered Gaussian proess suh that8s; t 2 R+; E �BHs BHt � = 12 �s2H + t2H � jt� sj2H�1



� the proess BH suh that8t 2 R+; BHt = Z 0�1 h(t� u)H� 12 � (�u)H� 12 i :W (du)+Z t0 (t�u)H� 12 :W (du)is a fBm,� the proess BH suh that8t 2 R+; BHt = ZR eit� � 1j�jH+ 12 :Ŵ (d�)is a fBm,� BH is the unique self-similar Gaussian proess with stationary inrements.Its eÆieny has already been shown in simulation of traÆ on Internet orin �nane. This indued some reent progress suh as stohasti integrationagainst fBm.However, the main limitation of fBm is that the H�older regularity is onstantalong the paths.Multifrational Brownian motion (mBm) has been independently introdued in[4℄ and [13℄. This proess is a generalization of frational Brownian motionwhere the Hurst parameter H is substituted by a funtion t 7! H(t). As aonsequene the H�older exponent is allowed to vary along trajetories.The di�erent de�nitions by the two groups of authors provided two di�erentrepresentations of mBm.Peltier and Levy-Vehel ([13℄) de�ned the mBm from the moving averagede�nition of the frational Brownian motionXt = Z 0�1 h(t� u)H(t)� 12 � (�u)H(t)� 12 i :W (du) + Z t0 (t� u)H(t)� 12 :W (du)where t 7! H(t) is a H�older funtion.Benassi, Ja�ard and Roux ([4℄) de�ned the mBm from the harmonizablerepresentation of the fBm Xt = ZR eit� � 1j�jH(t)+ 12 :Ŵ (d�)These two de�nitions were proved to be equivalent up to a multipliativedeterministi funtion ([6℄).Moreover, in [3℄ the ovariane funtion of this Gaussian proess has beenproved to beE [XsXt℄ = D (H(s); H(t)) hjsjH(s)+H(t) + jtjH(s)+H(t) � jt� sjH(s)+H(t)iwhere D is a known deterministi funtion.The goal of this paper is to study some multi-parameter extension of the mul-tifrational Brownian motion, ie a stohasti proess indexed by RN+ , whih isan mBm when N = 1. One extension has already been onsidered in [4℄.2D extension of frational Brownian motion has been already used in variousappliations suh as underwater terrain modeling ([14℄). It may be more real-isti to allow loal regularity to vary at eah point : our extension of mBm inR2 may be used for this kind of appliation.2



2 Multi-parameter extension of the frationalBrownian motionSine multifrational Brownian motion is an extension of frational Brownianmotion, we start with a review of the existing extensions of fBm. Most of theresults in this setion are well-known, but we give new proofs based only on theovariane funtions.In the same way as Brownian motion has two main multi-parameter ex-tensions: Levy Brownian motion and Brownian sheet, two di�erent multi-parameter extensions of frational Brownian motion have been de�ned.2.1 Levy frational Brownian motionThe Levy frational Brownian motion is de�ned to be a entered Gaussianproess of ovariane funtionE [XsXt℄ = 12 �ksk2H + ktk2H � kt� sk2H� (1)There are several de�nitions of this proess by its trajetories. Among these,it an be de�ned as integral against white noise. Lindstrom stated the following(see [9℄).Proposition 1 The proess de�ned byXt = ZRN hkt� ukH�N2 � kukH�N2 iW (du) (2)is a Levy frational Brownian motion up to a multipliative onstant.The harmonizable representation of frational Brownian motion an also begeneralized.Proposition 2 The proess de�ned byXt = ZRN eiht;�i � 1k�kH+N2 :Ŵ (d�) (3)where Ŵ is the Fourier transform of white noise in RN ,is a Levy frational Brownian motion up to a multipliative onstant.Proof As will be done for multifrational Brownian �eld, the Fourier trans-form of the kernel of representation (2) ould be diretly omputed. But as thisrepresentation de�nes a real entered Gaussian proess, it is enough to showthat the ovariane funtion has the form (1).For all t 2 RN , let's denote by ft the funtion � 7! ei<t;�>�1k�kH+N2 and onsider theentered Gaussian proess X = nXt = Ŵ (ft); t 2 RN+o.First, we remark easily that for all t, almost surely, Ŵ (ft) 2 R.3



The ovariane funtion of the real proess X isE [XsXt℄ = E hŴ (fs)Ŵ (ft)i= ZRN �ei<s;�> � 1� �e�i<t;�> � 1�k�k2H+N :d�= ZRN ei<s�t;�> � ei<s;�> � e�i<t;�> + 1k�k2H+N :d�Then we have to onsider 3 integrals of the form RRN 1�ei<t;�>k�k2H+N :d�.For t 2 RN �xed, onsider the hange of variables from RN into itself, u = � (�)where � is the linear appliation whih maps the anoni basis of RN to theorthonormal basis �e1 = tktk ; e2; : : : ; eN�.Then, we get ZRN 1� ei<t;�>k�k2H+N :d� = ZRN 1� eiktk:u1kuk2H+N :duAfter the seond hange of variablesv = ktk:u = ktkId:udv = ktkN :duwe get ZRN 1� ei<t;�>k�k2H+N :d� = ktk2H+NktkN ZRN 1� eiv1kvk2H+N :dv| {z }CN;H>0Proeeding the same way for the 2 other integrals, we an onludeE [XsXt℄ = CN;H �ksk2H + ktk2H � kt� sk2H�whih shows that the proess � 1pCN;H Ŵ (ft); t 2 RN+� is a Levy frationalBrownian motion. 22.2 Frational Brownian sheetOn the ontrary to the Levy frational Brownian motion, this proess is notisotropi. In partiular, we an have di�erent Hurst parameters in eah of theN diretions.The frational Brownian sheet (fBs) is de�ned to be a entered Gaussian proessof ovariane funtionE [XsXt℄ = NYi=1 12 �s2Hii + t2Hii � jti � sij2Hi� (4)As in the isotropi ase, this proess has two di�erent representations by itstrajetories. 4



Proposition 3 The proess de�ned byXt = ZRN NYi=1 hjti � uijHi� 12 � juijHi� 12 iW (du)is a frational Brownian sheet, up to a multipliative onstant.Remark 1 In [8℄, Pontier/Leger introdued another moving average represen-tation of frational Brownian sheet.Xt = ZRN NYi=1 h(ti � ui)Hi� 12+ � (�ui)Hi� 12+ iW (du)Proof This proess is obviously Gaussian and entered. Thus, we only needto show that its ovariane funtion has the expeted form. We omputeE [XsXt℄ = NYi=1 ZR hjsi � uijHi� 12 � juijHi� 12 i hjti � uijHi� 12 � juijHi� 12 i :duiWe an see that the fator orresponding to eah i, is the ovariane of a fBmwith Hurst parameter Hi (or a Levy frational Brownian motion with N = 1).Then we haveE [XsXt℄ = NYi=1K1;Hi �jsij2Hi + jtij2Hi � jti � sij2Hi�2This proess also has an harmonizable representation, using the Fouriertransform of the white noise in RN as in the previous paragraph.Proposition 4 For all t = (ti), onsider the funtion �t suh that for all � =(�i), �t(u) = NYm=1 eitm�m � 1j�mjHm+ 12The proess de�ned byXt = Ŵ (�t) = ZRN NYm=1 eitm�m � 1j�mjHm+ 12 Ŵ (d�)is a frational Brownian sheet, up to a multipliative onstant.Proof As in the previous proposition, let's ompute the ovariane funtionof this proess.E [XsXt℄ = NYm=1 ZR �eism�m � 1� �e�itm�m � 1�j�mj2Hm+1 :d�m= NYm=1C1;Hm �jsmj2Hm + jtmj2Hm � jtm � smj2Hm�using the same argument of the previous proposition. 25



Remark 2 The proesses de�ned in propositions 3 and 4 are proved to havethe same law. In fat, as a partiular ase of proposition 10, they are indistin-guishable.2.3 Stationarity of inrements and self similarityLet us start by realling the notion of inrements in RN+ .For a funtion f : [0; 1℄N ! R and h 2 R, one usually de�ne the progressivedi�erene in diretion �i by�h;if(x) = � f(x+ h�i)� f(x) if x; x+ h�i 2 [0; 1℄N0 eitherand for h 2 RN and A = (i1; : : : ; ik),�h;Af = �hi1 ;i1f Æ � � � Æ�hik ;ikfDespite the temptation to de�ne the inrements by Xt�Xs as in one dimension,it is better to set�Xs;t = �t�s;(1;:::;N)Xs= Xr2f0;1gN(�1)N�Pl rlX[si+ri(ti�si)℄i (5)If there exists i 2 f1; : : : ; Ng suh that si = ti, we have �Xs;t = 0. Then, weonsider I = fi = 1; : : : ; N ; si 6= tigand �t�s;IXs = Xr2f0;1g#I(�1)#I�Pl rlX[si+ri(ti�si)℄i2I2.3.1 Isotropi aseIn the isotropi ase, the following extension of fBm's properties are well known(see [9℄).Proposition 5 Let X = nXt; t 2 RN+o be a Levy frational Brownian motion.We have the two following properties for all h 2 RN+ and a > 0Xt+h �Xh (d)= Xt �X0Xat (d)= aHXtwhere (d)= means equality of �nite dimensional distributions.Proposition 5 implies the stationarity of inrements (5).Proposition 6 The inrements of Levy frational Brownian are stationary, iefor all h 2 RN+ �Xh;t+h (d)= �X0;t6



Proof We �x h 2 RN+ and write�Xh;t+h = Xr2f0;1gN�f0g(�1)N�Pl rl �X[hi+riti℄i �Xh�then in the development of E [�Xh;s+h�Xh;t+h℄, we only have terms of theform E ��X[hi+risi℄i �Xh� �X[hi+�iti℄i �Xh�� = E �X[risi℄iX[�iti℄i�using the previous proposition. Therefore we haveE [�Xh;s+h�Xh;t+h℄ = E [�X0;s�X0;t℄22.3.2 Non-isotropi aseIn the non-isotropi ase, the properties of self-similarity and stationarity of in-rements have been stated by L�eger/Pontier (f [8℄). Here, we give another proofbased on the ovariane funtion rather than the moving average representation.Proposition 7 Let X = nXt; t 2 RN+o be a frational Brownian sheet. Wehave the two following properties for all h 2 RN+ and a > 0�Xh;t+h (d)= �X0;tXat (d)= aPiHi XtProof We onsider N independent fBm X(1); : : :X(N) of Hurst parameter Hi,and the proess Y = nYt; t 2 RN+o suh that Yt =QNi=1X(i)ti . We an see easilythat X and Y have the same ovariane funtion. The same result follows forthe inrements n�Xh;t+h; t 2 RN+o and n�Yh;t+h; t 2 RN+o. As a onsequene,from �Yh;t+h = Xr2f0;1gN(�1)N�Pl rl NYi=1X(i)hi+riti= NYi=1 hX(i)ti+hi �X(i)hi iwe getE [�Xh;s+h�Xh;t+h℄ = NYi=1E h�X(i)si+hi �X(i)hi ��X(i)ti+hi �X(i)hi �i| {z }EhX(i)si X(i)ti i= E [�X0;s�X0;t℄7



For self-similarity, we verify easily that, for all a > 0E [XasXat℄ = E haPiHi Xs aPiHi Xti2Therefore, we an onlude that both extensions of fBm satisfy the propertiesof self-similarity and stationarity of inrements.3 The multifrational Brownian motion's aseOne again, we an onsider two di�erent kinds of multi-parameter exten-sion of mBm : isotropi and anisotropi extension. Note, �rst of all, thatmBm already has a multi-parameter extension. Indeed, the formulation of Be-nassi/Ja�ard/Roux in [4℄ was done for t 2 RN . We will see that it an beonsidered as an isotropi extension.3.1 Isotropi extensionTo de�ne an isotropi extension of the mBm, the natural way is to substitutethe onstant H of the moving average representation of the Levy frationalBrownian motion, with a funtion.De�nition 1 Let H : RN ! (0; 1) be a measurable funtion. The proessnXt; t 2 RN+o suh thatXt = ZRN hkt� ukH(t)�N2 � kukH(t)�N2 iW (du) (6)is alled multifrational Brownian �eld.We will show that this proess is the same as the proess de�ned by Be-nassi/Ja�ard/Roux. This result generalizes on the equivalene stated in thease N = 1 in [6℄.Proposition 8 Let H : RN ! (0; 1) be a measurable funtion. The proessde�ned by Xt = ZRN eiht;�i � 1k�kH(t)+N2 :Ŵ (d�) (7)is indistinguishable, up to a multipliative deterministi funtion, from the pro-ess de�ned by (6). This formulation is the harmonizable representation of themultifrational Brownian �eld.Proof First of all, let us ompute the Fourier transform of the funtion k:k�.hT k:k�; 'i = hk:k�; '̂i= ZRN ktk��ZRN e�i<w;t>'(w):dw� :dt8



we onsider the hange of variablesRN �RN ! RN �RN(w; t) 7! (w; � = �(t))where � is the linear appliation whih maps the anoni basis of RN to theorthonormal basis �e1 = wkwk ; e2; : : : ; eN�. We gethT k:k�; 'i = ZRN ZRN k�k�ei�1kwk'(w):dw:d�= ZRN ZRN kuk�kwk� e�iu1'(w)dw:dukwkNusing the hange of variables (w; �) 7! (w; u = kwk�). Then we havehT k:k�; 'i = �ZRN kuk�e�iu1 :du�| {z }�� ZRN 1kwk�+N '(w):dwThus, T k:k�(w) = ��kwk�+NFrom this result, an elementary omputation gives the Fourier transform ofkt� :k� � k:k�. We getT [kt� :k� � k:k�℄ (v) = �e�i<t;v> � 1� ��kvk�+NWe dedue that 8t 2 RN , almost surely,ZRN hkt� ukH(t)�N2 � kukH(t)�N2 iW (du) = �H(t) ZRN eiht;�i � 1k�kH(t)+N2 :Ŵ (d�)using the fat we saw previously that the seond integral is almost surely real.Therefore, by an argument of ontinuity, the result follows. 2This proess is obviously a entered Gaussian proess. It is thus of interestto study its ovariane funtion. The following proposition is an extension ofthe ase N = 1 stated in [3℄.Proposition 9 Let nXt; t 2 RN+o be a multifrational Brownian �eld. Thereexists a deterministi funtion DfN : R ! R suh that the ovariane funtionof X an be writtenE [XsXt℄ = DfN (H(s) +H(t)) hkskH(s)+H(t) + ktkH(s)+H(t) � kt� skH(s)+H(t)i(8)
9



Proof The easiest way to show this result is to use the harmonizable repre-sentation. By de�nition of Ŵ , we haveE [XsXt℄ = ZRN �ei<s;�> � 1� �e�i<t;�> � 1�k�kH(s)+H(t)+N :d�This integral has already been alulated for a Levy frational Brownian motionwith a parameter H = H(s)+H(t)2 . Then we haveE [XsXt℄ = �ZRN 1� eiu1kukH(s)+H(t)+N :du�| {z }DfN (H(s)+H(t)) hkskH(s)+H(t) + ktkH(s)+H(t) � kt� skH(s)+H(t)iwith DfN (x) = RRN 1�eiu1kukx+N :du 23.2 Non isotropi extensionAnother way to extend the multifrational Brownian motion for a set of indexinluded in RN+ , is to opy the de�nition of the Brownian sheet.De�nition 2 Let H : RN+ ! (0; 1)N be a measurable funtion. The proessnXt; t 2 RN+o suh thatXt = ZRN NYi=1 hjti � uijHi(t)� 12 � juijHi(t)� 12 iW (du)where W is the white noise, is alled multifrational Brownian sheet (mBs).As in the ase of the isotropi extension, there also exists a harmonizablerepresentation of the mBs.Proposition 10 Let H : RN+ ! (0; 1)N be a measurable funtion. For allt = (ti)i2f1;:::;Ng, we onsider the funtion �t suh that for all � = (�i),�t(u) = NYm=1 eitm�m � 1j�mjHm(t)+ 12The proess de�ned byXt = Ŵ (�t) = ZRN NYm=1 eitm�m � 1j�mjHm(t)+ 12 Ŵ (d�)is indistinguishable, up to a multipliative deterministi funtion, from the pro-ess de�ned previously. This formulation is the harmonizable representation ofthe multifrational Brownian sheet.
10



Proof We have already seen that for eah m 2 f1; : : : ; NgT hjtm � :jHm(t)� 12 � j:jHm(t)� 12 i (�m) = �Hm(t)� eitm�m � 1j�mjHm(t)+ 12 �By an easy omputationT  NYm=1 hjtm � :jHm(t)� 12 � j:jHm(t)� 12 i! (�) = NYm=1 T hjtm � :jHm(t)� 12 � j:jHm(t)� 12 i (�m)Therefore NYi=1�m(t)!| {z }�(t) Ŵ NYm=1 eitm: � 1j:jHm(t)+ 12 ! =W  NYm=1 hjtm � :jHm(t)� 12 � j:jHm(t)� 12 i!We use the same arguments as in proposition 8 to onlude. 2The following proposition shows that the ovariane struture of multifra-tional Brownian sheet, is a generalization of the fBs's one.Proposition 11 Let nXt; t 2 RN+o be a multifrational Brownian sheet. Thereexists a deterministi funtion Ds : RN ! R suh thatE [XsXt℄ = Ds (H(s) +H(t)) NYm=1 hjsmjHm(s)+Hm(t) + jtmjHm(s)+Hm(t) � jtm � smjHm(s)+Hm(t)i(9)Proof As usually, we use the harmonizable representation of the proessE [XsXt℄ = NYm=1ZR �eism�m � 1� �e�itm�m � 1�j�mjHm(s)+Hm(t)+1 :d�mWe remark that the fator orresponding to eah m, is the ovariane of amultifrational Brownian motion, with has already been alulated. Thereforewe haveE [XsXt℄ = NYm=1Df1 (Hm(s) +Hm(t)) hjsmjHm(s)+Hm(t) + jtmjHm(s)+Hm(t) � jtm � smjHm(s)+Hm(t)i2Remark 3 The form of the previous ovariane funtion gives the idea to on-sider the proess Y = nYt; t 2 RN+o de�ned from N independent multifrationalBrownian motions X(i) with parameter Hi byYt = X(1)t(1) : : : X(N)t(N)Although Y is not a Gaussian proess, it is easily seen that it has the sameovariane funtion as a multifrational Brownian sheet. This remark will beoften used in the following. 11



4 RegularityA lot of properties are known about the regularity of the trajetories of Brownianmotion and frational Brownian motion. As we will see, in the ase of the multi-parameter extension of the mBm, we have to make some assumptions about theregularity of H before studying the ontinuity of trajetories. In the de�nitionsof mBm (f [1℄ and [4℄), the funtion H is supposed to be H�older ontinuous.4.1 Existene of a ontinuous modi�ationAs usually, the quantity E �jXt �Xsj2� is studied for s; t 2 [a; b℄ where a � bto use Kolmogorov's riterion (f [12℄). The following paragraphs show that inboth isotropi and anisotropi ases, under H�older regularity assumptions forH , we have E [Xt �Xs℄2 � Kkt� sk�As usual, in the Gaussian ase, we an write, for eah integer nE [Xt �Xs℄2n � �nKkt� skn:�and hoose n suh that n:� > N .Then, a lassial pathing argument is used to extend to RN+ the existene of aontinuous modi�ation of the two proesses.4.1.1 Isotropi aseLemma 1 For all � and � suh that 0 < � < � < 1, the multipliative fa-tor DfN of ovariane funtion in (9), is positive and belongs to C1 ([�; �℄).Moreover, the order n derivative is given byDfN (n)(x) = ZRN 1� eiu1kukx+N lnn 1kuk :du (10)Proof As the integral of a positive funtion, DfN is positive. By an argumentof uniform onvergene of integrals (10) on [�; �℄, DfN is C1 ([�; �℄). 2Proposition 12 For all s; t 2 [a; b℄, we have12E [Xt �Xs℄2 = D [H(s) +H(t)℄� kt� skH(s)+H(t)+12 ��2'�x2 (H(s) +H(t); ksk) + �2'�x2 (H(s) +H(t); ktk)�� (H(t)�H(s))2+Oa;b [(H(t)�H(s)) (ktk � ksk)℄ + oa;b (H(t)�H(s))2 (11)where '(x; y) = D(x)yx.
12



Proof Using the ovariane funtion of the multifrational Brownian �eld, wehave12E �jXs �Xtj2� = D [2H(s)℄ ksk2H(s) �D [H(s) +H(t)℄ kskH(s)+H(t)+D [2H(t)℄ ktk2H(t) �D [H(s) +H(t)℄ ktkH(s)+H(t)+D [H(s) +H(t)℄ kt� skH(s)+H(t) (12)We have to get a seond order expansion of this expression.We introdue the funtion ' de�ned by'(x; y) = D(x)yxWe an write12E �jXs �Xtj2� = '(2H(s); ksk)� '(H(s) +H(t); ksk)+'(2H(t); ktk)� '(H(s) +H(t); ktk)+D [H(s) +H(t)℄ kt� skH(s)+H(t) (13)We use the seond order expansion'(2H(s); ksk)� '(H(s) +H(t); ksk) = (H(s)�H(t))� �'�x (H(s) +H(t); ksk)+(H(s)�H(t))22 � �2'�2x (H(s) +H(t); ksk)+oa;b (H(s)�H(t))2An inversion of roles between s and t provides the expansion of'(2H(t); ktk)� '(H(s) +H(t); ktk)Then (13) beomes12E �jXs �Xtj2� = (H(t)�H(s))� ��'�x (H(s) +H(t); ktk)� �'�x (H(s) +H(t); ksk)�+(H(t)�H(s))22 � ��2'�2x (H(s) +H(t); ksk) + �2'�2x (H(s) +H(t); ktk)�+D [H(s) +H(t)℄ kt� skH(s)+H(t) + oa;b (H(t)�H(s))2Sine (H(t)�H(s))� ��'�x (H(s) +H(t); ktk)� �'�x (H(s) +H(t); ksk)�is Oa;b [(H(t)�H(s)) (ktk � ksk)℄, the result follows. 2Corollary 1 For all s; t 2 [a; b℄, we have12E [Xt �Xs℄2 = D [2H(t)℄� kt� sk2H(t)+�2'�x2 (2H(t); ktk)� (H(t)�H(s))2+oa;b (H(t)�H(s))2 + oa;b �kt� sk2H(t)� (14)where '(x; y) = D(x)yx. 13



Proof Using the expansion of D [H(s) +H(t)℄ andkt� skH(s)+H(t) = kt� sk2H(t) � (H(t)�H(s)) kt� sk2H(t) ln kt� sk+ oa;b (H(t)�H(s))2we getD [H(s) +H(t)℄� kt� skH(s)+H(t) = D [2H(t)℄� kt� sk2H(t) (15)+oa;b �kt� sk2H(t)�+ oa;b (H(t)�H(s))2Moreover as H(t) < 1 for all t 2 [a; b℄, we have � = 1�H(t) > 0 and2 (H(t)�H(s)) (ktk � ksk) = 2 (H(t)�H(s)) (ktk � ksk) �2 � (ktk � ksk)1� �2� (H(t)�H(s))2 (ktk � ksk)� + (ktk � ksk)2��that implies(H(t)�H(s)) (ktk � ksk) = oa;b (H(t)�H(s))2 + oa;b �kt� sk2H(t)� (16)We onlude by (11), (15) and (16) using �rst order expansion of �2'�x2 in x andy. 2Using the ontinuity of D, D0 and D00, we an state from the previous propo-sitionCorollary 2 There exist positive onstants K and L suh that8s; t 2 [a; b℄; E [Xt �Xs℄2 � K kt� sk2H(t) + L jH(t)�H(s)j2 (17)Corollary 3 Suppose H is �-H�older ontinuous. There exists a onstant Msuh that 8s; t 2 [a; b℄; E [Xt �Xs℄2 �M kt� sk2(�^H(t)) (18)4.1.2 Non-isotropi aseLemma 2 There exists positive onstants K and L suh that8s; t 2 [a; b℄; E �jXt �Xsj2� � K kt� sk2miniHi(t) + L kH(t)�H(s)k2 (19)Proof By remark 3, we haveE [Xs �Xt℄2 = E " NYi=1X(i)s(i) � NYi=1X(i)t(i)#2= E " NYi=1X(i)s(i) �X(1)t(1) Yi>1X(i)s(i)!+ X(1)t(1) Yi>1X(i)s(i) �X(1)t(1)X(2)t(2)Yi>2X(i)s(i)!+ � � �+   N�1Yi=1 X(i)t(i)!X(N)s(N) � NYi=1X(i)t(i)!#214



ThenE [Xs �Xt℄2 � N8<:E "Yi>1X(i)s(i)#2E hX(1)s(1) �X(1)t(1)i2 + � � �+E hX(N)s(N) �X(N)t(N)i2E "N�1Yi=1 X(i)s(i)#29=;and E [Xs �Xt℄2 � NMn�1 NXi=1 E hX(i)s(i) �X(i)t(i)i2 (20)with M =Ma;b = supi;tE hX(i)t(i)i2.UsingE hX(i)s(i) �X(i)t(i)i2 � Kijs(i) � t(i)j2Hi(t) + Li (Hi(s)�Hi(t))2 ; 8i = 1; : : : ; N(20) impliesE [Xt �Xs℄2 � NMn�1 " NXi=1Ki! kt� sk2miniHi(t) + NXi=1 Li! kH(t)�H(s)k2#2Corollary 4 Suppose H is �-H�older ontinuous. There exists a positive on-stant M suh that8s; t 2 [a; b℄; E [Xt �Xs℄2 �Mkt� sk2(�^miniHi(t)) (21)4.2 H�older exponentsThe notion of H�older funtion is well known. It is interesting to onsider aloalized version of this notion.For the paths of a proess X , one usually de�ne two kinds of exponent (see[1℄, [2℄):� the pointwise H�older exponent�(t0) = sup��; limh!0 jXt0+h �Xt0 jkhk� = 0�= sup��; lim sup�!0 sups;t2B(t0;�) jXt �Xsj�� <1�� the loal H�older exponent~�(t0) = sup(�; lim sup�!0 sups;t2B(t0;�) jXt �Xsjkt� sk� <1)We an see easily that for all t0, we have~�(t0) � �(t0) (22)A study of these exponents, in the ase of 1D mBm, is made in [2℄.15



Remark 4 If H is �-H�older ontinuous, then the loal H�older exponent ~�(t) ofH at every point is not smaller than �.Conversely, suppose that the loal H�older exponent of H at every point ofa ompat [a; b℄ is positive. Then H is �-H�older ontinuous on [a; b℄ with � =inft2[a;b℄ ~�(t).In the same way, one may de�ne diretional pointwise and loal H�olderexponents in the diretion u 2 U = nu 2 RN ; kuk = 1o by�u(t0) = sup��; lim�!0 jXt0+�:u �Xt0 j�� = 0�and ~�u(t0) = sup8><>:�; lim sup�!0 sups;t2B(t0;�)s;t2t0+R:u jXt �Xsjkt� sk� <19>=>;As previously, for all u 2 U , we have~�u(t0) � �u(t0) (23)Moreover, we an see easily that for all u 2 U , we have�(t0) � �u(t0) and ~�(t0) � ~�u(t0) (24)In the following, we suppose that H admits positive loal H�older exponent~�(t0) at every point t.Proposition 13 Let X = nXt; t 2 RN+o be a multifrational Brownian �eld(resp. sheet). For all t0 2 RN+ , the loal H�older exponent of X at t0 is almostsurely given by~�(t0) = ~�(t0) ^H(t0) (resp. ~�(t0) ^mini Hi(t0)) (25)and the pointwise H�older exponent of X at t0 satis�es almost surely�(t0) = �(t0) ^H(t0) (resp. �(t0) ^mini Hi(t0)) (26)where �(t0) and ~�(t0) denote the pointwise and loal H�older exponents of H att0. As a onsequene of this result, if H satis�es8t 2 RN+ ; �(t) < H(t)the H�older regularity of multifrational Brownian �eld of parameter funtionH is given by the regularity of H (and not by the value of H). This point isdeveloped in [7℄.The proof of proposition 13 is detailed in the three following paragraphs.16



4.2.1 Lower bound for the loal H�older exponentA lower bound for the loal H�older exponent is diretly given by Kolmogorov'stheorem. Indeed, for X a multifrational Brownian �eld or a multifrationalBrownian sheet indexed by [a; b℄, by orollaries 3 and 4, Kolmogorov's theoremstates that there exists a modi�ation of X , whih is q-H�older ontinuous forall q 2 (0; �), with � = H(t) ^ inf [a;b℄ ~� or � = miniHi(t) ^ inf [a;b℄ ~�.Then, loalizing this result, we get� in the isotropi ase, ~�(t0) � ~�(t0) ^H(t0) (27)� in the non-isotropi ase,~�(t0) � ~�(t0) ^mini Hi(t0) (28)4.2.2 Lower bound for the pointwise H�older exponentBy (22), paragraph 4.2.1 provides a lower bound for the pointwise H�older expo-nent. However, it an be improved in the ase ~�(t0) < �(t0).Let X = nXt; t 2 RN+o be a multifrational Brownian �eld. By orollary 2,there exist positive onstants K and L suh that for all s; t 2 RN+ ,E [Xt �Xs℄2 � K kt� sk2H(t) + L jH(t)�H(s)j2For all � > 0, there exists �0 > 0 suh that8t 2 B(t0; �0); jH(t)�H(t0)j < �2and M > 0 suh that for all � < �0 and all s; t 2 B(t0; �)E � Xt �Xs��(t0)^H(t0)���2 �M ��Then, setting  = �(t0) ^H(t0)� �,P fjXt �Xsj > �g � E �Xt �Xs� �2 �M ��Let � = 2�n and for all m > n,Dm = nt0 + k:2�n; k 2 �0;�1; : : : ;�2m�n	NoIn partiular, onsider Dn+1 and let us omputeP 8><>: maxk;l2f�2;�1;0;1;2gNkk�lk=1 jXt0+k:2�(n+1) �Xt0+l:2�(n+1) j > 2�n9>=>;� 12 Xk;l2f�2;�1;0;1;2gNkk�lk=1 P �jXt0+k:2�(n+1) �Xt0+l:2�(n+1) j > 2�n	 � 10N2 M 2��n17



By the Borel-Cantelli lemma, there exists a �nite random variable n� suh thatalmost surely,8n � n�; maxk;l2f�2;�1;0;1;2gNkk�lk=1 jXt0+k:2�(n+1) �Xt0+l:2�(n+1) j � 2�n (29)By reurrene, we show that, almost surely, for all m > n, we have8s; t 2 Dm s.t. kt� sk < 2�n; jXt �Xsj � 2m�1Xj=1 2�j (30)� for m = n+ 1, (30) follows diretly from (29)� assume that (30) is valid for m, let us show that it still holds for m + 1.For s; t 2 Dm+1 suh that kt� sk < 2�n, letCmst = fx 2 Dm;8i; si ^ ti � xi � si _ tigThen onsider ŝ 2 B(s; 2�(m+1)) \ Cmst and t̂ 2 B(t; 2�(m+1)) \ Cmst .As s; t; ŝ; t̂ belong to Dm+1, by (29), we havejXŝ �Xsj � 2�m and jXt̂ �Xtj � 2�mand by assumption, jXt̂ �Xŝj � 2m�1Xj=n 2�jUsing the triangular inequality, the result follows.Therefore, (30) leads to8m > n;8s; t 2 Dm; kt� sk < 2�njXt �Xsj � 2 1Xj=n 2�j = 21� 2� 2�nUsing the ontinuity of X and m! +1, we getsups;t2B(t0;2�n) jXt �Xsj � 21� 2� 2�nand therefore, almost surely,lim sup�!0 sups;t2B(t0;�) jXt �Xsj� < +1 (31)By (31), for all � > 0, almost surely�(t0) � �(t0) ^H(t0)� �Taking � 2 Q+, we have almost surely�(t0) � �(t0) ^H(t0) (32)For a multifrational Brownian sheet X , by lemma 2, we get in the same waythat, almost surely �(t0) � �(t0) ^Hi(t0) (33)for all i = 1; : : : ; N . 18



4.2.3 Upper bound for the pointwise H�older exponentThe main result getting the upper bound for the H�older exponents, is the fol-lowing lemma, a diret onsequene of proposition 12 using ontinuity of D, D0and D00.Lemma 3 Let X = nXt; t 2 RN+o be a multifrational Brownian �eld. For all[a; b℄ � RN+ , there exist positive onstants k1, k2, l1, l2 suh that8s; t 2 [a; b℄; E [Xt �Xs℄2 � k1 kt� sk2H(t) � l1 (H(t)�H(s))2 (34)E [Xt �Xs℄2 � k2 (H(t)�H(s))2 � l2 kt� sk2H(t) (35)Proof We only have to study the multipliative fators of kt � sk2H(t) and(H(t)�H(s))2 in (11). The proof only relies on ontinuity and positivity of thetwo funtions t 7! D [2H(t)℄ andt 7! ktk2H(t) � �D [2H(t)℄ ln2 ktk � 2D0 [2H(t)℄ ln ktk+D00 [2H(t)℄	. 2Lemma 4 Let X = nXt; t 2 RN+o be a multifrational Brownian sheet. For all[a; b℄ � RN+ , there exist positive onstants k1, k2, l1, l2 suh that8s; t 2 [a; b℄; t� s 2 R+:�iE [Xt �Xs℄2 � k1 kt� sk2Hi(t) � l1 (Hi(t)�Hi(s))2 (36)E [Xt �Xs℄2 � k2 (Hi(t)�Hi(s))2 � l2 kt� sk2Hi(t) (37)Proof For all s, t suh that t� s 2 R+:�i, using lemma 3, we haveE [Xt �Xs℄2 = E hX(i)t(i) �X(i)s(i)i2Yj 6=iE hX(j)t(j)i2� k1 jti � sij2Hi(t) � l1 (Hi(t)�Hi(s))2and E [Xt �Xs℄2 � k2 (Hi(t)�Hi(s))2 � l2 jti � sij2Hi(t)2From this result, the upper bound for the pointwise exponent is a onse-quene of the following lemma whose proof is the same as the ase N = 1 (see[1℄)Lemma 5 Let X = nXt; t 2 RN+o be a Gaussian proess. Assume there exists� 2 (0; 1) suh that for all � > 0, there exist a sequene (hn)n2N of �RN+��onverging to 0, and a onstant  > 0 suh that8n 2 N; E [Xt+hn �Xt℄2 � khnk2�+�Then we have almost surely �(t) � �19



Let X = nXt; t 2 RN+o be a multifrational Brownian �eld (resp. multifra-tional Brownian sheet). Let �(t0) be the pointwise H�older exponent of H at t0.We onsider the two ases :� if H(t0) < �(t0) (resp. Hi(t0) < �(t0)), by de�nition of �(t0), we havelimh!0 kH(t0 + h)�H(t0)kkhkH(t0) = 0Hene, by (34) (resp. (36)), there exists a positive onstant C suh thatE [Xt0+h �Xt0 ℄2 � Ckhk2H(t0)Then, by lemma 5 �(t0) � H(t0) (resp. Hi(t0) ) (38)� if H(t0) > �(t0) (resp.Hi(t0) > �(t0)), we onsider � 2 (�(t0);H(t0))(resp. � 2 (�(t0);Hi(t0))). There exists a positive onstant C and asequene (hn)n2N onverging to 0 suh that8n 2 N; kH(t0 + hn)�H(t0)k > Ckhnk�Then, by (35) (resp. (37))8n 2 N; E [Xt0+n �Xt0 ℄2 > k2Ckhnk2� � l2khnk2H(t0)� C 0khnk2�hene, by lemma 5 � � �(t0)and therefore �(t0) � �(t0) (39)We an restate the upper bounds (38) and (39) of the pointwise H�older exponentof X at t0 �(t0) � �(t0) ^H(t0) (resp. �(t0) ^Hi(t0) ) (40)4.2.4 Upper bound for the loal H�older exponentBy (22), any upper bound for the pointwise H�older exponent is an upper boundfor the loal H�older exponent. But we an improve on this result in the ase~�(t0) < H(t0). We �rst give an analogous of lemma 5 for the loal expo-nent,whose proof is very similarLemma 6 Let X = nXt; t 2 RN+o be a Gaussian proess. Assume there exists� 2 (0; 1) suh that for all � > 0, there exist two sequenes (hn)n2N and (ln)n2Nof �RN+�� onverging to 0, and a onstant  > 0 suh that8n 2 N; E [Xt0+hn �Xt0+ln ℄2 � khn � lnk2�+�Then we have almost surely ~�(t0) � �20



Let � 2 ( ~�(t0);H(t0)) (resp. � 2 ( ~�(t0);Hi(t0))). Aslim sup�!0 sups;t2B(t0;�) jH(t)�H(s)jkt� sk� = +1for all M > 0, there exists �0 > 0 suh that8� < �0; 9s; t 2 B(t0; �); jH(t)�H(s)j > Mkt� sk�Therefore we an onstrut two sequenes (hn) and (ln) onverging to 0 suhthat 8n 2 N; jH(t0 + hn)�H(t0 + ln)j > Mkhn � lnk�By lemma 6, we an dedue ~�(t0) � ~�(t0) (41)5 Loally asymptoti self-similarityExtending fBm into multifrational Brownian motion implies the loss of the twoproperties of self-similarity and stationarity of inrements. However, a weakform of self-similarity remains, alled loally asymptoti self-similarity (see [1℄,[4℄). As we will see, this property still holds for the two kinds of extension ofmBm in RN .Theorem 1 Let X = nXt; t 2 RN+o be a multifrational Brownian �eld.For all t0 2 RN+ , the law of the proess Y �(�) = nY �u (�) = Xt0+�u�Xt0�� ;u 2 RN+oonverge weakly if one of the following two onditions holds1. � = H(t0) and H(t0) < infu;v �uv(t0)where �uv(t0) = supn�; lim�!0 jH(t0+�u)�H(t0+�v)j�� = 0o.Then, the limit measure is the law of a frational Brownian �eld withparameter H(t0).2. � = infu;v �uv(t0), H(t0) > infu;v �uv(t0) and for all u; v 2 RN+ , thefollowing limit existslim�!0 jH(t0 + �u)�H(t0 + �v)j�infu;v �uv(t0) = �(u; v)with (u; v) 7! �(u;v)ku�vk2� bounded on [a; b℄2 for some � > 0.The limit measure is the law of a Gaussian proess Y infu;v �uv(t0) suh thatE hY infu;v �uv(t0)u � Y infu;v �uv(t0)v i2 = Kt0�(u; v)Remark 5 As in the Levy fBm's ase in proposition 6, the same result astheorem 1 an be stated for the inrements �X de�ned in setion 2.3. The lawof the proess Y �(�) = nY �u (�) = �Xt0;t0+�u�� ;u 2 RN+o onverge weakly underthe same assumptions. 21



In the ase N = 1, for all u; v 2 R+, we have �uv(t0) = �(t0). Therefore,theorem 1 has a simpler statement. The two ases to be onsidered, depend ofthe omparison between H(t0) and the pointwise exponent �(t0) of H .The following example shows that the limit onsidered in the seond ase,an be non trivial.Example 1 In the ase N = 1, let H(t) = 34 + t� for t 2 [0; 14 ℄.For t0 = 0, we ompute, for all u; v and � > 0H(�:u)�H(�:v)�� = u� � v�The limit measure is the law of a Gaussian proess Y suh thatE [Yu � Yv ℄2 = K0 ju� � v�jTheorem 2 Let X = nXt; t 2 RN+o be a multifrational Brownian sheet.The law of the proess Y �(�) = nY �u (�) = �Xt0;t0+�u�Pi �i ;u 2 RN+o onverge weaklyif for all i 2 f1; : : : ; Ng, one of the following two onditions holds1. �i = Hi(t0) and Hi(t0) < infu;v �iuv(t0)where �iuv(t0) = supn�; lim�!0 jHi(t0+�u)�Hi(t0+�v)j�� = 0o.2. �i = infu;v �iuv(t0), Hi(t0) > infu;v �iuv(t0) andlim�!0 jHi(t0 + �u)�Hi(t0 + �v)j�infu;v �iuv(t0) = �i(u; v)with (u; v) 7! �i(u;v)ku�vk2�i bounded on [a; b℄2 for some �i > 0.As usually, the proof of weak onvergene proeeds in two steps. First, weneed to show �nite dimensional onvergene, and then, use a tightness argument.Lemma 14.2 and theorem 14.3 in [10℄, for instane, allow then to onlude.5.1 Finite dimensional onvergeneAs the onsidered proesses are Gaussian, we only have to show the onvergeneof ovariane funtions.The only ase onsidered is the multifrational Brownian �eld's one. For themultifrational Brownian sheet, we proeed in the same way.By (11), we ompute�2�E [Y �u (�)� Y �v (�)℄2 = E [Xt0+�u �Xt0+�v ℄2= D [H(t0 + �u) +H(t0 + �v)℄� k�:(u� v)kH(t0+�u)+H(t0+�v)+�2'�x2 (2H(t0 + �u); kt0 + �uk)� (H(t0 + �u)�H(t0 + �v))2+o �k�:(u� v)k2�+ o (H(t0 + �u)�H(t0 + �v))2 (42)
22



We an show that �H(t0+�u)+H(t0+�v) � �2H(t0) in the neighborhood of � = 0.For this, we study for � < �(t0)[H(t0 + �u) +H(t0 + �v)� 2H(t0)℄ ln � = H(t0 + �u)�H(t0)k�:uk� � k�:uk� ln �+H(t0 + �v)�H(t0)k�:vk� � k�:vk� ln �As (u; �) 7! k�:uk� ln � is bounded on [a; b℄�[0; 1℄ and lim�!0 H(t0+�u)�H(t0)k�:uk� = 0for all u 2 [a; b℄, we have[H(t0 + �u) +H(t0 + �v)� 2H(t0)℄ ln � �!0�! 0Therefore, in the neighborhood of � = 0, the �rst term of (42) is equivalent toD [2H(t0)℄ ku� vk2H(t0) � �2H(t0)and the seond to�2'�x2 (2H(t0); kt0k)� (H(t0 + �u)�H(t0 + �v))2Let �uv(t0) = supn�; lim�!0 jH(t0+�u)�H(t0+�v)j�� = 0o. We have to distinguishthe two following ases� if H(t0) < infu;v �uv(t0), by de�nition of �uv(t0),8u; v 2 RN+ ; lim�!0 jH(t0 + �u)�H(t0 + �v)j�H(t0) = 0Therefore8u; v 2 RN+ ; E hY H(t0)u (�)� Y H(t0)v (�)i2 �!0�! D [2H(t0)℄ ku� vk2H(t0)| {z }EhBH(t0)u �BH(t0)v i2where BH(t0) denotes frational Brownian �eld of parameter H(t0).� if H(t0) > infu;v �uv(t0),for all � < infu;v �uv(t0), as8u; v 2 RN+ ; lim�!0 jH(t0 + �u)�H(t0 + �v)j�� = 0we have 8u; v 2 RN+ ; 1�2�E [Xt0+�u �Xt0+�v ℄2 �!0�! 0Moreover, sine there exists u; v 2 RN+ suh that H(t0) > �uv(t0), we anonsider � 2 (�uv(t0);H(t0)). The limitlim sup�!0 jH(t0 + �u)�H(t0 + �v)j�� = +123



implies 8u; v 2 RN+ ; lim sup�!0 1�2�E [Xt0+�u �Xt0+�v℄2 = +1Therefore E [Y �u (�)� Y �v (�)℄2 admits a limit for all u; v 2 RN+ when �! 0if and only if � = infu;v �uv(t0) andlim�!0 jH(t0 + �u)�H(t0 + �v)j�infu;v �uv(t0) = �(u; v) 2 R+Remark 6 We an see easily that� ukuk (t0) ^ � vkvk (t0) � �uv(t0) (43)hene infu2U �u(t0) � infu;v �uv(t0) (44)Conversely, assume there exist u; v 2 U suh that �u(t0) < �v(t0), and let� 2 (�u(t0);�v(t0)). By the triangular inequality, we getlim sup�!0 jH(t0 + �u)�H(t0 + �v)j�� = +1and therefore � > �uv(t0). Then infu;v �uv(t0) � infu2U �u(t0), whihgives infu;v �uv(t0) = infu2U �u(t0) (45)5.2 Tightness of lawsThe study of weak onvergene is well-known for stohasti proesses indexed byR+. A omprehensive review was made by Billingsley (f [5℄) for a ompat setof index ([0; 1℄). In ([11℄), Karatzas and Shreeve stated the same kind of resultsfor the whole R+. The ase of RN+ an be found in ([10℄) whose orollary 14.9providesProposition 14 Consider a sequene of ontinuous proesses �X(n)�n2N withX(n) = nX(n)t ; t 2 RN+o on (
;F ; P ) suh that1. there exists a positive onstant � suh thatsupn�1E ���X(n)0 ���� <12. for all T > 0, there exist positive onstants �, � and CT suh that8s; t 2 [0; T ℄N ; supn�1E ���X(n)t �X(n)s ���� � CT kt� skN+�Then the probability measures Pn �= P: �X(n)��1 on �C �RN+� ;B �C �RN+���form a tight sequene. 24



We verify the onditions of proposition 14, in the ase of mBm. As for �nitedimensional onvergene, we only onsider the multifrational Brownian �eld'sase.By (17), there exist positive onstants KT and LT suh that for all u, v in[0; T ℄N �2�E [Y �u (�)� Y �v (�)℄2 = E [Xt0+�u �Xt0+�v ℄2� KT k�:(u� v)k2H(t0+�u)+LT jH(t0 + �u)�H(t0 + �v)j2Therefore,E [Y �u (�)� Y �v (�)℄2 � K 0T �2(H(t0)��):k(u� v)k2H(t0) + LT jH(t0 + �u)�H(t0 + �v)j2�2�� In the ase H(t0) < infu;v �uv(t0), there exists MT > 0 suh thatE hY H(t0)u (�)� Y H(t0)v (�)i2 �MT ku� vk2H(t0)� In the ase H(t0) > infu;v �uv(t0), under the assumptionlim�!0 jH(t0 + �u)�H(t0 + �v)j2�2 infu;v �uv(t0) = �(u; v)with (u; v) 7! �(u;v)ku�vk2� bounded on [a; b℄2, there exists MT > 0 suh thatE hY infu;v �uv(t0)u (�)� Y infu;v �uv(t0)v (�)i2 �MT ku� vk2(�^H(t0))Sine the proess Y � is Gaussian, we get an exponent greater than N in theusual way. Then we an onlude by proposition 14 that the laws of Y � aretight.AknowledgementThe author thanks Jaques L�evy-V�ehel for all their fruitful disussions, espe-ially about the H�older regularity.Referenes[1℄ A. Ayahe and J. L�evy V�ehel. Generalized multifrational Brownian mo-tion: de�nition and preliminary results. Fratals: theory and appliationin engineering. M. Dekking, J. Levy-V�ehel, E. Lutton, C. Triot. Springer,1999.[2℄ A. Ayahe and J. L�evy V�ehel. Generalized multifrational Brownian mo-tion. SISP,3,1/2,7-18,2000. 25
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