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Pointwise Regularity of Fitness Landscapes
and the Performance of a Simple ES

Evelyne Lutton and Jacques Lévy Véhel

Abstract— We present a theoretical and experimental analysis
of the influence of the pointwise irregularity of the fitness
function on the behavior of an (1+1)ES. Previous work on
this subject suggests that the performance of an EA strongly
depends on the irregularity of the fitness function. Severalirreg-
ularity measures have been derived for discrete search spaces,
in order to numerically characterize this type of difficulty
for EA. These characterizations are mainly based on Ḧolder
exponents. Previous studies used however a global characteri-
zation of fitness regularity (the global Hölder exponent), with
experimental validations being conducted on test functions with
uniform regularity. This is extended here in two ways: Results
are now stated for continuous search spaces, and pointwise
instead of global irregularity is considered. In addition, we
present a way to modify the genetic topology to accommodate
for variable regularity: The mutation radius, which contro ls
the size of the neighbourhood of a point, is allowed to vary
according to the pointwise irregularity of the fitness function.
These results are explained through a simple theoretical analysis
which gives a relation between the pointwise Ḧolder exponent
and the optimal mutation radius. Several questions connected
to on-line measurements and usage of regularity in EAs are
raised.

I. I NTRODUCTION AND MOTIVATION

Intuition, experiments, and theory tends to prove that
irregularity is a major cause of convergence pathology for
optimisation algorithms in general, and for EAs in particular.
Previous work on this topic have established a relation
between a measure of the fitness regularity (the global Hölder
exponent of the fitness function) and a deception measure
[10], [7]. Experimental analyses on Weierstrass functions,
have confirmed the theoretical findings.

Weierstrass functions are interesting test functions, as
they have a controlled regularity and provide really difficult
functions to be tested. Additionnally, the regularity of a
Weierstrass function is uniform over its domain. If this is
convenient for understanding the behaviour of an EA in
controlled environment, this is a limitation in practice: “Real
world” fitness functions that one encounters in usual EA
applications have variable regularity.

It seems intuitive that the global results obtained pre-
viously should apply locally: More precisely, one expects
that an EA should more easily locate a maximum lying
in a smooth region than a maximum lying in an irregu-
lar neighbourhood. This intuition was confirmed trough an
experimental analysis, [11]. In that purpose, functions with
controlled but variable regularity have been built.
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While it seems clear that local regularity has a major
impact on difficulty for EA, it is not however the only
factor, and other sources like “epistasy” have to be taken
into account [15]. The relationship between irregularity and
epistasy has not yet been fully investigated. It seems however
probable that these two sources are of different nature
(“epistasy is not enough” [14]): some irregular functions
are weakly epistatic (for examplef(x1, ..., xn) =

∑n

1 eixi),
while some regular functions may be very epistatic (like
f(x1, ..., xn) =

∏N

1 xi).

Another factor is temporal noise [1], [2]. We do not
consider in this paper temporal variations. All functions
considered in this paper are fixed, and remain the same
during the EA evolution. Regularity variations are considered
only with respect to the spatial parameters.

Our work is a contribution to the topic of controlled fitness
landscapes, which has been largely developed in the EA
community (NK-landscapes and tunable fitness landscapes
[14], (1, λ)-ES on simple function [3]), and on which the
behaviour of some simple EA engines are easier to analyse.

Additionally, fitness landscapes involve genetic engine
characteristics, that set a specific topology on the definition
domain: For a same fitness function, two different EA en-
gines (for example with or without crossover) may have very
different behaviour. The terms “fitness landscape” involves
both the profile of the fitness function on its definition
domain and the search paths produced by the genetic opera-
tors. As a consequence, useful quantities for modeling EAs
should be measured with respect to this “genetic” topology.
For regularity measurements the same holds: Irregularity
characteristics must be measured with respect to an un-
derlying measure based on the genetic operators effect. In
other terms, the neighbourhood system that serves as a basis
for the calculation of Hölder exponents should be linked
with transition probabilities via the genetic operators. We
should thus talk about fitness landscape irregularity, instead
of fitness function irregularity. A first attempt has been done
in this direction in [7] for discrete fitness landscapes. The
present work deals with continuous functions.

The paper is organized as follows: Section II recalls the
basic definitions of Hölder global and pointwise exponents.
Section III proposes an analysis that relates the pointwise
regularity of a fitness function with the mutation radius of an
(1+1)ES. Section IV recalls the test-functions built in [11].
The experimental analysis of the proposed adaptive mutation
scheme is presented in section V. Conclusions and future
work are detailed in section VI.



II. GLOBAL AND POINTWISE REGULARITY

Hölder regularity analysis is an important topic in various
fields such as partial differential equations, fractal geometry
and signal/image processing ([8]). Hölder regularity allows
to quantify in a precise way both the pointwise and global
regularity. For our purposes, the following notions will be
relevant. To simplify notations, we assume that our signals
are nowhere differentiable. Generalization to other signals
only requires simple modifications.

Let α ∈ (0, 1), andΩ ⊂ R. One says that a functionf
defined onΩ belongs toCα

l (Ω) if:

∃ C : ∀x, y ∈ Ω :
|f(x) − f(y)|

|x − y|α
≤ C

The supremum of the valuesα such thatf belongs to
Cα

l (Ω) is called the global Hölder exponent off in Ω. From
the definition, it is clear that smaller values ofα correspond
to more irregular functions.

A pointwise characterization may be obtained as follows:
Let x ∈ R, and s be a real number with0 < s < 1. A
function f : R → R belongs toCs(x) if there existδ > 0
and a constantCx such that

|y − x| ≤ δ ⇒ |f(y) − f(x)| ≤ Cx|y − x|s. (1)

Thepointwise Ḧolder exponentof f at x, denoted byα(x),
is defined to besup{s : f ∈ Cs(x)}.

Since α(x) is defined at each point, we may associate
to f the functionx 7→ α(x) which measures the variation
of its regularity with location. Section IV allows one to
get an intuitive feeling of Hölder exponents with graphs
of functions with prescribed pointwise regularity. Hölder
regularity characterization is widely used in fractal analysis
because it has direct interpretations both mathematically
and in applications. It has been shown for instance thatα
indeed corresponds to the auditive perception of smoothness
for voice signals. Similarly, simply computing the Hölder
exponent at each point of an image already gives a good idea
of its structure, as for instance its edges [8]. More generally,
in many applications, it is desirable to model, synthesize or
process signals which are highly irregular, and for which the
relevant information lies in the singularities more than inthe
amplitude. In such cases, the study of the Hölder function is
of obvious interest.

III. POINTWISE HÖLDER REGULARITY AND EAS

A. Bounding the “expected fitness progress”

An interesting quantity for the analysis EA behaviour is the
expected fitness that can be obtained after the application of
genetic operators. This quantityf ′, called “adjusted fitness”
by Goldberg [5], [6], is defined on each point of the search
domain. In other words, it is what can be expected as a fitness
value from the current point using the genetic operators.

For continuous search space, this quantity is related to the
expected progress in one step of an(1 + 1)ES or an (1 +
λ)ES. It is used as a basis for convergence speed analysis on

sphere and smooth fitness models [3]. While the calculation
of this quantity is difficult for complex fitness functions, the
computation of a bound is possible for mutation-only ES on
the class of functions described in section II.

Let us consider auniform mutation with radiusσ. The
mean fitness after mutation is equal to:

f ′(x) =
1

2σ

∫ x+σ

x−σ

f(t)dt (2)

The global quantity that was used in [10] as a measure of
EA-difficulty is ∆f := maxx(|f ′(x) − f(x)|). For discrete
search spaces and irregular functions, a link with the global
Hölder exponent and the parameters of the GA was exhibited.

Since we consider now functions with varying pointwise
regularity, it is natural to consider a localized measure of
difficulty, i.e. ∆f(x) := |f ′(x)− f(x)|. Using the pointwise
Hölder α(x) exponent off at x, this quantity may be
estimated at any given pointx as follows:

∆f(x) ≤
1

2σ

∫ x+σ

x−σ

|f(t) − f(x)|dt

≤
Cx

2σ

∫ x+σ

x−σ

|t − x|α(x)dt

Thus ∆f(x) ≤
Cxσα(x)

α(x) + 1

This bound suggests that the difficulty varies in a non-
linear way with the pointwise regularity of the function. For
instance, for a fixedσ < 1, it decreases whenα increases:
With small enough mutation radii, smoother functions are
easier to handle.

B. A mutation radius varying according to the pointwise
regularity

A natural idea is then to choose a location-dependent
σ = σ(x), tuned so as to obtain constant∆f(x) along the
trajectory. In other words, we require that:

Cxσα(x)

α(x) + 1
= K

whereK is a user-defined constant. This leads to the follow-
ing law of adaptivity of the mutation radius with respect to
x:

σ(x) =

(

K(α(x) + 1)

Cx

)
1

α(x)

(3)

Note that the dependency ofσ with respect toα is not
trivial. In particular, according to the value of the ratio
K
Cx

, the mutation radius may be an increasing (e.g. when
K
Cx

≤ 0.8) or decreasing (e.g. when K
Cx

≥ 1) function of
the regularity on[0, 1] (the admissible range ofα for a non-
differentiable function).

In practice, using (3) to tune the value ofσ requires the
computation of bothα(x) andCx at each pointx. This is a



delicate point. A precise estimate would necessitate knowing
the value off at finely sampled points, which is of course
not available in applications. We remark however that an
initial rough estimation is already sufficient for our purpose.
This estimation may be refined as the algorithm proceeds.
We thus propose the following procedure: For each pointx
where the mutation will be applied, we compute the value of
the fitness at all pointsxi in a small neighbourhood aroundx.
From these values, an estimate of the couple(Cx, α(x)) will
be obtained as explained below. Equation (3) is then used to
computeσ. As the number of generations increases, more
points will be investigated, and the estimated(Cx, α(x))
will get more precise. In particular, since the algorithm is
supposed to visit more often regions of high fitness, the
precision will increase preferably exactly at those pointswe
are most interested in: The best estimates will be obtained
around maxima off .

To estimate(Cx, α(x)) from the values off in a neigh-
bourhood of sizeε of x, we proceed as follows: Assume one
knowsf(xi) for all xi such that|x − xi| ≤ ε. We compute
the oscillations oscρ of f defined as:

oscρ = sup
xi:|x−xi|≤ρ

f(xi) − inf
xi:|x−xi|≤ρ

f(xi),

for ρ = 1/n, 2/n, . . . , ε, where1/n is the sampling step.
The exponentα(x) and the constantCx are then obtained
as the slope and the intercept with the ordinate axis of the
linear least square regression of the vector(log(oscρ))ρ with
respect to(log(ρ))ρ.

IV. T EST FUNCTIONS WITH CONTROLLED POINTWISE

REGULARITY

A. Weierstrass function

In order to precisely and finely investigate the impact of
pointwise regularity on the behavior of an EA, we con-
structed test functions with prescribed Hölder exponent [11].
To make sure that no other factor come into play and thus
interfere with the analysis, these functions have been built in
the following way.

The basis is a generalized Weierstrass function, which
provides a convenient way to controlα(x). Let us first recall
the definition of the usual Weierstrass function.

Wb,h(x) =
∑∞

i=1 b−ihsin(bix)
with b ≥ 2 and0 < h < 1

The parameterh controls the regularity: The global Hölder
exponent ofWb,h on, e.g.,[0, 1], is equal toh. In addition,
α(x) = h for all x ([4]). Weierstrass functions are very
irregular for small values ofh, and become smoother ash
tends to 1.

Generalized Weierstrass functions are defined as follows:

GWb,h(x) =
∑∞

i=1 b−ih(x)sin(bix)
with b ≥ 2 and0 < h(x) < 1

Providedh is differentiable, the pointwise Hölder exponent
of GWb,h is h(x) at eachx.

Figure 1 displays a generalized Weierstrass function with
h(x) = x on (0, 1). One can clearly see the local regularity
increasing along the graph. However, an additional featureis
present: The local oscillation is large around 0, and decreases
as x increases. It is important to note that the variation of
the local oscillation is independent from the evolution of
α(x). This particular behavior ofGWb,h is a nuisance in our
case: Since we want to focus on the sensitivity of the EA to
pointwise regularity, we need to get rid of other sources of
variations, that would perturb our study. We thus deal with a
modified version ofGWb,h where the local oscillations are
normalized. This is explained in details below.
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Fig. 1. Generalized Weierstrass function withh(x) = x.

B. Test functions

Two test functions have been built with identical features
except for the pointwise regularity profile. For obvious
reasons, we have constrained the functions to have the same
maximum fitness value located at the same point (0, the
center of the domain), and a similar underlying smooth
(quadratic) component. The irregularity is considered as a
“noisy” local perturbation of limited amplitude.

The generalized Weierstrass function is oscillation-
normalized as follows. The local mean value and maximal
absolute deviation from the mean are computed in a neigh-
bourhood of widthǫ around each pointx of the search space
[−0.5, 0.5]:

µǫ(x) =
1

N

∑

xi:|xi−x|≤ε

GWb,h(xi) (4)

Dǫ(x) = max
xi:|xi−x|≤ε

|GWb,h(xi) − µǫ(x)| (5)

where N is the number of points xi in the
ε−neighbourhood of x. The normalised generalized
Weiertrass function is then (dotted curves on figures 2 and
3)

NWb,h(x) =
GWb,h(x) − µǫ(x)

Dǫ(x)
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Fig. 2. N(x): The “n” regularity profile function.
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Fig. 3. U(x): The “u” profile regularity function.

The fitness function is finally defined as the smooth trend
plus the noisy component with controlled irregularity. It has
the following form:

f(x) = 2 − 4x2 − |NWb,h(x)|

The noisy component is included as a local perturbation
(of small amplitude) that issubtractedto the smooth trend,
in order to be sure to get the same global maximum atx =
0, with the same fitness target value of2 (sinceNWb,h(x)
always equal0 at x = 0, whateverh). Additionally, each
local maximum is located on the smooth trend2 − 4x2.

In the experiments, we consider two profiles:
1) Favourable case : irregular areas of the function

have a low fitness(Figure2)

h(x) = 0.9 if x ∈ [−0.2, 0.2]

h(x) = 0.1 else

2) Unfavourable case : the most irregular points are
located around the global maximum(Figure3)

h(x) = 0.1 if x ∈ [−0.2, 0.2]

h(x) = 0.9 else



Note that bothh functions are not differentiable at±0.2.
At all other points in [−0.5, 0.5], however,h is smooth,
and the pointwise Hölder exponent of our fitness function
is indeed equal toh(x).

V. EXPERIMENTAL ANALYSIS

The analysis in this section aims at evaluating the effi-
ciency of the adaptive sigma mutation radius of equation (3)
on the test functionsU(x) andN(x) defined in section IV. In
that view, two (1+1)ES have been compared: One with fixed
radius mutation (referred to as ES) and one with adaptive
radius (referred to as ESadapt). Statistics have been done on
100 runs for each parameter setup.

As a preliminary experiment, we check thatU(x) is
intrinsically more difficult to optimize thanN(x). This is
assessed through a pure random search and is illustrated
on figure 4. This result comes as a confirmation to our
experiments in [11].

Considering the performance of the random search, it
has been decided to compare the efficiency of the (1+1)ES
at early stages of the search, i.e. with small numbers of
evaluations (10 or 20). Longer runs are not interesting, as
all algorithms provide fitness results over 1.99.
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Fig. 4. Mean results (100 runs) of a pure random search on U(x)and N(x):
Best fitness (ordinate)vs number of trials (abscissa).

A delicate point of the experimentation is the tuning of
either the fixedσ (for ES) or theα(x), Cx andK parameters
(for ESadapt).

Let us first consider the case of ESadapt. We have fixed
K = 0.1. This is a reasonable choice in view of the fact
that K represents the expected mean fitness variation for
a mutation. As explained above,α(x) and Cx should be
estimated at each point, using a local sampling. However,
our primary aim in this work is to assess the ideal gain
entailed by using the adaptive rule (3) forσ. In order to get
rid of estimation errors, we have used the known theroretical
valueh(x) for α(x). As for Cx, it has been experimentally
found to be roughly constant for bothU(x) and N(x),
and approximately equal to0.15. Figures 5 and 6 give
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Fig. 5. Sigma profile for N(x) over the search space[−0.5, 0.5].
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Fig. 6. Sigma profile for U(x) over the search space[−0.5, 0.5].

respectively the mutation radius profiles for theN and U
functions based on these parameters settings.

Let us now move to the tuning ofσ for ES. Recall that
our aim is to compare the efficiency of ES and ESadapt. As
there is no obvious way to decide what the optimalσ for ES
is, and in order to perform a fair comparison, we chose to let
σ vary. More precisely, we have run the experiments on ES
for values ofσ ranging in a given interval: Curves 7 to 12
show the average best fitness values obtained with ES when
σ varies between0.001 and 0.1. The upper bound0.1 was
chosen in view of the fact that the behaviour of a mutation-
only-(1 + 1)ES on the search space[−0.5, 0.5] becomes
roughly equivalent to a pure random search algorithm for
larger values ofσ.

In order to get a meaningful comparison between ES and
ESadapt, we define a “mean mutation radius” for ESadapt:
This is simply computed as the average ofσ(x), as given
by equation (3), over allx in [−0.5, 0.5]. Since this mean
mutation radius has no reason to range in the same interval
as the fixedσ of ES, we multiply eachσ(x) by a constant
σ0 so that the mean mutation radius also takes all values
in [0.001, 0.1]. This rescaling ensures a fair comparison



between the two procedures.
Figures 7 to 12 present the best average fitness obtained

after 10, 20 and 50 generation for both algorithms on the
functionsU andN as a function ofσ, i.e. the fixed mutation
radius for ES, and the mean mutation radius for ESadapt.
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Fig. 7. Result of a 10 generations (1+1)ES on N(x). Mean best fitness
(ordinate)vs σ (for ES) or meanσ (for ESadapt) (abscissa).
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Fig. 8. Result of a 10 generations (1+1)ES on U(x). Mean best fitness
(ordinate)vs σ (for ES) or meanσ (for ESadapt) (abscissa).

The advantage of ESadapt on ES is particularly clear on
the 10 and 20 generations runs. For each optimal tuning
of σ, the average best fitness of ESadapt is better that the
one of ES. As said above, the difference between the two
methods (and also with a pure random search) is less clear
for longer runs, due to the small size of the search space.
Finally, a striking difference between the behaviours of ES
and ESadapt on the favourableN(x) and unfavourableU(x)
cases is visible on figures 13 and 14: At the optimalσ (right
of figure 13 and nearσ = 0.05 on figure 14), the simple
ES has worse performances on theU(x) function, while the
performances remain the same for the adaptive strategy.

VI. CONCLUSION AND FUTURE WORK

This work is an extension of the results in [10] to the
continuous case. Our results are also coherent with the
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Fig. 9. Result of a 20 generations (1+1)ES on N(x). Mean best fitness
(ordinate)vs σ (for ES) or meanσ (for ESadapt) (abscissa).
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Fig. 10. Result of a 20 generations (1+1)ES on U(x). Mean bestfitness
(ordinate)vs σ (for ES) or meanσ (for ESadapt) (abscissa).

experimental analysis in [11]. In addition, we have pro-
posed a uniform mutation operator with adaptive radius that
takes into account the local regularity in an (1+1)ES. Our
experiments support the claim that the adaptive scheme is
more efficient, and less sensitive to local regularity variations.
Future work on this topic will focus on the following aspects:

• From a theoretical viewpoint, we will study the exten-
sion of this adaptive scheme to Gaussian mutation (i.e.
the classical mutation operator for (1+1)ES). Extension
of this analysis to crossover operators seems to be much
more difficult to investigate.

• From an applicative viewpoint, an estimation routine for
Cx can be easily embedded in a(1+λ)ES with almost
no loss of computation time. Tests wil be performed in
the future. The design of an efficient on-line estimation
of the irregularity parametersCx and α(x) inside a
(µ, λ) or (µ + λ) will also be investigated.

This new regularity adaptive scheme should be also
compared with other adaptive schemes and auto-adaptive
schemes. Each scheme has its proprer balance of calculation
cost versus efficiency. An experimental analysis will be
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Fig. 11. Result of a 50 generations (1+1)ES on N(x). Mean bestfitness
(ordinate)vs σ (for ES) or meanσ (for ESadapt) (abscissa).
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Fig. 12. Result of a 50 generations (1+1)ES on U(x). Mean bestfitness
(ordinate)vs σ (for ES) or meanσ (for ESadapt) (abscissa).

performed in order to estimate the practical efficiency of our
adaptive scheme in the style of [13].

REFERENCES

[1] D. V. Arnold and H.-G. Beyer. Efficiency and mutation strength
adaptation of the(µ, µi, λ)-es in a noisy environment. In M. Schoe-
nauer, K. Deb, G. Rudolf, X. Yao, E. Lutton, Merelo. J.J., andH.-P.
Schwefel, editors,Parallel Problem Solving from Nature - PPSN VI
6th International Conference, Paris, France, September 16-20 2000.
Springer Verlag. LNCS 1917.

[2] H.-G. Beyer. Evolutionary Algorithms in Noisy Environments: The-
oretical Issues and Guidelines for Practice.Computer Methods in
Applied Mechanics and Engineering, 186(2–4):239–267, 2000.

[3] H.-G. Beyer. On the Performance of(1, λ)-Evolution Strategies
for the Ridge Function Class.IEEE Transactions on Evolutionary
Computation, 5(3):218–235, 2001.

[4] Kenneth Falconer. Fractal geometry. John Wiley & Sons Ltd.,
Chichester, 1990. Mathematical foundations and applications.

[5] D. E. Goldberg Genetic Algorithms and Walsh functions: Part I, a
gentle introduction Complex Systems, Vol 3 No 2, pp 129-152,1989.

[6] D. E. Goldberg Genetic Algorithms and Walsh fuctions: II. Deception
and its analysis”, Complex Systems, Vol 3 No 2, pp 153-171, 1989.

[7] Benoit Leblanc and Evelyne Lutton. Bitwise regularity and ga-
hardness. InICEC 98, May 5-9, Anchorage, Alaska, 1998.
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