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Ingredients

Physical system

M : V → Y
v 7→ y =M(v)

y ∈ Y, the system state

v ∈ V, the control variable

M, model mapping V to Y

Observation

yo yo ∈ O, observed state

Observation system

H : Y → O
y 7→ H(y)

H observation operator
mapping Y to O
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Definition

Giving observed state yo,

Inverse problem (unconstrained)

Find v∗ = MinArg(J(v)), v ∈ V where

J(v) = Jo(v) =
1

2
‖H(M(v))− yo‖2

O (1)

under adequate conditions, the solution v∗ is given by the
Euler-Lagrange Equation ∇J(v∗) = 0

Problems

ill-posedness ⇒ use a priori knowledges;

ill-conditionning ⇒ use preconditioning.
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A priori knowledges

For a priori knowledge A, set J = Jo + JA
where JA is defined to force the solution to satisfy A

Use of a priori informations

Background vb and background error covariance B

Jb =
1

2
αb‖v − vb‖2

B−1 (2)

Regularity of the solution : Φ-smooth (minimum gradient)

Jr =
1

2
αr‖Φ(v)‖2 (3)

Φ function of the derivatives of v
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Vector fields regularization

first order regularization : first order derivatives of v

Φ(1)

(
∂vi
∂xj

)
1≤i ,j≤n,

gradient penalization : J∇(v) =
1

2
α∇

∫
Ω

n∑
i=1

‖∇vi‖2dx

second order regularization : second order derivatives of v

Φ(2)

(
∂2vi
∂xj∂xk

)
1≤i,j,k≤n,

Suter regularization :

Jsuter (v) =
1

2

∫
Ω

α∇div‖∇div(v)‖2 + α∇curl‖∇curl(v)‖2dx

⇒ difficult to defined optimal weighting parameter(s)
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Regularization as smoothing operators
Case of gradient penalization

Notations and definition

Let :

v(x) be an incomplete/inconsistent control variable, with
x ∈ Ω the physical space

Φ(v) regularization operator as defined previously

ϕ(x) a scalar positive trust function given the quality of v at x{
small value meaning bad/lack/inconsistent control variable
large value for good quality control variable

we define restored control variable u∗ = MinArg(ε(u)),u ∈ V

ε(u) =
1

2

∫
Ω
‖2Φ(u(x))‖2 + ϕ(x)‖u(x)− v(x)‖2dx (4)
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Regularization as smoothing operators
Case of gradient penalization

ε(u) =
1

2

∫
Ω
‖Φ(u(x))‖2 + ϕ(x)‖2u(x)− v(x)‖dx

ε is minimized by setting u to be :

close to v when ϕ is large (v has adequate properties)

Φ− regular when ϕ is small (otherwise)

Under adequate conditions MinArg(ε) is given by the
Euler-Lagrange condition

∇uε(u) = 0 (5)

Gateaux derivatives development leads to

∇uε(u) = Φ∗ ◦ Φ(u(x)) + ϕ(x)(u(x)− v(x)) (6)
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Regularization as smoothing operators
Case of gradient penalization

Gradient penalization : mathematical expression

J∇(v) =
1

2
α∇

∫
Ω

n∑
i=1

‖∇vi‖2dx

Applied as smoothing operator, we get

Φ∗∇ ◦ Φ∇ = −∆,with boundary conditions : ∇ui ⊥ ν on ∂Ω

⇒ ∇ε∇(ui ) = −∆ui (x) + ϕ(x)(ui (x)− vi (x)), 1 ≤ i ≤ n (7)
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Numerical implementation
Generalized diffusion implementation

Classical implementation : given ∇ε, use descent-type
algorithms.

Problem : solve the Euler-Lagrange equation

∆ui − ϕ(x)(ui (x)− vi (x)) = 0, 1 ≤ i ≤ n (8)

considers ui as a function of time and solve the equivalent problem

∂

∂t
ui (x, t) = ∆ui (x, t)− ϕ(x)(ui (x, t)− vi (x))), 1 ≤ i ≤ n (9)

known as the generalized diffusion equations.
As diffusion operator, it can directly be used in background
covariance [see Weaver et al.]
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

optical flow of Horn and Shunck : luminance conservation

df

dt
= 0 (10)

f (x, t) noted f is the luminance function.
For geophysical fluid images, the mass conservation equation is
more adequate [Fitzpatrick 1985]

df

dt
+ f (∇ · v) = 0 (11)

v(x) is the velocity at x
given the luminance function f (x, 0) = f 0(x) at time 0, solution to
equations (10) or (11) defines f (x, t) as function of the static
velocity field v(x)

M : V → F
v 7→ f =M(v)
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

motion estimation is reduced to the inverse problem :

δv∗ = MinArg(J(δv))

with

J(δv) =
1

2
‖M(vb + δv)− fo‖2

F +
1

2
‖δv‖2

V (12)

Aperture problem :

only motion along the normal to iso-contours can be inferred ⇒
use regularization
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Trust function for motion estimation

Proposition: define trust function ϕ

to have large values on discontinuities (contours) for motion
component along the normal to the contour, and small values in
homogeneous areas.

Example : set ϕ to be the contours map c1 or c2 defined as

c1(x, f ) = ‖∇xf (x)‖2

c2(x, f ) = ‖∇x(Gσ(x) ∗ f (x))‖2
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Twin experiments

Direct Image sequences assimilation [Titaud et al 2009] ⇒ true initial
state (velocity fields)

Images from [J.-B. Flór (LEGI) and I. Eames, 2002]
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Error analysis : Tikhonov regularization
Evolution of diagnostic functions with respect to the weighting parameter
α

mean values max values
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Error analysis : gradient penalization
Evolution of diagnostic functions with respect to the weighting parameter
α∇

mean values max values
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Error analysis : Generalised diffusion
Evolution of diagnostic functions with respect to the weighting parameter
αGD

mean values max values
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Error analysis : Comparison - cost function

Evolution of the observation cost function with minimization iterations

mean values
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Error analysis : Comparison - velocity error

Evolution of the velocity error with minimization iterations

mean values max values
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Error analysis : Comparison - vorticity error

Evolution of the vorticity error with minimization iterations

mean values max values

F.-X. Le Dimet regularization for inverse problem



Inverse problems : variational formulation
Generalized Diffusion regularization

Application
Conclusion

Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Error analysis : Comparison - angular error

Evolution of the angular error with minimization iterations

mean values max values
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Analysis : vector field

true Tikhonov regularization
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Analysis : vector field

true gradient penalization
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Motion estimation problem
From regularization to pseudo covariance operator
Experimental result

Analysis : vector field

true Generalised Diffusion
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Conclusion

Inverse problems :

ill-posed ⇒ use regularization

ill-conditioned ⇒ use preconditioner

proposed : promising approach for regularization of inverse
problems.
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