
HAL Id: inria-00540314
https://hal.inria.fr/inria-00540314

Submitted on 26 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RDF Data Indexing and Retrieval: A survey of
Peer-to-Peer based solutions

Imen Filali, Francesco Bongiovanni, Fabrice Huet, Françoise Baude

To cite this version:
Imen Filali, Francesco Bongiovanni, Fabrice Huet, Françoise Baude. RDF Data Indexing and Re-
trieval: A survey of Peer-to-Peer based solutions. [Research Report] RR-7457, INRIA. 2010. �inria-
00540314�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50036594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00540314
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
4

5
7

--
F

R
+

E
N

G

Distributed Systems and Services

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

RDF Data Indexing and Retrieval: A survey of

Peer-to-Peer based solutions

Imen Filali — Francesco Bongiovanni — Fabrice Huet — Françoise Baude

N° 7457

Novembre 2010

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

RDF Data Indexing and Retrieval: A survey of

Peer-to-Peer based solutions

Imen Filali, Francesco Bongiovanni, Fabrice Huet, Françoise Baude

Theme : Distributed Systems and Services
Networks, Systems and Services, Distributed Computing

Équipe-Projet Oasis

Rapport de recherche n° 7457 — Novembre 2010 — 54 pages

Abstract: The Semantic Web enables the possibility to model, create and
query resources found on the Web. Enabling the full potential of its technolo-
gies at the Internet level requires infrastructures that can cope with scalability
challenges and support various types of queries. The attractive features of the
Peer-to-Peer (P2P) communication model such as decentralization, scalability,
fault-tolerance seems to be a natural solution to deal with these challenges.
Consequently, the combination of the Semantic Web and the P2P model can be
a highly innovative attempt to harness the strengths of both technologies and
come up with a scalable infrastructure for RDF data storage and retrieval. In
this respect, this survey details the research works that adopt this combination
and gives an insight on how to deal with the RDF data at the indexing and
querying levels.

Key-words: Semantic Web, Peer-to-Peer (P2P), Distributed Hash Tables
(DHTs), Resource Description Framework (RDF), Distributed RDF repository,
RDF data indexing, RDF query processing, publish/subscribe (pub/sub), sub-
scription processing.

Indexation et stockage de données RDF: une

étude de solutions basées sur les systèmes

pair-à-pair

Résumé : Le Web Sémantique permet de modéliser, créer et faire des requêtes
sur les ressources disponibles sur le Web. Afin de permettre à ses technolo-
gies d’exploiter leurs potentiels à l’échelle de l’Internet, il est nécessaire qu’elles
reposent sur des infrastructures qui puissent passer à l’échelle ainsi que de répon-
dre aux exigences d’expressivité des types de requêtes qu’elles offrent.

Les bonnes propriétés qu’offrent les dernières générations de systèmes pair-à-
pair en termes de décentralisation, de tolérance aux pannes ainsi que de passage
à l’échelle en font d’eux des candidats prometteurs. La combinaison du modèle
pair-à-pair et des technologies du Web Sémantique est une tentative innovante
ayant pour but de fournir une infrastructure capable de passer à l’échelle et
pouvant stocker et rechercher des données de type RDF.

Dans ce contexte, ce rapport présente un état de l’art et discute en détail des
travaux autour de systèmes pair-à-pair qui traitent des données de type RDF
à large échelle. Nous détaillons leurs mécanismes d’indexation de données ainsi
que le traitement des divers types de requêtes offerts.

Mots-clés : Web Sémantique, pair-à-pair (P2P), Table de Hashage Distribuée,
Resource Description Framework (RDF), dépot distribué, indexation de don-
nées RDF, traitement de requêtes RDF, publication/souscription, traitement
de souscriptions.

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 3

Contents

1 Introduction 4

2 Context and Background 5
2.1 The RDF Data Model . 6
2.2 Structured P2P Systems . 7

2.2.1 Chord . 7
2.2.2 Bamboo . 8
2.2.3 Content Addressable Network (CAN) 9
2.2.4 P-Grid . 10
2.2.5 MAAN . 11

2.3 RDF Data Processing on top of P2P Systems: What are the main
challenging aspects ? . 12

3 RDF Data Storage and Retrieval in P2P Systems 13
3.1 RDF Data Storage and Retrieval in Unstructured P2P Networks 13

3.1.1 Bibster . 13
3.1.2 S-RDF . 14

3.2 RDF Data Storage and Retrieval in Structured P2P Networks . . 15
3.2.1 Edutella . 15
3.2.2 RDFPeers . 16
3.2.3 Atlas . 18
3.2.4 Dynamic Semantic Space 18
3.2.5 RDFCube . 19
3.2.6 GridVine . 20
3.2.7 UniStore . 20
3.2.8 YARS . 21
3.2.9 PAGE . 22
3.2.10 Battré et al. 23
3.2.11 Query Chain and Spread by Value algorithms 24

3.3 Complementary Techniques for Search Improvements 25
3.3.1 Caching . 27
3.3.2 Parallel RDF Query Processing 27

3.4 P2P and RDF: Discussions and Challenges 28

4 Publish/Subscribe Communication Model 30
4.1 Background . 30
4.2 P2P-based Publish/Subscribe Systems for RDF Data Storage and

Retrieval . 31
4.2.1 Cai et al. 31
4.2.2 DSS . 33
4.2.3 Chirita et al. 33
4.2.4 Atlas . 34
4.2.5 Single and Multiple Query Chain Algorithms 35
4.2.6 Continuous Query Chain and Continuous Spread-By-Value

Algorithms . 35
4.2.7 Ranger et al. 36

4.3 Pub/sub and RDF: Discussions and Challenges 38

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 4

5 Conclusion and Perspectives 42
5.1 Summary . 42
5.2 Perspectives . 42

1 Introduction

Pushed by the willingness to realize the Semantic Web [7] and more specifically
the “Linked Data” vision [20] of Sir Tim Berners Lee at the Internet level, the
last few years have seen the emergence of a new breed of distributed systems
that combines Peer-to-Peer (P2P) technologies with the Resource Description
Framework (RDF) (metadata) data model [4], allowing a flexible description of
both data and metadata in large scale settings. This combination arose quite
naturally, and, as stated in [113], both address the same need but at different
levels. The Semantic Web allows users to model, manipulate and query knowl-
edge at a conceptual level with the intent to exchange it. P2P technologies,
on the other hand, enable users to share information using the decentralized
organization principle. P2P systems have been recognized as a key communi-
cation model to build scalable platforms for distributed applications such as
file sharing (e.g., Gnutella [1]) or distributed computing (e.g., SETI@home [5]).
P2P architectures are classified into three main categories: unstructured, hybrid
and structured overlays. In unstructured P2P overlays, there is no constraint on
the P2P architecture as the overlay is built by establishing random links among
nodes [1]. Despite their simplicity, they suffer from several issues: limited scala-
bility, longer search time, higher maintenance costs, etc. A hybrid P2P overlay
is an architecture in which some parts are built using random links and some
others, generally the core of the overlay, are constructed using a specific topol-
ogy [122]. Structured P2P overlays [36] emerged to alleviate inherent problems
of unstructured overlays. In these systems, peers are organized in a well-defined
geometric topology (e.g., ring, torus, etc.) and, compared to unstructured net-
works, they exhibit stronger guarantees in terms of search time and nodes’
maintenance [37]. By providing a Distributed Hash Table (DHT) abstraction,
by the mean of Put and Get methods, they offer simple mechanisms to store and
fetch data easily in a distributed environment. However, even if this abstraction
is practical, it has its limits when it comes to efficiently support the types of
queries that the Semantic Web technologies intend to provide. The main goal
behind these systems is a simple data storage and retrieval. Therefore, a key
point in building a scalable distributed system is how to efficiently index data
among peers participating in the P2P network in order to ensure efficient lookup
services, and thus improve the efficiency of applications and services executed
at the top level.

The question we try to address in this survey is the following: how to store
the RDF data and evaluate complex queries expressed in various Semantic Web
query languages (e.g., [6, 67, 112]) on top of fully distributed environments ? In
this regard, we survey several approaches for P2P distributed storage systems
that adopt RDF as a data model. In particular, we focus on data indexing and
lookup and query evaluation mechanisms. We also give an overview of the pub-
lish/subscribe (pub/sub) communication paradigm build on top of P2P systems
for RDF data storage and retrieval. Rather than pursuing an exhaustive list of
P2P systems for RDF data storage and retrieval, our aim is to provide a unified

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 5

view of algorithmic approaches in terms of data indexing and retrieval, so that
different systems can be put in perspective, compared and evaluated. Several
survey papers focus on P2P networks (e.g., [69, 92, 85, 103]) or the pub/sub
communication model (e.g., [49, 83]) have been proposed. None of them ad-
dressed the combination of the P2P architecture and the RDF data model. The
work presented by Lua et al. in [85] gives an extensive comparative study of
the basic structured and unstructured P2P systems which is out of the scope of
this paper. Related surveys have been presented in [103, 92] but even if they
have a wider scope than [85], as they cover several service discovery frameworks,
search methods,. . . , they do not detail the proposed mechanisms. This survey,
on the contrary, presents an in depth analysis of carefully selected papers that
combine the RDF data model and the P2P technologies.
In order to be self-contained, this survey introduces in Section 2 the basic ter-
minologies and technologies that will be used while investigating RDF-based
P2P systems. This includes the main concepts behind the RDF data model
as well as set of canonical structured P2P networks. Section 3 discusses sev-
eral P2P systems that combine a P2P architecture with the RDF data model.
Specifically, it focuses on the data indexing and query processing mechanisms.
It also includes complementary techniques used to improve the query processing
through many strategies such as parallel query processing, caching, replication,
etc. Section 4 investigates the publish/subscribe communication model on top
of RDF-based P2P systems and underlines various algorithms that have been
proposed to manage complex subscriptions. General discussions and challenges
are laid out for both Sections 3 and 4 before concluding the survey in Section 5
with a short summary and open perspectives.

2 Context and Background

The main idea behind the Semantic Web is to define and link the Web content
in a machine understandable way. Realizing this vision requires well defined
knowledge representation models and languages to create, model and query
resources on the Web. Several technologies have been proposed in this direction
to accomplish this goal at the conceptual level [7]. Processing a huge amount
of information at the Web scale, from an architectural point of view, is not
a trivial task. Client/server-based solutions suffer from scalability issues so
there is a need for a (fully) distributed solution to cope with this problem.
After the success that has been revealed by the P2P communication model,
the idea of exploiting its strengths (e.g., distributed processing, fault-tolerance,
scalability, etc.) to answer the requirements of the Semantic Web layers, and
more specifically the RDF data model, has been explored. Besides the attempt
to combine the strengths of the RDF and the P2P models, the ever-growing need
of up-to-date data requires more advanced algorithms and techniques in order
to satisfy this requirement. The publish/subscribe communication paradigm
seems to be a natural solution to deal with this issue. In this respect, we will
investigate along the remainder of this paper to which extent the Semantic Web
can benefit from the P2P community in accordance with RDF data storage and
retrieval.
Before presenting and discussing a set of selected works, we give in the following
section the basic concepts behind the RDF model. Then, we briefly describe the

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 6

main overlay architectures as well as the key ideas behind the pub/sub paradigm.
Finally, we outline some challenges related to RDF data and query processing
on top of P2P systems. Note that although several technologies such as the
Resource Description Framework Schema (RDFS), the Web Ontology Language
(OWL) are among the main building blocks of Semantic Web stack, we limit
ourselves to RDF data storage and retrieval and related query mechanisms on
top of P2P systems.

2.1 The RDF Data Model

The Resource Description Framework (RDF) [4] is a W3C standard aiming to
improve the World Wide Web with machine processable semantic data. RDF
provides a powerful abstract data model for knowledge representation which
can be serialized in XML or Notation3 (N3) formats. It has emerged as the
prevalent data model for the Semantic Web [7] and is used to describe semantic
relationships among data. The notion of RDF triple is the basic building block
of the RDF model. It consists of a subject (s), a predicate (p) and an object (o).
More precisely, given a set of URI references R, a set of blank nodes B, and a
set of literals L, a triple (s, p, o) ∈ (R∪ B)×R× (R∪ B ∪ L). The subject of
a triple denotes the resource that the statement is about, the predicate denotes
a property or a characteristic of the subject, and the object presents the value
of the property. Triples form a directed graph where arcs are always directed
from resources (subjects) to values (objects). Figure 1 gives a simplified graph
presentation of the triple (book, hasTitle, Semantic Web). The resource nodes
have respectively book and Semantic Web as values.

book Semantic Web

subject predicate

hasTitle

object

Figure 1: Example of an RDF graph presenting an RDF statement.

RDFS [41] is an extension of RDF providing mechanisms for describing
groups of resources and their relationships. Among other capabilities, it allows
to define classes of resources and predicates. Moreover, it enables to specify
constraints on the subject or the object of a given class of predicates.
In addition to the definition of the RDF data model which will be considered in
our further discussions, we need to define and classify different types of queries
considered in the presented works:

• Atomic queries are triple patterns where the subject, predicate and ob-
ject can either be variables or constant values. According to [31] atomic
triple queries can be summarized into eight queries patterns: (?s, ?p, ?o),
(?s, ?p, oi),(?s, pi, ?o), (?si, ?pi, oi), (si, ?p, ?o), (si, ?p, oi), (?si, pi, o), (si, pi,
oi).1. In each query pattern, ?x denotes the element(s) that the query is
looking for and xi refers to a constant value of the RDF element. For
instance, the query pattern (?s, pi, oi) returns all subjects s for a given
predicate pi and object oi (if they exists).

1From now on, the triple (si, pi, oi) denotes the RDF triple elements: the subject si, the
predicate pi, the object oi.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 7

• Conjunctive queries are expressed as a conjunction of a list of atomic
triple patterns (sub-queries). For instance, a conjunctive query may look
like: (?s1, p1, o1) ∧ (?s2, p2, o2).

• Range queries involve queries for single or multiple attribute data whose
attribute value falls into a range defined by the query. As an example
q = (s, p, ?o) FILTER o < v, looks, for a given subject s and a predicate p,
for all object values bounded by the value v.

• Continuous queries are a particular type of queries which are decoupled
in time, space and synchronization between peers participating in the
query resolution. This kind of querying is found in pub/sub systems where
subscribers of a given query can continuously receive matching results
in the form of asynchronous notifications. Any type of queries (atomic,
conjunctive, etc.) can be used in an asynchronous manner.

2.2 Structured P2P Systems

Unlike unstructured P2P systems, structured P2P overlays, are built accord-
ing to a well-defined geometric structure as well as deterministic links between
nodes. Due to these properties, they can offer guarantees regarding the lookup
time, scalability and can also decrease the maintenance cost of the overlay [37].
P2P overlays such as CAN [101], Chord [114], Pastry [104], P-Grid [8] and many
others present an attractive solution for building large scale distributed appli-
cations thanks to the practical DHT abstraction that they offer. Although they
differ in several design choices such as the network topology, the routing mech-
anisms, they provide a lookup function on top of which they offer this DHT
abstraction. Most of DHT-based systems share a common idea, that is, the
mapping of a key space to a set of peers such that each peer is responsible for
a partition of that space. The Put and Get methods provided by the DHT
abstraction are respectively responsible for storing and retrieving the data. The
use of hashing functions by DHTs guarantees, with high probability, a uniform
distribution of the data. This valuable property correlated with all previous
ones make DHTs the most suitable choice as a P2P substrate.

2.2.1 Chord

In Chord [114], proposed by stoica et al., peers are organized in a logical ring
topology. Each Chord node has an identifier that represents its position in a
circular identifier space of size N , and has direct references to its predecessor and
successor in the ring. Moreover, a node keeps m = log(N) routing entries, called
fingers. A finger[i] is equals to successor(n ⊕ 2i−1) with 1 ≤ i ≤ m, where
(n⊕2i−1) is (n+2i−1) modulo N . Figure 2 shows an example of Chord overlay
with 11 nodes as well as the finger table of node n8. Chord uses consistent
hashing [64] to ensure, with a high probability, a load balancing of keys among
peers as they roughly receive the same number of keys. To perform a lookup(k),
the query is propagated along the ring in the clockwise direction where, upon
receipt, each node will forward it to the closest node identifier in its finger table

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 8

that precedes or equals the key k. The lookup routing requires O(log(N)) (worst
case2) messages.

Figure 2: Finger table of node 8 in a Chord overlay of 11 nodes in a 6-bit
identifier space. Finger [i] is the first node that succeeds (8⊕ 2i−1).

2.2.2 Bamboo

Bamboo [102], as Chord, builds a one-dimensional circular identifier space.
Bamboo uses Pastry [104] as basis for its topology and routing algorithms while
improving its resilience under churn. More precisely, peers identifiers are treated
as a sequence of digits of base 2b. A node, say n, maintains two sets of neigh-
bors: the leaf set and the routing table. The leaf set, denoted L, refers to the
set of 2k nodes that immediately precede and follow n in the circular identifier
space. The routing table includes the set of nodes whose identifiers share the
successively longer prefixes with n. Assume that l is the row in the peer routing
table, the routing table entry at the column i and row l, denoted by Rl[i], stores
the neighbor whose identifier matches the peer n identifier in exactly l digits
and whose (l + 1)th digit is i. Figure 3 gives an example of the routing table
leaf set of the node identified by 10233102. Note that, unlike Chord, Bamboo
uses prefix routing mechanism to route message to the peer responsible for the
searched key, that is, in each routing step, a node forwards the message to the
peer that shares at least one digit longer than the prefix that the key shares with
the current node’s id. If such node is unknown by the current node, the message
will then be send to the node whose id shares a prefix with the key as long as
the current node but it is numerically closer to the key than the current node’s
id. Let us denote by K[i] the ith digit of the key K. If Rl[K[l]] is not empty, the
message will be forwarded to that node. Otherwise, it will be sent to the node
n in L such as n is the numerically closest to K. Data item identified by id′

is stored at the peer with the closest numerical id to id′. This differs from the
Chord approach where data are stored at the first peer with id equal or greater
than id′. As in Chord, Bamboo performs a lookup in O(log(N)) hops, with N
being the maximum number of nodes. Adding the leaf set pointers improve the
overall resilience as they ensure, to a certain extent, the overlay’s connectivity
especially under node failure.

2From here on, whenever a complexity (query, lookup,etc.) is specified, it will be the worst

case one.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 9

Figure 3: The leaf set and the routing table in Bamboo (and Pastry) node
with the identifier 10233102, b = 2, k = 2. Digits are in base 4. The shaded
cell in each row of the routing table refers to the corresponding digit of the
current node id 10233102. The nodeId at each cell shows the common prefix
with 10233102-next digit-rest of nodeId (from [104]).

2.2.3 Content Addressable Network (CAN)

The Content Addressable Network (CAN) [101] is a structured P2P network
based on a d-dimensional Cartesian coordinate space labeled D. This space
is dynamically partitioned among all peers in the system such that each node
“owns” a zone in D and uses it to store (key, value) pairs. For instance, to store
the (k, v) pair, the key k is deterministically mapped onto a point i in D and
then the value v is stored at the owner of the zone comprising i. The lookup(k)
corresponding to a key k is achieved by applying the same deterministic func-
tion on k to map it onto i. A query for a given value will be routed through
intermediate nodes in the overlay until it reaches the peer’s zone containing i.
When a peer joins the CAN overlay, it picks a random point p belonging to
D and a JOIN_QUERY message will be routed to the zone that contains that
point. A zone will be then allocated to the new peer by splitting the current
owner’s zone in half: keeping half for the original peer owner and allocate the
other one to the new peer. Figure 4 depicts a two dimensional CAN space before
and after the joining of node E.
Other variations of the CAN overlay such as [26, 27, 107] improve a set of CAN’s
features as for example the query response time or the load balancing. In a CAN
Cartesian space with d dimensions and N peers, each node has to maintain O(d)

routing information while lookup complexity is O(dN
1
d).

Although these systems (i.e., Chord, Bamboo, CAN) show good performance
and scalability characteristics, they only support exact queries, i.e., querying
for data items matching a given key. Moreover, the hashing mechanism used in
such approaches works well with static object identifiers such as file names, but
it is not suitable to handle dynamic object content. In particular, the ability
to perform more complex queries over changeable datastores is a key feature
of many systems such as distributed databases. A enormous research effort
has been achieved in this context and led to a set of fully distributed P2P ap-
proaches such as [30, 8] having the capabilities to manage more complex queries

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 10

Figure 4: Example of 2-dimensional CAN overlay before and after the joining
of node E.

such as range queries [50]. The remainder of this section focuses on such P2P
approaches.

2.2.4 P-Grid

P-Grid [8] is a peer-to-peer lookup system based on a virtual distributed binary
tree. Each peer n ∈ N is associated with a leaf node of the tree. Each leaf
corresponds to a binary string π ∈ Π called the key-space partition where Π is the
entire key partition. As a result, each P-Grid node is associated with a path π(n)
and its position in the overlay is determined by its path. This position indicates
the subset of the tree’s overall information that it is responsible for. Thus, each
peer is responsible for storing keys that fall under its current key space3. Every
peer n, labeled π(n), maintains a set of references to peers sharing a common
prefix of different sizes with π(n). Formally, for each prefix, π(n, l) for π(n) with
length l such as 0 < l < π, n maintains a pointer to peer q satisfying the property
π(n, l) = π(q, l), where π is the binary string π with the last bit inverted. As
a result, the cost for storing these references is bounded by the depth of the
tree. Keys are generated using an order preserving hash function, i.e., for two
strings s1 and s2: s1 ⊆ s2 ⇒ key(s1) ⊆ key(s2). This property allows P-Grid to
efficiently manage range queries. Datta et al. propose in [42] two algorithms to
manage such kind of queries: the min-max traversal algorithm and the shower
algorithm. In the min-max travel algorithm, queries are processed sequentially
by starting from the peer that manages data belonging to the upper or the lower
bound of the range. Queries will then be forwarded to the peer responsible for
the next key partition until the peer responsible of the other bound of the
query is found. In the shower algorithm, queries are processed concurrently.
The range query is first forwarded to an arbitrary peer responsible of any key
space partition that falls into the query’s range. From there, the query will be
forwarded to other partitions within the range.
An example of a P-Grid tree is given by Figure 5. The routing table entry is
in the form “p:x“ and means that keys with prefix p will be routed to peer x.
Queries in P-Grid are resolved by prefix matching. An example of query routing
is also given by Figure 5 where the peer 1 receives a query for a key ”110“. As
it is only reponsible for data items whose keys starting by “00”, it checks in its
routing table for the “closer“ node to the result. Therefore, it forwards the query
to the peer 3 whose path starts by 1. Similary, once the query is received by
the peer 3, it checks if it can satisfy the query. Since it only stores keys starting

3e.g., peer’s path is the prefix of the key of each stored data item.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 11

by ”10“, it forwards the query to node 4 where the prefix ”110“ falls into its key
partition space. To manage fault tolerance and query load balancing, multiple

p1 p2 p3 p4

00 01

0

10

1

11

1:3
01:2

1:4
00:1

0:1
11:4

0:1
10:3

Query(1,110)

Query(3,110) Query(4,110)

Routing

Tables

Figure 5: Example of P-Grid binary tree.

peers can be associated with the same key partition. Epidemic algorithms [82]
are used to keep the replicated content up-to-date.

2.2.5 MAAN

Multi-Attribute Addressable Network (MAAN) proposed in [30] is considered
as an extension of Chord which handles multi-attribute range queries. Items
are mapped to the Chord m-bit key space using a SHA-1 hash function for
string value attributes and a locality preserving hash function H for numerical
values. Each resource attribute has its owns registration, and each registration
is composed by a pair <attribute-value, resource-info>. Every node is respon-
sible for storing keys that fall into its key space. In MAAN, the evaluation of
multi-attribute range queries is implemented in two different ways: iterative and
single attribute dominated routing. In the iterative-based approach, for a query
composed of M sub-queries, each sub-query is resolved separately in its proper
attribute space. Results are then collected and intersected at the query origi-

nator. The search complexity in terms of routing hops is O(

M∑

i=1

(logN +N · si))

where M is the number of sub-queries, N the number of peers and si the selectiv-
ity4 of the sub-query i. In the single attribute dominated routing, the number of
routing hops needed to resolve the query is reduced as search results of a query
must satisfy all the sub-queries on each attribute dimension and the intersection
set of all resources that satisfies each sub-query. In other words, assume that
X is the set of resources satisfying the query Q, then X should satisfy all the
sub-queries of Q. Therefore, we have X = ∩1≤i≤MXi, where Xi is the set that
satisfies the sub-query on attribute ai. The search request in this algorithm
looks like Search_Request(k, a,R,O,X) where k is key used for routing5, a is
the dominated attribute6, R is the desired attribute value range [l, u], O is the
list of sub-queries of all other attributes except a and finally, X is the set of the
discovered resources satisfying all sub-queries. When a peer n performs a search
request, it first routes the query to the node nl such as nl = successor(H(l)).
The node nl looks in its local index for resources where attribute values fall

4The selectivity is defined as the ratio of the query range width in identifier space to the
size of the whole identifier space.

5Initially, k = H(l) such as H is the hash function and l is the lower bound of the attribute
value range.

6The dominated attribute is the attribute with the lowest selectivity.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 12

P2P sys-
tem

Architecture Data indexing Queries: type and evaluation Lookup com-
plexity

Chord
[114]

ring-based map (key, value) to
the node with the
closest identifier to
key

• key-based queries
O(log(N))

Bamboo
[102]

ring-based matching key to the
node identifier
maintaining leaf set
and routing table

• key-based queries
• Route query to the

node with the closest
numerical number to
the key

O(log(N))

CAN
[101]

d-
dimensional
Coordinate
space

map (key, value)
in the Coordinate
space

• key-based queries
O(dN

1
d)

P-Grid
[8]

binary tree matching a prefix to
the node identifier • key-based and range

queries

O(log(π))

MAAN
[30]

Chord-
based

Chord based data
indexing scheme • key-based and multi-

attribute range queries
• Iterative based: each

sub-query resolved
separately (a)

• Single attribute domi-
nated routing: results
satisfying all the sub-
queries for each at-
tribute (b)

(a)

O(

M∑

i=1

(logN

+ N · si))

(b) O(logN
+ N · Smin)

Table 1: Structured P2P approaches- N : network size, d: number of dimensions,
π: key-space partition, si: sub-query selectivity, Smin: minimum selectivity, M :
number of sub-queries.

into [l, v] and for attribute values satisfying all other sub-queries in Q. If such
results are found, they will be appended to X. This procedure is repeated until
the search request is received by nu = successor(H(u)). The node nu will then
send the result set X to the query’s initiator. As this approach needs to perform
only one iteration for the dominated attribute , this method has a complexity
of O(logN +N ·Smin), where Smin is the minimum selectivity of all attributes.

Table 1 summarizes the basic characteristics of the structured P2P ap-
proaches discussed in this section. It includes the overlay architecture, the
data indexing model, the supported queries and the lookup complexity.

2.3 RDF Data Processing on top of P2P Systems: What
are the main challenging aspects ?

The P2P communication model has drawn much attention and has emerged
as a powerful architecture to build large scale distributed applications. Ear-
lier research efforts on P2P systems have focused on improving the scalability
of unstructured P2P systems by introducing specific geometries for the overlay
network, i.e., structured overlays and adding a standard abstraction on top of
it, i.e., DHT. The first wave of DHTs [114, 101] focused on scalability, routing
performances and churn resilience. The main issue of these DHTs is that they
only support exact queries, i.e., querying for data items matching a given key
(lookup(key)). To overcome such limitation, a second wave of DHTs led to a set
of P2P approaches such as [8, 30] having the capabilities to manage more com-
plex queries such as range queries [8] or multi-attribute queries [30]. However,

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 13

storage and retrieval of RDF data in a distributed P2P environment raise new
challenges. In essence, as the RDF data model supports more complex queries
such as conjunctive and disjunctive queries, an additional effort to design ade-
quate algorithms and techniques to support advanced querying beyond simple
keyword-based retrieval and range queries is required. Consequently, a partic-
ular attention has to be made regarding the data indexing since it has a great
impact on the query processing phase. Overall, three main aspects have to be
taken into consideration while investigating RDF data storage and retrieval in
P2P systems:

Data indexing How can we take advantage of the format of the RDF data
model in order to efficiently index RDF triples ?

Data retrieval How can we take advantage of P2P search mechanisms to
efficiently query and retrieve RDF data in large scale settings ? Moreover,
what is the impact of the data indexing methods on the query processing
algorithms ?

Data integration 7 As a query, composed by a set of sub-queries, can be
answered by several nodes, how to efficiently combine RDF data residing
in different locations and provide a unified view of those data ?

3 RDF Data Storage and Retrieval in P2P Sys-

tems

Centralized RDF repositories and lookup systems such as RDFStore [3], Jena
[2], RDFDB [106] have been designed to support RDF data storage and retrieval.
Although these systems are simple in design, they suffer from the traditional
limitations of centralized approaches (e.g., bottlenecks, unscalable, poor failure
handling, etc.). As an alternative to these centralized systems, P2P approaches
have been proposed to overcome some of these limitations by building fully
decentralized data storage and retrieval systems. However, data distribution
across the network comes at the expense of the complexity of the query pro-
cessing phase. Accordingly, the greatest challenges faced by these systems are
the data organization and query processing, because queries over RDF data are
typically complex and, if not carefully optimized, may induce low search perfor-
mance. Therefore, algorithms are needed to efficiently8 process RDF queries in
such decentralized settings. The remainder of this section presents a selection
of research works combining the RDF data model with a P2P architecture, with
a focus on data indexing and processing in structured P2P networks.

3.1 RDF Data Storage and Retrieval in Unstructured P2P
Networks

3.1.1 Bibster

Bibster [61] is a semantic-based P2P system for sharing bibliographic metadata.
Bibster nodes build an unstructured P2P network and use JXTA [53] as the

7Generally, this operation is combined with the data retrieval phase.
8E.g., efficiency in terms of query processing, load distribution, etc.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 14

communication platform.
Data indexing. Each Bibster node manages a Local Node Repository which is
based on Sesame RDF-S repository [29] and stores the bibliographic metadata.
Sesame RDF Query Language (SeRQL) [28] is used for data querying and query
reformulation. In Bibster, peers share an ontology which is used to describe
both the expertise of each node and the subject of query. A “peer’s expertise”
is defined as the semantic description of the local node repository. The query
subject in this context is the abstraction of a query q. It is expressed in terms
of the common ontologies and specifies the required expertise to answer that
query. Based on the exchange of these expertises between peers, a semantic
topology is built on top of the P2P architecture.
Query processing. Upon receiving a query, a peer tries to evaluate it against
its local repository. If no answer is available, it runs a peer selection algorithm
in order to forward the query only to peers that seem to be able to answer
the query. This algorithm uses a similarity function to compute the similarity
between subject of the query and the advertised expertise topics. The similarity
function in Bibster, defined as SimTopics, is based on the idea that topics which
are close in terms of their position in the topic hierarchy are more similar than
topics that have a large distance.

3.1.2 S-RDF

In [125], Zhou et al. proposed a distributed RDF infrastructure based on an
unstructured P2P topology called S-RDF.
Data indexing. In this approach, a single RDF repository is split into several
RDF files. RDF data are organized on semantic aware hierarchy where RDF
triples sharing the same subject are assigned to the same RDF file. Each peer in
S-RDF system is responsible for maintaining and publishing RDF triples. RDF
triples, locally stored, are partitioned as function of their subjects. Upon join-
ing the network, a peer has to advertise its local RDF data and builds its own
neighbor table. The neighbor table of a peer p stores relevant information about
each neighbor ni. This information includes the identifier of the neighbor ni,
its descriptive terms and the number of semantically-related descriptive terms
respectively managed by ni and p. To keep the neighbor table up-to-date, peers
are periodically probing their neighbors. When a peer p leaves the network, its
neighbors have to update their tables by removing entries associated to p.
Query processing. The proposed S-RDF architecture supports ontology-
based matching. The matching process is performed either between a received
query and the descriptive terms of the current peer or between descriptive terms
of two different peers. It uses a similarity function to compute similarity be-
tween two data items. A match is found if a descriptive term is semantically
similar to at least one descriptive term of the peer. A semantic directed search
(SDS) protocol, inspired from random walk [86] forwarding mechanism, is used
for query routing. More precisely, the query routing process takes advantage of
the semantic relation between triples and queries (via a similarity function) to
forward queries to the most relevant peers. If no significantt similarity is found
during the matching process, the query is forwarded to all neighbors. At each
forwarding step, a copy of the query is sent to the neighbor with the highest
potentiality, after being tagged by “COP (Continue tO Propagated)”. If only a
set S of peer p’s neighbors have a “good” potentiality, a peer n ∈ S is selected

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 15

to forward a query’s copy labeled COP. For all others neighbors, a copy of the
query, denoted by a NO_COP tag will be sent for each neighbor nj such as
nj 6∈ S. Query will be evaluated locally after fetching results from peers an-
swering it to the query ’s originator. Note that since RDF triples are assigned
to files according to their subjects, queries in the form of (?s,p,o) can either be
flooded in the network or routed using other techniques such as expanding ring9.
When issuing more complex queries, users have to provide information about
“potential subjects” that will help narrowing down the data files. If such infor-
mation is missing, a flooding-based mechanism is used to locate the requested
triples. While the authors indicate that a conjunctive query may be parsed
to several sub-queries through the query processor engine, they do not provide
details on how this procedure could be accomplished (sub-query dependencies).

3.2 RDF Data Storage and Retrieval in Structured P2P
Networks

In this section, we focus on distributed RDF repositories that use structured P2P
systems. Even if most of them use cryptographic algorithms for data indexing,
they notably differ in query processing and data integration mechanisms.

3.2.1 Edutella

In a subsequent work of Edutella [97] RDF-based P2P infrastructure, Nejdl et al.
propose a super-peer based architecture [98]. In this topology, a set of nodes are
selected to form the super-peer network, building up the “backbone” of the P2P
network, while the other peers connect in a star-like topology to super-peers.
The super-peers are connected in a so-called HyperCuP topology [109] and are
responsible for query processing. In this organization, each super-peer can be
seen as the root of a spanning tree which is used for query routing, broadcasting
and indices updating. Edutella implements a schema-based P2P system. In
other words, the system is aware of schema information and take it into consid-
eration for query optimization and routing. Each peer sends indices of its data
to its super-peer. This information can be stored in different granularities, like
schema, property, property value or property value range. However, the index
does not contain individual data entries but indexes peers. This kind of index
is called a Super-Peer-Peer (SP-P) index. For example, a super-peer receiving
a query with a given schema, will forward it only to peers that support that
schema. This allows to narrow down the number of peers to which the query
will be broadcasted. In addition to the SP-P index, the super-peers maintain
Super-Peer-Super-Peer (SP-SP) indices in order to share their index informa-
tion with other super-peers. Accordingly, queries are forwarded to super-peer
neighbors based on those indices. As for the SP-P index, this strategy can re-
duce the traffic overhead between super-peers in the Edutella network.
Data indexing. When a new peer, say p, registers to a super-peer, labeled sp,
it advertises the necessary schema information to sp. The super-peer sp checks
this new schema against its SP-P index entries. If there is new information that
has to be added in the SP-P index, sp broadcasts the new peer advertisement
to its super-peers neighbors in order to update their SP-SP indices. In a similar

9The principle behind it is to issue the query with a small TTL value. If no result is found,
resend the same query with a larger TTL.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 16

way, indexes have to be updated whenever a peer leaves the network.
Query processing. Query routing in Edutella is improved by using similarity-
based clustering strategy at the super-peer level to avoid as much as possible the
message broadcasting during the query routing phase. The similarity-based
clustering approach tries to integrate new peers with existing peers that have
similar characteristics based, for example, on a topic ontology shared by peers.
Edutella supports the RDF query exchange language (RDF-QEL).

3.2.2 RDFPeers

RDFPeers [31] was the first P2P system to propose the use of DHTs in order
to implement a distributed RDF repository. It is built on top of MAAN [30].
Data indexing and query processing mechanisms work as follows:
Data indexing. The data indexing model takes advantage of the structure of
RDF triple as each element is used as a DHT key at the MAAN level. More
precisely, a RDF triple, labeled t = (s, p, o), is indexed three times by applying a
hash function on the subject (hash(s)), the predicate (hash(p)) and the object
(hash(o)). The triple t will then be stored on peers responsible for those hashed
values. For the sake of clarity, let us consider the storage of the following three
triples in the RDFPeers infrastructure: <info:rdfpeers><dec:creator><info:
mincai>; <info:mincai><foaf:name>"Min Cai"; <info:mincai> <foaf:age>

"28" ^^<xmls:integer>10. Figure 6 shows the storage process of these triples
into a RDFPeers network with eight present peers in a 4-bit identifier space. It
also depicts the finger tables of nodes N6, N14.

Figure 6: Example of RDF data storage in RDFPeers (from[31]).

Query processing. RDFPeers supports three kinds of queries.

• Atomic triple pattern query In this kind of query, the subject, predi-
cate, or object can either be a variable or an exact value. For instance, a
query like (s, ?p, ?o) will be forwarded to the node responsible for hash(s).

10Literals are either plain or typed. In the latter case, the datatype URI is appended to the
literal.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 17

All atomic queries take O(log(N)) routing hops to be resolved except
queries in the form of (?s, ?p, ?o) which require O(N) hops in a network
of N peers.

• Disjunctive and range query RDFPeers optimizes this kind of query
through the use of the locality preserving hash function. Indeed, when
the variable’s domain is limited to a range, the query routing process
starts from the node responsible for the lower bound. It is then forwarded
linearly until received by the peer responsible for the upper bound. In
the case of disjunctive range query like (s, p, ?o), ?o ∈ ∪n

i=1[li, ui], such as
li and ui are respectively the lower and the upper bound of the range i,
several ranges have to be satisfied, intervals are sorted in ascending order.
The query is forwarded from one node to the other, until it is received by
the peer responsible for the upper bound of the last range. Disjunctive
exact queries such as (s, p, ?o), o? ∈ {v1, v2} are resolved using the previous
algorithm since they are considered as a special case of disjunctive range
queries where the lower and the upper bounds are equal to the exact match
value.

• Conjunctive query RDFPeers supports this type of queries, as long as
they are expressed as a conjunction of atomic triples patterns or disjunc-
tive range queries for the same subject. Constraints’ list can be related
to predicates or/and objects. To resolve this type of query, the authors
use a multi-predicate query resolution algorithm. This algorithm starts by
recursively looking for all candidate subjects on each predicate and inter-
sects them at each step before sending back the final results to the query
originator. More precisely, let us denote by q the current active sub-query;
R the list of remaining sub-queries that have to be resolved; C the list of
candidate subjects that matches the current active sub-query q and I the
set of intersected subject that matches all already resolved sub-queries.
Whenever subjects that match the sub-query q are found, they will be
added to C. At each forwarding step, an intersection between C and I
is made in order to keep only subjects that match all already resolved
sub-queries. Once all results for the current active query are found, the
first sub-query in R is popped to q. Whenever all sub-queries are resolved
(i.e., R = {∅}) or no results for the current sub-query are reported (i.e.,
I = {∅}), the set I containing the query results will be sent back to the
originator.

While it supports several kinds of queries, RDFPeers has a set of limitations
especially during the query resolution phase. This includes the attribute selec-
tivity and the restrictions made at the level of supported queries. The attribute
selectivity is associated with the choice of the first triple pattern to be resolved.
Low selectivity of an attribute leads to a longer computational time to man-
age the local search as well as a greater bandwidth consumption to fetch results
from one node to the other, because many triples will satisfy that constraint. As
an example, the predicate rdf:type seems to be less selective, as it can be more
frequently used in RDF triples than others. Despite the attribute selectivity
parameter having an important impact on the performance of the query resolu-
tion algorithm, RDFPeers does not provide a way to estimate a such parameter.
The pattern selectivity is also considered in [17] where lookups by subject have

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 18

priority over lookups by predicates and objects and lookups by objects have
priority over lookup by predicates. Another issue is related to conjunctive triple
pattern queries which are not fully supported and are restricted to conjunctive
queries with the same subject so that arbitrary joins are not supported.

3.2.3 Atlas

A similar approach to RDFPeers was presented in Atlas project [74] which is a
P2P system for RDF-S data storage and retrieval. It is built on top of Bamboo
[102] and uses the RDFPeers for one-time query algorithm proposed in [31]
and detailed in Section 3.2.2. Atlas uses RQL [67] as RDF query language. The
added value of Atlas is that it combines one-time queries and continuous queries
which will be discussed in Section 4.

3.2.4 Dynamic Semantic Space

In [55], Gu et al. propose a Dynamic Semantic Space (DSS), a schema-based
P2P overlay network, where RDF statements are stored based on their se-
mantics. Peers are organized in ring structure enabling the mapping from k-
dimensional semantic space into a one dimensional semantic space. Peers are
grouped into clusters, and clusters having the same semantics are organized into
the same semantic cluster. While there is no constraint on the overlay topology
within the semantic clusters, they themselves form a Chord overlay structure.
Each cluster is identified by a clusterID given by a k-bit binary string such as
k = m + n. While the m first bits identify the semantic cluster, denoted SC,
the n bits represent the identifier of a cluster c which belongs to SC. Therefore,
the semantic space infrastructure can have a maximum of 2m semantic clusters
and 2n clusters per SC. For instance, if m = 2 and n = 4, there is at most
22 = 4 semantic clusters and 24 = 16 clusters per SC. As an example, Figure 7
depicts the architecture of a dynamic semantic space where 4 semantic clusters,
SC1, SC2, SC3, SC4, with 16 clusters in total form the semantic space infras-
tructure. Peers maintain a set of neighbors in their adjacent clusters as well
as in other semantic clusters in order to enable inter-clusters and intra-clusters
communication. For instance, as c2 and c16 are the two adjacent clusters of
cluster c1 where the peer p0 belongs to, p0 maintains references to peers p2, p3
such as p3 ∈ c2 (c2 ∈ SC1) and p2 ∈ c16 (c16 ∈ SC4). Moreover, p0 maintains
pointers to other semantic clusters (i.e., SC1 and SC2).
Data indexing. The authors propose a two-tiers ontology-based semantic clus-
tering model: the upper layer defines a set of concepts shared by all peers. A
peer needs to define a set of low-layer ontologies and store them locally. There-
fore, RDF statements which are semantically similar are grouped together and
can thus be retrieved by queries having the same semantics. To join the net-
work, a peer has to merge the upper layer ontology with its local ontologies and
create RDF data instances which will be added to the merged ontology to form
its local knowledge base. A mapping of its RDF data to one or more semantic
clusters is performed and the peer joins the most suitable one, i.e., the most
semantically related cluster.
Query processing. The query processing mechanism is performed in two
phases. First, when the query, expressed in RDQL query language, is received,
the peer pre-processes the query to get the information about the semantic clus-

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 19

Figure 7: Architecture of Dynamic Semantic Space

ter, SC associated with it. When the query reaches the target semantic cluster
SC, it will be flooded to all peers inside the semantic cluster. Peers that receive
the query will perform a local search, and return results if available.

DSS provides a load balancing mechanism by controlling the number of peers
per cluster and thus the global load. Therefore, a splitting and merging process
can occur if the number of nodes per cluster reaches a given threshold value.

3.2.5 RDFCube

Monato et al. propose RDFCube [91], an indexing scheme of RDFPeers (Section
3.2.2) based on a three-dimensional CAN coordinate space. This space is made
of a set of cubes, with the same size, called cells. Each cell contains an existence-
flag, labeled e-flag, indicating the presence (e-flag=1) or the absence (e-flag=0)
of a triple within the cell. The set of consecutive cells belonging to a line
parallel to a given axis forms a cell sequence. Cells belonging to the same plane
perpendicular to an axis form the cell matrix.
Data indexing. Once a RDF triple t=(s,p,o) is received, it will be mapped
to the cell where the point p with the coordinates (hash(s), hash(p), hash(o))
belongs to.
Query processing. As for RDF triples, the query is also mapped into a
cell or a plane of RDFCube based on the hash values of its constant part(s).
Consequently, the set of cells including the line or the plane where the query
is mapped are the candidate cells containing the desired answers. Note that
RDFCube does not store any RDF triples but it stores bit information in the
form of e-flags. The interaction between RDFCube and RDFPeers is as follows:
RDFCube is used to store (cell matrixID, bit matrix) pairs such as the matrixID
is a matrix identifier and represents the key in the DHT terminology, while bit
matrix is its associated value. RDFPeers stores the triples associated with the
bit information. This bit information is basically used to speed up the processing
of a join query by performing an AND operation between bits and transferring
only the relevant triples. As a result, this scheme reduces the amount of data
that has to be transferred among nodes.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 20

3.2.6 GridVine

GridVine [9, 40] is a distributed data management infrastructure. It is based on
P-Grid DHT [8] at the overlay layer and maintains a Semantic Mediation Layer
on top of it. GridVine enables distributed search, persistent storage and seman-
tic integration of RDF data. The upper layer takes advantage of the overlay
architecture to efficiently manage heterogeneous and structured data including
schemas and schema mappings.
Data indexing. As in RDFPeers [31], GridVine indexes triples three times at
the P-Grid layer based on their subjects, objects and predicates, i.e., the insert
(t) operation results in insert (hash(s),t), insert ((hash(p),t) and insert(hash(o),t).
In that way, a triple inserted at the mediation layer triggers three insert opera-
tions at the overlay layer. It supports the sharing of schemas. Each schema
is associated with an unique key which is the concatenation of the logical
address of the peer posting the schema, say π(p), with the schema name,
Schema_Name. Therefore, a schema indexing operation may look like Up-
date(π(p) : Hash(Schema_Name), Schema_Defintion). In order to integrate
all semantically related yet syntactically heterogeneous data shared by peers at
the P-Grid level, GridVine supports the definition of pairwise semantic map-
pings. The mapping allows the reformulation of a query against a given schema
into a new query posed against a semantically similar schema..
Query processing. Lookup operations are performed by hashing the constant
term(s) of the triple pattern. Once the key space is discovered, the query will
be forwarded to peers responsible for that key space. As in P-Grid, the search
complexity of atomic triples pattern is O(log(Π)) such as Π is the entire key
partition. GridVine is also able to handle disjunctive and conjunctive queries
by iteratively resolving each triple pattern in the query and perform distributed
joins across the network. Therefore, the system query processing capabilities
are very similar to RDFPeers, whereas GridVine takes into consideration the
schema heterogeneity which is not addressed in RDFPeers.

3.2.7 UniStore

Karnstedt et al. present their vision of a universal data storage at the Internet-
scale for triples’ repository through the UniStore project [65]. Their solution
is based on P-Grid [8], on top of which they build a triple storage layer that
enables the storage of data as well as metadata.

Data indexing. To face the challenge of data organization, authors chose to
adopt a universal relation model allowing schema-independent query formula-
tion. In order to speed up query processing and take advantage of the underlying
features of the DHT for fast lookups, all attributes are indexed. When deal-
ing with relational data, each tuple (OID, v1, . . . , vn) of a given relation schema
R(A1, . . . , An) is stored in the form of n triples: (OID, A1, v1),. . . ,(OID, An, vn)
where OID is a unique key, e.g., a URI, Ai an attribute name (that may contain
a namespace prefix ns in order to avoid conflicts) and vi its corresponding value.
The OID field is not meant to be a unique and homogeneous identifier, instead,
it is used to group the triples for a logical tuple. Each triple is indexed on the
OID, the concatenation of Ai and vi (Ai#vi) and finally on the value vi.
Query processing. UniStore allows the use of a query language called Verti-

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 21

cal Query Language (VQL) which directly derives from SPARQL. This language
supports DB-like queries as well as IR-like (Information Retrieval) queries. It
comes with an algebra supporting traditional “relational” operators as well as op-
erators needed to query the distributed triple storage. It offers basic constructs
such as SELECT and WHERE blocks, FILTER, ORDER BY as well as advanced ones
such as SKYLINE OF. Furthermore, in order to support large-scale and heteroge-
neous data collection, the language was extended with similarity operators (e.g.,
similarity join) and ranking operators. Operators can be applied to all levels of
data (instance, schema and metadata). Each of these logical operators have a
“physical”11 implementation which solely relies on the functionalities provided
by the overlay. These physical operators are used to build complex query plans,
which in turn are used to determine worst-case guarantees (almost all of them
being logarithmic) as well as predict exact costs. This allows the system to de-
rive a cost model for choosing concrete query plans, which is repeatedly applied
at each peer involved in the query resolution and thus resulting in an adaptive
query processing approach.

Authors extended the UniStore project in [66] by proposing a distributed
infrastructure for semantic data storage, querying and integration. In addition
to the data indexing and querying mechanisms provided by the P-Grid overlay,
the proposed infrastructure deals with the semantic clustering of triples and
manage the mapping and relations between them. In the query processing phase,
each query is first translated to a query plan and routed to the responsible peers.
Once the target peer receives the query plan, it processes parts of it locally,
inserts the (partial) results and forwards them to its appropriate neighbors,
that is, nodes potentially responsible for the resolution of the next sub-queries.
This process is repeated until the final results are received by the query initiator.

3.2.8 YARS

Yet Another RDF Store (YARS) proposed in [57] is a distributed RDF store
that provides a set of facilities for RDF data management. The RDF data model
introduced in this work extends the standard RDF data model (subject, predi-
cate, object) by introducing the notion of context. This concept is application-
dependent. For instance, in the information integration use case, the context
is the URI of the file or the repository from which a RDF triple originated. In
others scenario, RDF triples sharing the same semantics, can have the same con-
text. Therefore, in YARS, each RDF triple, denoted by t=(s,p,o), is associated
a context, labeled c. The RDF triple combined with the context forms what is
called quad. YARS uses the Notation3 (N3) [116] as a query language, combined
with YARS query language which explicitly deals with the context concept. As
the aim behind this indexing scheme is to efficiently support the evaluation of
Select-Project-Join (SPJ) queries while minimizing the search cost, YARS takes
advantage of B+- trees [38] for indexing as they support an efficient processing
of range queries.
Data indexing. The proposed index structure is based on lexicon and quad
indexes. The lexicon indexes operate on the string representation of RDF nodes

11Physical operators only rely on functionality provided by the overlay system (key lookup,
multicasts,...). They differ in the kind of used indexes, applied routing strategy, parallelism,
etc.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 22

(i.e., each element of the RDF triple) and allow the retrieval of their object
identifiers (OIDs).

• Lexicon indexes consist of nodeoid , oidnode and the keyword indexes.
While the nodeoid and the oidnode are used to map OIDs to node values
and vice versa, the keyword indexes keep an inverted index to string literals
in order to speed up full-text searches operations. More precisely, literals
values are tokenized into words and each word is considered a key in the
index. For each word, the number of occurrences and the OID to which
it belongs to is maintained.

• Quad indexes allow the management of more complex queries. As each
element of the quad (s,p,o,c) can be either specified or a variable, there
is 24 = 16 possible access patterns. Since the storage of 16 indexes for
the same quad is quite expensive in terms of storage space, an optimized
solution was proposed allowing the coverage of all access patterns using
only 6 indexes rather than 16. Thereby, a single index can then be used
to cover more than one access pattern. For instance, the poc index is used
to process not only (?,p,?,?) but also (?,p,o,?) and (?,p,o,c).

Query processing. Query resolution exploits both lexicon and quad indexes to
support several queries types such as atomic queries, range queries, conjunctive
queries. In particular, managing conjunctive queries requires a reordering of
quads in order to start with the quads that yield the smallest result set and
then combine it with the other results. An estimation of the result set of an
access pattern can be based on the number of variables specified in it.

3.2.9 PAGE

Put And Get Everywhere (PAGE) presented in [44] is a RDF distributed repos-
itory based on Bamboo DHT [102] and implements YARS data indexing model
discussed in Section 3.2.8. Therefore, as in YARS, PAGE manages quads rather
than triples. Each quad is indexed six times and is identified by an ID that is
built by concatenating the hash values of its elements (s,p,o,c).
Data indexing. PAGE associates to each index an index code. This field iden-
tifies the index used (i.e., {spoc,cp,ocs,poc,csp,os}) to build the quad ID. For the
sake of clarity, suppose that one wants to store the quad quad=(x, y, z, w). As-
sume that the hashed values of its elements are given by hash(x)=1, hash(y)= F,
hash(z)=A, hash(w)=7 ; and indexes codes by: idx(spoc)=1, idx(cp)=4, idx(ocs)=6,
idx (poc)= 9, idx(csp)= C, idx(os)=E. The concatenation of “1FA7” with idx
(spoc)=1 results to ID=“11FA7”. The quad will then be stored on node that
has the numerically closest identifier to id. The same operation is performed for
each of these six indexes giving at each time the node identifier where the quad
will be stored.
Query processing. The query processing algorithm starts by associating to
each access pattern specified in the query, an identifier ID as explained earlier.
A mask property is used to specify the number of elements fixed in the query.
Moreover, the query is controlled by the number of hops which denotes the
number of digits from the query ID that have been already considered during
the query routing. Take back the example discussed above and consider the
access pattern q=(x,y,?,?) which looks, for the given subject x and the pred-
icate y, for all object values in any context. This access pattern requires the

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 23

index (idx(spoc) = 1) to be resolved. For unknown parts (pointed out by ?) a
sequence of 0 is assigned. The query will then be converted to “11F00/3”. The
mask value is 3 and means that the three first digits of the identifier are fixed.
Thereby, only the last two elements (object and context) will be considered
during the query processing.

3.2.10 Battré et al.

In [18], Battré et al. propose a data management strategy for DHT-based RDF
store. As many others [31, 9, 91], the proposed approach indexes the RDF triple
by hashing its subject, predicate and object. It takes into consideration RDF-S
reasoning on top of DHTs by applying RDF-S reasoning rules.
Data indexing. The main characteristic of this approach compared to other
RDF-based structured P2P approaches is that nodes host different RDF repos-
itories, making a distinction between local and incoming knowledge. Each RDF
repository managed by a node serves for a given purpose:

• Local triples repository stores triples that originate from each node. A
local triple is disseminated in the network by calculating the hash values
of its subject, predicate and object and sending it to nodes responsible for
the appropriate parts of the DHT hash space.

• Received triples repository stores the incoming triples sent by other
nodes

• Replica repository ensures triple availability under high peer churn.
The node with an ID numerically closest to the hash value of a triple
becomes root node of the replica set. This node is responsible for sending
all triples in its received database to the replica nodes12.

• Generated triples repository stores triples that are originated from
applying forward chaining rules on the received triples repository, and they
are then disseminated as local triples to the target nodes. This repository
is used for RDFS reasoning.

In order to keep the content of the received triples repository up-to-date, spe-
cially under node leaving or crashing, triples are associated with an expiration
date. Therefore, the peer responsible of that triple is in charge of continuously
sending update messages. If the triple expiration time is not refreshed by the
triple owner, it will be eventually removed from these repositories.

This approach takes care of load balancing issues specially for uneven key
distribution. For instance, the DHT may store many triples with the same
predicate p=“rfd:type”. As subject, predicate and object will be hashed, the
node responsible for the hash(rdf:type) is a target of a high load. Such situation
is managed by building an overlay tree over the DHT in order to balance the
overloaded nodes.

Query processing. In another work [58], one of the authors proposes a RDF
query algorithm with optimizations based on a look-ahead technique and on
Bloom filters [24]. Knowledge (i.e., RDF data) and queries are respectively

12In pastry, for example, the replica nodes are defined by the leaf set.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 24

represented as model (TM) and query (TQ) directed graphs. The query process-
ing algorithm basically performs a matching between the query graph and the
model graph. On one side, there is the candidate set which contains all existing
triples, and on the other side, there is a candidate set containing the variables.
These two sets are mutually dependent, therefore a refinement procedure has
to be performed to retrieve results for a query. This refinement proceeds in two
steps. The first step works like this: starting from the variable’s candidate set,
a comparison is done with the candidate sets for each triple where the variable
occurs. If a candidate does not occur within the triple candidate set, it has to
be removed from the variable candidate set. The second step goes the other way
around, that is, it looks at the candidate set for all the triples and removes every
candidates where there is a value not matching within the variable’s candidate
set.

The look-ahead optimization aims at finding better paths through the query
graph by taking into account result set sizes per lookup instead of the number
of lookups. This yields fewer candidates to transfer but the trade-off is that it
incurs more lookups. The other optimization, using Bloom filters, goes like this:
consider candidates for a triple (x, v2, v3), where x is a fixed value and v2 and
v3 are variables. When retrieving the candidates by looking up using the fixed
value x, i.e., executing lookup(x), it may happen that the querying node might
already have candidates for the two variables. The queried node can reduce the
results sets with the knowledge of sets v2 and v3. However, those sets may be
large, that is why authors use Bloom filters to reduce the representation of the
sets. The counterpart of using Bloom filters, is that they yield false positives,
i.e., the final results sets which will be transferred may contain non-matching
results. A final refinement iteration will be done (locally) which will remove
those candidates and thus ensuring the correctness of the query results.

3.2.11 Query Chain and Spread by Value algorithms

In [81], Liarou et al. propose two query processing algorithms to evaluate con-
junctive queries over structured overlays: the Query Chain (QC) and Spread by
Value (SBV) algorithms.
QC - Data indexing. As s in RDFPeers [31], in QC algorithm, a RDF triple
is indexed to three nodes. More precisely, for a node p that wants to publish a
triple t such as t = (s, p,o), the index identifiers of t is computed by applying a
hash function on s, p and o. Identifiers hash(s), hash(p) and hash(o) are used
to locate nodes n1, n2 and n3 that will then store the triple t.
QC - Query processing. In this algorithm, the query is evaluated by a chain
of nodes. Intermediate results flow through the nodes of this chain and the
last node in the chain delivers the result back to the query’s originator. More
formally, the query initiator, denoted by n, issues a query q composed of q1,
q2,. . . , qi patterns and forms a query chain by sending each triple pattern to
a (possibly) different node, based on the hash value of constant part of each
pattern. For each of the identified nodes, the message QEval(q, i, R, IP (x))
will be sent such that q is the query to be evaluated, i the index of the pattern
that will managed by the target node, IP the address of the query’s originator
x (i.e., the node that poses the query) and R an intermediate relation to hold
intermediate results. When there is more than one constant part in the triple
pattern, subject will be chosen over object over predicate in order to determine

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 25

the node responsible for resolving this triple. While the query evaluation order
can greatly affect the algorithm performance including the network traffic and
the query processing load, authors adopt the default order for which the triple
patterns appear in the query.
SBV - Data indexing. In the SBV algorithm, each triple t = (s, p, o) is stored
at the successor nodes of the identifiers hash(s), hash(p), hash(o), hash(s+ p),
hash(s+o), hash(p+o) and hash(s+p+o) where “+′′ operator denotes the con-
catenation of string values. By triple replication, the algorithm aims to achieve
a better query load distribution at the expense of more storage space.
SBV - Query processing. SVB extends the QC algorithm in the sense that a
query is processed by a multiple chains of nodes. Nodes at the leaf level of these
chains will send back results to the originator. More precisely, a node posing a
conjunctive query q in the form of q1∧. . .∧qk sends q to a node n1 that is able to
evaluate the first triple pattern q1. From this point on, the query plan produced
by SBV is created dynamically by exploiting the values of the matching triples
that nodes find at each step. As an example, a node n1 will use the values found
locally that matches q1, to bind the variables of q2∧ . . .∧qk that are in common
with q1 and produce a new set of queries that will jointly determine the answer
to the query’s originator. Unlike the query chain algorithm, to achieve a better
distribution of the query processing load, if there are multiple constants in the
triple pattern, the concatenation of all constant parts is used to identify nodes
that will process the query.

The performance of both QC and SBV algorithms can be improved through
the caching of the IP addresses of contributing peers. This information can
be used to route similar queries and thus reduce the network traffic and query
response time.

A similar algorithm is presented in [16] where conjunctive queries are resolved
iteratively: starting by a single triple pattern and performing a lookup operation
to find possible results of the current active triple pattern. These results will be
extended with the resolution of the second triple pattern and an intersection of
the current results with previous ones will be done. The procedure is repeated
until all triple patterns are resolved.

Unlike Query Chain algorithm discussed in [81], where intermediate results
for a conjunctive query resolution are usually send through the network to nodes
that store the appropriate data, Battré in [16], combines the fetching approach
with the intermediate results forwarding approach. Such decision is taken at
runtime and is based on the estimated traffic for each of both data integration
techniques.

3.3 Complementary Techniques for Search Improvements

As the scalability of RDF-based P2P networks mainly depends on the way that
queries are propagated and how much unnecessary data is transferred among
peers in the network, this section discusses additional techniques that attempt
to improve the RDF data retrieval in P2P systems such as caching, parallel
query processing, etc.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions

P2P system Network archi-
tecture

Data indexing Queries: language, type and evaluation

Bibster [61] Unstructured • Semantic extraction of
bibliographic metadata

• Transform semantic data
to ontologies through
BibToOnto component

• SeRQL (Sesame RDF Query Lan-
guage)

• Ontology and peer’s expertise-based
forwarding

• Use similarity function to measure
the semantic similarity between the
query content and the peer’s expertise
model

S-RDF [125] Unstructured • Triples are stored in RDF
files

• Triples are grouped by
subjects

• Any query language is supported
• Random walk and highest potentiality

forwarding mechanisms

Edutella [97] HyperCuP super-
peer topol-
ogy [109]

• Semantic clustering at the
Super-Peer level

• Maintain Super-Peer-Peer
and Super-Super-Peer in-
dices

• RDF-QEL (RDF Query Exchange
Language)

• Lookup at the super-peer level based
on SP-SP indices

• Lookup inside the cluster based on
SP-P indices

RDFPeers [31] MAAN-
based [30]

• Three-times RDF triple
indexing: hash(s),
hash(p), hash(o) via
locality preserving hash

function

• Intuitions to transform RDQL queries
into native RDFPeers queries

• Support atomic, conjunctive, disjunc-
tive queries with the same subject

• Recursive multi-predicate query reso-
lution

Atlas [74] Bamboo-
based [102]

• RDFPeers indexing
scheme

• RQL (RDF Query Language)
• RDFPeers query processing algorithm

DSS [55] Chord
based [114]

• Semantic clustering ap-
proach

• RDF mapping to the most
suitable semantic cluster

• RDQL (RDF-Data Query Language)
• Routing inside the most suitable se-

mantic cluster
• Flooding inside the cluster

RDFCube [91] CAN-based [101] • Indexing scheme of RDF-
Peers

• Store bit information re-
garding the existence of
RDF triples

• Query mapping into a cell of RD-
FCube through hashing

• Speed up “join queries“ by performing
AND operation on bit information

GridVine [9] P-Grid-based [8] • Semantic mediation layer
overlay on top of P-Grid

• P-Grid-based data index-
ing model except that
RDF triples are indexed
three times

• Index schemas at the se-
mantic mediation layer

• OWL (Web Ontology Language) for
schema mapping

• Support of atomic, conjunctive, dis-
junctive queries

• Iterative query resolution

Unistore [65, 66] P-Grid-based [8] • Schema-independent
query formulation: each
tuple (OID, v1, . . . , vn)
of a given relation
schema R(A1, . . . ,
An) is stored as n

triples:(OID, A1, v1),. . . ,
(OID, An, vn)

• VQL (Vertical Query Language)
• VQL allowing DB-like and IR-like

(similarity, ranking. . .) queries
• Adaptive cost-aware query processing

approach
• Semantic layer on top of P-Grid

YARS [57] B- tree [38]
• Manage quad (s,p,o,c)

rather than RDF triple
(s,p,o)

• Maintain lexicon indexes
operate on the string rep-
resentation of RDF nodes

• Maintain quad indexes
based on the quad access
pattern

• Store quad in six indexes

• Notation3 (N3) + YARS query lan-
guage

• Support of atomic, range, conjunctive
queries

• For conjunctive query, starting by
quads that yield to the smallest result

PAGE [44] Bamboo-
based [102]

• YARS indexing scheme • Bamboo based routing
• Use mask and hops properties during

the query resolution
Battré et al. [18,
58]

DHT-based • RDFPeers-like indexing
mechanism

• Nodes host different
RDF repositories (lo-
cal/ received/ replica/
generated)

• Graph-based models (for knowledge
and queries)

• Two-phase refinement procedure for
query resolution

• A look-ahead and Bloom filters en-
hancement techniques.

QC and SBV [81] DHT-based • RDFPeers indexing
scheme

• The query language is not clearly
specified

• Query Chain (QC): query is evaluated
by a chain of nodes. Intermediate re-
sults flow through the nodes of this
chain and the last node in the chain
delivers the result back to the query’s
originator

• Spread by Value (SBV): construct
multiple chains for the same query

Table 2: P2P Systems for RDF data storage and retrieval:. s, p, o respectively
refer to the subject, the predicate and the object of a RDF triple. In YARS
scheme, c denotes the context of the application.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 27

3.3.1 Caching

To improve the search performance in P2P-based RDF stores, Battré introduced
in [16] a caching approach that strives to reuse intermediate results of previous
queries allowing therefore a quick process of new ones. More formally, let us
denote by T (Q) the set of the triples patterns forming a conjunctive query
H(Q) and by x the node that maintains the final results of the query H(Q).
The peer x computes an identifier id = hash(H(Q), T (Q)) which determines
a peer’ position in the DHT space. The peer y identified by id will store a
reference to the node x. In others words, the peer y is aware that the result
set of the query H(Q), T (Q) can be found in peer x without fetching the result
from x. Assume that, later, a peer z issues the same query H(Q), T (Q), the
query resolution mechanism starts by checking whenever the query result was
already referenced at the peer identified by hash(H(Q), T (Q)) (which is the
peer y in this example). If the peer z finds the reference on the peer y, then it
fetches the result of H(Q) from peer x. Otherwise, the query will be evaluated
as in [81]. To limit the number of cached entries, only results that have been
requested more than a given threshold will be stored. As a side note, caching
query results have been also considered in S-RDF [125] (see Section 3.1.2) as
well as in QC [81] (see Section 3.2.11).

3.3.2 Parallel RDF Query Processing

In [84], Lohrmann et al. proposed an algorithm aiming at parallelizing RDF
query processing on top of DHTs and thus reduce the estimated response time.
Each peer runs a master agent process that accepts connections from query
clients and participates in the query evaluation. The proposed algorithm runs
into the query planning and execution phases. Assume that a query Q =
{q1, . . . , qn,} is submitted by a requester where qi is a triple pattern. In the
planning phase, and for each triple pattern qi, the master agent identifies a peer
with a dhtIdi responsible for qi by applying a hash function on the constant
part of qi. As in [17], if there is more than one constant part in the qi, subject
is chosen over object over predicate. For each qi the master agent sends a SREQ

message for the peer identified by the dhtIdi Once the SREQ message is received,
a slave agent process is triggered and the triple pattern is evaluated. A pattern
relation αi is computed such as αi = (Hi, Bi), where Hi the pattern’s variables,
and Bi presents all possible valuations of the variables as given by the pattern
matches. After receiving all replies from slave agents, the master agent has to
find a parallel join order for the pattern relations and find a slave agent for each
join operation in order to minimize the estimated execution time. Therefore, it
sends a query execution plan (QEP) to each slave agent. The QEP describes a set
of operations (e.g., join two local relations, send a relation to another peer) that
have to be performed by each slave agent during the execution phase. Note that
the QEP is the output of a tree join optimization algorithm run by the master
agent after receiving all replies from the slave agents and aims to determine the
dependency between sub-queries of the query Q. Each slave agent executes the
corresponding QEP plan and returns the results to the master agent which, in
turn, sends them to the query client.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 28

3.4 P2P and RDF: Discussions and Challenges

The combination of P2P communication model with RDF data has become a
very active research area aiming at sharing and processing a huge amount of
data. In addition to the basic challenges related to such large scale infrastruc-
ture (network partition, network maintenance, etc.), enabling complex querying
of RDF data on top of such infrastructure requires advanced techniques for data
indexing and query processing algorithms. We will now summarize some chal-
lenges surrounding this combination and possible improvements with respect to
the topology, data indexing and query processing.
Network topology. As we have already seen, a lot of work has been carried
out towards a scalable distributed infrastructure of RDF data management. As
one may noticed, most of the presented approaches choose the structured P2P
networks as infrastructure basis(e.g., [9, 18, 31, 55, 57, 66, 74, 81, 91, 98, 44]).
Such choice comes as a side effect of two main reasons. First, as it is already ar-
gued in [85], structured peer-to-peer overlay networks provide a useful substrate
for building distributed applications due to the search guarantees that can be
offered as long as the data is available in the network. Second, the structured
nature of the RDF data model influences the choice of topology as it can be
noticed through the data indexing model of the most of the P2P approaches.
In this respect given the strong relationship between the network topology and
the data indexing mechanism, the network model has to be carefully selected as
it necessarily affect the performance of the data indexing method and undoubt-
edly the data lookup and query processing mechanisms.
Data indexing. Several approaches, e.g., RDFPeers [31], Atlas [74], YARS [57],
RDFCube [91], Battré et al. in [18], while based on different overlay topolo-
gies, share almost the same data indexing model by hashing the RDF triple
elements.The main advantage of such indexing strategy is that triples with the
same subject, object and predicate are stored on the same node and thus can be
searched locally and without needing to be collected from all data sources. How-
ever, individual nodes, responsible for overly popular triples (e.g., rdf:type,
dc:title), can be easily overloaded resulting in poor performance. One possi-
bility to address this issue is to use multiple hash functions to ensure a better
load distribution as proposed in [101] and recently in [93]. The second category
of RDF-based P2P approaches harness the semantic of RDF data either to build
a “semantic” layer on top of the P2P overlay (e.g., [40, 66]) or to adopt a seman-
tic clustering approach and organize the P2P layer as function of the semantic of
the stored data (e.g., Edutella [98], DSS [55], S-RDF [125], Bibster [61]). Others
have extended the basic RDF data model by adding the “context” concept as in
YARS [57] and PAGE [44]. By taking into consideration data semantics in the
data indexing phase, these approaches try to improve data lookup. However,
this need an additional effort to maintain the mapping between the semantic
and the overlay levels.
Most of the presented works aim at adding data availability feature to the
RDF storage infrastructure through data replication (e.g., [18, 31, 40, 74, 81]).
However, data replication further raises several issues. Thereof, three main
challenges have to be taken into consideration: which data items have to be
replicated; where to place replicas and finally how to keep them consistent. In
P2P systems there has been a lot of work on managing data replication. In
[76], Ktari et al. investigated the performance of several replication strategies

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 29

under DHTs systems including neighbor replication, path replication and multi-
key replication. As argued in [76], the data replication strategy can have a
significant impact on the system performance. Further effort may go into ex-
ploring more “dynamic” and adaptive replication approaches as function of data
popularity or average peer online probability [71]. Although the replication
techniques increase the data availability, they come not only at the expense of
more storage space but can also affect the data consistency (e.g., concurrent up-
date for the same triple). Moreover, the data inconsistency issue becomes even
more intricate under the partitioning of the P2P network. Thus, an update op-
eration might not address all replicas as a node storing a replica can be offline
during the update process. Therefore, trade-offs are made between high data
availability, data consistency and partition-tolerance. Brewer brought all these
tradeoffs together and presented the CAP theorem [52] which states that with
Consistency, Availability, and Partition-tolerance, we can only ensure
two out of these three properties. Recognizing which of the “CAP” properties
the application really needs is a fundamental step in building a successful dis-
tributed, scalable, highly reliable system.
Query processing. On the query processing point of view, sharing RDF data
imposes new challenges on the distributed storage infrastructure related to sup-
porting advanced query processing algorithms beyond simple keyword-based
retrieval. Therefore, we need to take a deeper look at how the query can be op-
timized before being processed. The presented approaches for data retrieval and
integration are mainly achieved either by fetching triples to query’s originator
which coordinates the query evaluation or forwarding intermediate results (e.g.,
[81, 31]) whenever the query is partially resolved. However, we firmly believe
that the first approach may not efficiently resolve conjunctive queries where
each sub-query leads to a huge result set while the final join operaion between
them conducts to a small set. Caching results [16, 81, 125] can alleviate this
challenge, at least for similar queries, but can also affect the data consistency.
Thereby, a tradeoff is made between the network resource usage on one side and
the information staleness on the other side. Others approaches such as in [16]
decide at runtime whether the current result set has to be fetched to the query’s
originator or continue to be forwarded to others neighbors13. As the query pro-
cessing becomes more crucial especially when processing huge data set such as
the Billion Triple Challenge 2009 (BTC2009) dataset14, some works have been
proposed to reduce the large data sets to the interesting subsets as in [54]. To do
so, BitMat [12], based on Bit Matrix conjunctive query execution approach, is
used to generated compressed RDF structure. Therefore, a dominant challenge
related to the distributed query processing [73] is how to improve the query
performance and find an “optimal” query plan in order to enhance the query
performance and reduce the communication cost. An already explored direc-
tion towards the query optimization plan is introduced by OptARQ [21]. It is
based on Jena ARQ15, uses the concept of triple pattern selectivity16 estima-
tion17. It aims to find the query execution plan that minimizes the intermediate
result set size of each triple pattern by join re-ordering strategies. Thereof, the

13The decision is taken based on the estimated traffic of each operation.
14http://vmlion25.deri.ie/.
15http://jena.sourceforge.net/ARQ
16Selectivity of triple patten T is the fraction of triples that satisfying this pattern.
17This is performed by collecting statistical information about the ontological resources.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 30

smaller the selectivity the less intermediate results it is likely to produce and
the earlier it should be executed in the query execution plan. For a similar
purpose, RCQ-GA [59] uses genetic algorithms in order to perform an efficient
evaluation of RDF chain queries.

All in all, the P2P communication model, combined with RDF data, consti-
tutes a sound step for managing the tremendous growth of Web-scale RDF data
set in a distributed environment. However, having high efficiency and scalabil-
ity requirements in mind, RDF data management needs efficient algorithms for
processing highly expressive queries.

4 Publish/Subscribe Communication Model

The publish/subscribe (pub/sub) communication model [49] gained a lot of in-
terest and is considered as a powerful communication paradigm. The pub/sub
model can be seen as an extension of the usual one-time query retrieval over P2P
networks, allowing to efficiently receive notifications to long-standing subscrip-
tions in a highly dynamic environment. In this section, we briefly highlight the
main concepts underlining the pub/sub communication model. We then focus
on the synergy between this particular paradigm and RDF-based P2P systems,
in order to see how complementary a dynamic messaging paradigm and a rich
data model could be. By delving into details of the subscription and advertise-
ment processing algorithms, we will present some ground works that were done
around this promising symbiosis.

4.1 Background

In a pub/sub system, subscribers, also called consumers, can express their in-
terests in an event or a pattern of events, and be notified of any generated
event by the publishers (producers) that matches those interests. The events
are propagated asynchronously to all subscribers. Therefore, the overall system
is responsible for matching the events to the subscriptions and for the deliv-
ery of those relevant events from the publishers to the subscribers which are
distributed across a wide area network. This paradigm provides a decoupling
in time, space and synchronization between participants. First, subscribers and
publishers do not need to participate in the relation at the same time. Secondly,
senders and receivers are not required to have a prior knowledge of each other
and can even be located in separate domains. Finally, they are not blocked when
generating events and subscribers can get the notifications in an asynchronous
manner. Overall, the key components of a pub/sub system can be summarized
into the following concepts:

• Subscriptions: A subscription describes a set of notifications a consumer
is interested in. The goal behind the subscription process is that sub-
scribers will receive notifications matching their interests from other peers
in the network. Subscriptions are basically filters, which can range from
simple Boolean-valued functions to the use of a complex query language.
The expressiveness of the subscriptions in terms of filtering capabilities
depends directly from the data model and the filter model used.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 31

• Notifications: In pub/sub systems, notifications can signify various types
of events depending on the perspective. From a publisher perspective, ad-
vertisements are a type of notification used to describe the kind of notifi-
cation the publishers are willing to send. From a subscriber perspective, a
notification is an event that matches the subscription(s) of consumers 18.
An event notification service is the mediator which is responsible for con-
veying notifications to subscribers. Several peers within the network can
actively or passively participate in the dissemination of those notifications.

Pub/sub systems have several ways for identifying notifications that can be
based either on a topic or the content. In the topic-based model, publishers anno-
tate every event they generate with a string denoting a distinct topic. Generally,
a topic is expressed as a rooted path in a tree of subjects. For instance, an on-
line research literature database application (such as IEEE Xplore) could publish
notifications of newly available articles from the Semantic Web research area un-
der the subject “/Articles/Computer Science/Proceedings/Web/Semantic Web”.
This kind of topic will then be used by subscribers which will, upon subscrip-
tion’s generation, explicitly specify the topic they are interested in and for which
they will receive every related notifications. The topic-based model is at the core
of several systems such as Scribe [35], Sub-to-Sub [121]. A main limitation of
this model lies in the fact that a subscriber could be interested only in a sub-
set of events related to a given topic instead of all events. This comes from
the tree-based classification which severely constrains the expressiveness of the
model as it restricts notifications to be organized using a single path in the
tree. A tree-based topic hierarchy inhibits the usage of multiple super-topics
for instance, even if some inner re-organizations are possible, this classification
mechanism remains too rigid. On the other side, a content-based model is much
more expressive since it allows the evaluation of filters on the whole content of
the notifications. In other words, it is the data model and the applied predicates
that exclusively determine the expressiveness of the filters. Subscribers express
their interests by specifying predicates over the content of notifications they
want to receive. These constraints can be more or less complex depending on
the query types and operators that are offered by the system. Available query
predicates range from simple comparisons, regular expressions, to conjunctions,
disjunctions, and XPath expressions on XML.
As the focus of this survey is the RDF data management on top of P2P net-
works, we only consider pub/sub systems which solely address such combina-
tion. Therefore, this overview complements other surveys related to the pub/sub
paradigm. The interested reader can refer to [49, 83, 95] for deeper discussions
on the basic concepts behind this communication model. In this part, the words
“subscription” and “query” are interchangeable.

4.2 P2P-based Publish/Subscribe Systems for RDF Data
Storage and Retrieval

4.2.1 Cai et al.

Cai et al. have proposed in [32] a content-based pub/sub layer extension atop
their RDFPeers system [31] (see Section 3.2.2). In their system, each peer p

18In fully decentralized pub/sub systems, every node can perform the matching process.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 32

maintains a list of local queries (i.e., subscriptions), along with the following
information: triple patterns, the subscriber node identifier, a requested notifi-
cation frequency and the requested subscription expiration date. Once a peer
p stores (upon insertion) or removes a triple locally, it evaluates the matching
subscription queries. This is also done after a triple is updated or when a collec-
tion of several matches for a given subscription is made. Afterwards, the peer
notifies the subscriber by sending matched triples.
Subscription processing. Their subscription mechanisms support atomic,
disjunctive, range and conjunctive multi-predicate queries19,20. The basic sub-
scription mechanism for disjunctive and range queries is similar to that used for
atomic queries, except that a subscription request is stored by all nodes that
fall within the hashed identifiers of the minimum and maximum range value.
The subscription scheme to manage conjunctive multi-predicate subscriptions
is similar to the query chain algorithm discussed in Section 3.2.11. Initially, the
subscription request Sr will be routed to the node p corresponding to the first
triple pattern s in the subscription. Once p processes the first conjunct s, it
removes s from Sr and stores it locally. In addition, p also stores the hash value
of the next pattern in S. The node, receiving the subscription request (i.e.,
Sr \ {s}) sent by p stores the next pattern, and routes the remaining patterns
towards the appropriate peer, and so on. The node that stores the last pat-
tern in the subscription Sr will also store the subscription request’s originator.
Therefore, whenever new triples are matched by the first pattern, they will be
forwarded to the second node in the chain. The second and subsequent nodes
will only further forward those triples if they also match their local filtering
criterion. Also, the authors propose an extension to support highly skewed sub-
scriptions patterns, to avoid having the vast majority of nodes with few if any
subscribers while a handful of node attracts a lot of subscribers. This extension
promotes a proportional notification’s dissemination scheme to the number of
subscribers. Authors provide two ways to do so : (i) similar subscriptions from
different subscribers are aggregated and reduced into a single entry with mul-
tiple subscribers and (ii) when a certain threshold of subscribers is exceeded,
a node will maintain a “repeater nodes” list (structurally analog to the finger
table, i.e. containing log(N) nodes) which is used to distribute the load of the
notification propagation among nodes. In order to cope with churn and failure,
a replication mechanism, directly inherited from MAAN [30] (see Section 2.2.5),
along with a repair protocol for the subscriptions and the data is provided (only
for atomic queries). Replication can be tuned using a Replica_Factor param-
eter, thus, the subscription list will be replicated to the next replication factor
nodes in the identifier space, i.e., it will send replicates to its immediate suc-
cessors, following the replica factor parameter. The same goes for RDF triples.
To manage situations where a user leaves while his subscriptions are still active,
each subscription is characterized by a maximum duration parameter. This pa-
rameter controls the lifetime of the subscription. Therefore, if the duration d
for a subscription s is expired, s will be removed from the subscription list.

19Not implemented at the time of the writing of their paper.
20Some combinations of conjunctive and disjunctive are not supported.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 33

4.2.2 DSS

The Dynamic Semantic Space [55], investigated in Section 3.2.4, supports content-
based pub/sub mechanism.
Subscription processing. Once a subscription request is generated it will
be mapped to the corresponding semantic cluster (SC). From there, it will
be forwarded to every node within the semantic cluster. Upon receipt of the
subscription request, a peer p checks for a local matching of the subscription
with its local RDF data. After a successful matching, it will send back results
to the subscriber(s). If a modification occurs on the local data, the producer
peer notifies subscriber node(s) by sending notifications that follow exactly the
reverse path of the corresponding subscription.Whenever a subscriber wants to
unsubscribe to an event, an unsubscription request will be sent directly to the
relevant producers.

4.2.3 Chirita et al.

In [10], Chirita et al. propose a set of algorithms to manage publications, sub-
scriptions and notifications on top of super-peer like topology as in Edutella [98]
(see Section 3.2.1) and P2P-DIET [75] networks. Authors formalized the basic
concepts of their content-based pub/sub system based on RDF using a typed
first-order language L. Such formalization enables a precise reasoning on how
subscriptions, advertisements and publications are managed in such systems.
The formalism is further used by the authors to introduce the subscription sub-
sumption optimization technique, which we will explain shortly.
Advertisement indexing and processing. In this model, once a peer p
connects to its super-peer node, denoted sp, it compulsorily advertises the re-
sources it can offer in the future by sending advertisements to sp. These ad-
vertisements are useful to super-peers in order to build advertisement routing
indices that will further be used for processing subscriptions. Advertisements
contain one or more elements. These elements can either be a schema identifier
(e.g., <dc>,<lom>), a property/value pair (e.g.,{<dc:year>, 2010}) or a single
property (e.g.,<dc:year>). Consequently, three levels of indexing are managed:

• Schema level. This level of indexing contains information about RDF
schemas that peers support. Each schema is uniquely identified by a URI.
The schema indexing can be used, for example, to constrict the forwarding
of the subscriptions only to the peers which support that schema.

• Property/Value level. This second level indexes peers providing the
resources rather than the property itself. It is mainly used to reduce the
network traffic.

• Property level. This final type of indexing is useful when a peer might
choose to use only certain properties/attributes from one or a set of
schemas. Thus, the property index contains properties, identified by
namespace/schemaID in addition to the property name. Each property
points to one or more peers that support them.

Advertisements are selectively broadcasted from a super-peer to its super-
peer neighbors. The advertisement update process is triggered if a peer joins or
leaves the network or whenever the data that it is responsible for is modified.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 34

Therefore, references associated to peers and indexed at the super-peer level
also have to be updated.
Subscription processing. Each super-peer manages a subscription in a par-
tially ordered set (poset). Subscriptions sent by a peer p are inserted into the
poset of its super-peer sp. As in the SIENA system [34], the poset consists of a
set of subscriptions. The subscriptions’ poset is actually a hierarchical structure
of subscriptions which captures the notion of subscription subsumption, that is,
when the result of a subscription q1 is a subset of the result subscription q2, we
say that q2 subsumes q1. This concept is mainly used to avoid forwarding cer-
tain subscriptions which were subsumed by previously forwarded subscriptions,
thus reducing network traffic. For each subscription, an associated forwarder
list holds the subset of neighbors to which a subscription s has been forwarded
and a subscriber list maintaining the subscriptions’ originators. When new sub-
scriptions are subsumed by previously forwarded ones, the super-peer does not
forward these new subscriptions to its super-peer neighbors. However, consider
an advertisement Adv1 sent by sp2 to sp1. If sp1 has already received a sub-
scription S (by some other peer) and there is a match with Adv1, then sp1
informs sp2 not to forward any advertisement of this kind anymore, because
the subscription responsible for S subsumes Adv1. When a new notification n
arrives at a super-peer sp, sp checks for the subscriptions satisfying n in its
local subscriptions poset in order to forward them to the subscriber nodes. This
approach handles the notifications under peer churn. When a peer p associated
to a super-peer sp leaves the network, sp puts the subscriptions of p in a buffer
for a period of time in order to receive notifications sent to p. Once p reconnects
to sp, these notifications will then be forwarded to it. Authors also make use
of cryptographic algorithms to provide unique identifiers to peers. After a leave
(or a crash), a node may have a different IP address; this unique identifier will
be used to retrieve waiting subscription results. This is actually pretty helpful
especially knowing that after a leave (or a crash), a node may not have the
same IP address, and thus might fail to recover its waiting subscriptions results.
Their system guarantees that this will not happen.

4.2.4 Atlas

The Atlas infrastructure [74] in addition to one-time querying (see Section 3.2.3)
also supports a content-based pub/sub paradigm, using algorithms from [81]
detailed in Section 3.2.11. The system also supports the RDF Update Language
(RUL) for RDF metadata insertion, deletion and update.
Subscription processing. After submitting an atomic subscription by a query
originator p and being indexed in the network, the peer p waits for triples that
satisfy it. After the submission of an atomic query and its indexing, a peer will
wait for triples that satisfy it. Once a new triple is inserted, nodes cooperate
together in order to determine which queries are satisfied. Nodes responsible
for triples satisfying the subscription create notifications and send them to the
subscriber node. Processing of conjunctive subscriptions is a more complicated
task since a single triple may satisfy a query only partially by satisfying one of
its sub-query. Moreover, as the triples satisfying the query are not necessarily
inserted in the network at the same time, nodes need to keep traces of queries
that have been already partially satisfied and create notifications only when all
sub-queries of a query are satisfied.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 35

4.2.5 Single and Multiple Query Chain Algorithms

Liarou et al. have proposed in [80] a content-based pub/sub system, which
mainly focuses on conjunctive multi-predicate queries, and provide two DHT-
agnostic algorithms, namely, the Single Query Chain (SQC) and the Multiple
Query Chains (MQC), that extends the Query Chain algorithm detailed in sec-
tion 3.2.11.
Subscription processing. In their pub/sub system, each triple t is character-
ized by a published time parameter, labeled pubT (t). Moreover, each subscrip-
tion S such as S = s1 ∧ s2 ∧ ... ∧ sn is identified by a key(S) and has a times-
tamp indicating the subscription time, denoted by subscrT (S). As a result, si
is also characterized by a subscription time such as subscrT (si) = subscrT (S).
Therefore, a triple t can satisfy a subscription s of S iff subscrT (s) < pubT (t).
Subscriptions and notifications forwarding policies are similar to algorithms pro-
posed in [81]. In the case of SQC, for each query, a single query chain is created
at node r upon receipt of query S whereas MQC goes a step further. In MQC,
first, a query S is indexed to a single node r according to one of S’s sub-queries.
Then, each time a triple arriving at r satisfies this sub-query, the subject is used
to rewrite S and thus, for each different rewritten query, a query chain is cre-
ated, yielding multiple query chains. This has the benefit of achieving a better
load distribution than SQC. For optimization purposes, the authors propose a
query clustering mechanism where “similar” subscriptions are grouped together.
For instance, triples which have been indexed on node n using the same predi-
cate p will be answered when a new triple with the predicate p is inserted. In
such scenario, only one matching operation has to be performed whenever such
a triple is inserted.

4.2.6 Continuous Query Chain and Continuous Spread-By-Value Al-
gorithms

In another work [79], Liarou et al. propose an extension of their two algorithms
presented in [81] (QC and SBV). By introducing a continuous flavour of these
algorithms, thus becoming CQC (continuous query chain) and CSBV (continu-
ous spread by value), they modify them in order to be the core of a content-based
pub/sub system.
CQC - Subscription processing. A node n that wants to subscribe with a
conjunctive query q = [q1, . . . , qk] will do so by indexing each triple pattern qj to
a different node nj . Thus, each of these nodes will be responsible for processing
their part of the query qj and will be a part of a query chain of q. Each node
indexes the triple patterns as in QC, explained in Section 3.2.11.
When a node receives a newly indexed triple t, it will check any relevant indexed
queries in its query table (QT). If any match is found, there is a valuation21 v
over the variables of qj such that v(qj) = t. (i). If it is the first node in the
chain, it forwards the valuation v (holding a partial answer to q) to the next
node in the chain, ni. When receiving this intermediate result, ni will apply the
received valuation and compute a new valuation w to the pattern qi it holds,
resulting in q′i = w(qi). Then, it will try to find triples matching q′i in its triple
table (TT) that have already arrived. If there is a match, a new intermediate
result is produced, a new valuation w’ = w ∪ v. This new valuation is then

21Concept used to talk about values satisfying a query.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 36

passed along the query chain and stored in an intermediate result table (IRT),
which is used when new triples arrive. When the last node in the chain receives
a set of intermediate results, it will check its TT and if matches are found, an
answer to the query q is sent to the node that originally posed q. (ii). If the
node is not the first in the query chain, it will store the new triple in its TT
and search its IRT to see if an evaluation of the query that has been suspended
can now continue due to t that has just arrived. For each intermediate result w
found, a new valuation w’ is computed and forwarded to the next node in the
query chain.
CSBV - Subscription processing. This algorithm actually extends CQC in a
way that it achieves a better distribution of the query processing load. In CQC,
a query chain with a fixed number of participants is created upon submission
of a query q, whereas in CSBV, no query chain is created. Instead q is indexed
only to one node which will be responsible for one of the triple patterns of q.
Node n can use the valuation v to rewrite q = [q1, . . . , qk] with fewer conjuncts
q’ = [v(q2),. . . , v(qn)] and decides on the fly the next node that will undertake
the query processing. Because q’ is conjunctive like q, its processing proceeds
in a similar manner. Depending on the triples that trigger qi, a node can have
multiple next nodes for the processing of the query. Thus, the responsibility
of evaluating the next triple pattern of q is distributed to multiple nodes com-
pared to just one in CQC, leading to a better load distribution. Query indexing
follows the same heuristics used in CQC, with the difference that if the query
has multiple constants, a combination (i.e. a concatenation) of all the constant
parts will be used to index the query, following the triple indexing of SBV in
Section 3.2.11.
When receiving a new triple t, this basically proceeds as in CQC (in terms of
checking if a match is found for the pattern) with the only exception that the
forwarding of the intermediate results is dynamic, because computed on the
fly. Intermediate results are processed in the same logic as in CQC with the
difference that instead of forwarding a single intermediate result to the next
node, a set of intermediate results is created and delivered possibly to different
nodes (remember that the intermediate results depends on the reception of a
new triple and its potential valuation).
These two algorithms come with communication primitives that enable mes-
sages to be sent in bulk. Naturally, each step of these algorithms comes at a
certain cost, but some improvement techniques are reused from QC and SBV
such as IP caching used to maintain the address of the next node in the chain the
peer should send the intermediate results to, or also a query chain optimization
scheme which tries to find an optimized nodes’ order based on specific metrics
(rate of published triples that trigger a triple pattern, etc.).

4.2.7 Ranger et al.

In [100], the authors introduce an information sharing platform based on Scribe [35],
a topic-based22 pub/sub system. Interestingly, the algorithm they propose does
not index data a priori. Instead, their scheme relies upon finding results from
scratch with redundant caching and cached lookups mechanisms. This is done
by taking advantage of the Scribe infrastructure, that is, the possibility to sub-

22Actually, it is not a “pure” topic-based ; in this work a topic is a query.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 37

scribe to a topic (i.e., to a query) and to lookup within the group23 of the topic.
Frequent queries are cached effectively as they occur, remaining active as long
as client are reading from it. Queries, which can be either atomic or complex,
are expressed in a SPARQL dialect.
Subscription processing. Queries are translated into trees of either atomic
or complex sub-queries. An atomic query is a simple, independent query that
all peers can execute on their local content since it does not depend on the re-
sults from other peers. A complex query resorts to results from other queries to
produce its results, either by aggregation, filtering or calculation. Since all peers
can execute arbitrary complex queries, the exact distinction between atomic and
complex queries is somehow fuzzy. It is usually unfeasible to determine if the
query should be run locally just by taking a look at it. This depends on whether
objects are stored as a whole on each peer, or if parts of objects are scattered
across different peers. This also depends on the application built on top of
this scheme. In order to circumvent this ambiguity, the algorithm co-locates
predicates from designated namespaces (e.g, dc, vCard, rdf, rdf, type,etc.). This
means that for a same subject, all predicates from a co-located namespace will
be available on the same peer. When a peer performs a query, that is, subscribes
to a topic, it first looks up in the group for a peer that already knows (or is
interested to know) the result of the query. If one is found, the peer joins the so
called consumer pipeline tree rooted at a producer of the query results. When
a peer matches an atomic query, it establishes a contributor pipeline tree rooted
at itself. When consumers ask for results, the producing peer will read/combine
results from the contributor pipeline and forward them to the consumers. Fig-
ure 8 shows the result pipelines established when a peer P1 performs a query.

P4 P4

P6 P6

P3 P3

P8 P8
P1P5 P5

Contributor tree Consumer tree

Figure 8: Contributor and consumer pipelines resulting from P1 performing a
query. Gray nodes are contributors to query Q; white nodes are forwarders25;
black nodes are consumers of the results integrated by P1. (figure taken and
redrawn from [100])

Within a group, whenever a peer is processing an atomic query, it will broadcast
the fact to others peers using the underlying group communication primitives
offered by Scribe. When a peer receives a broadcast message, if it has relevant
content or if the query is live, that is if the originator wants to be able to wait
for new results as they happen, it will be forced to contribute. The sole reason

23A group is made of all the peers interested in the same query.
25Forwarders are nodes which help in the dissemination process within a tree even if they

are not interested in the content of the events they propagate. This feature directly derives
from Scribe.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 38

for this is to avoid ignoring any potential source of results. The algorithm makes
use of Pastry’s built-in mechanisms to become aware of intentional or accidental
departures, and the contributing or forwarding peer will be asked to re-send the
message and thus repairing the tree with minimal losses.

4.3 Pub/sub and RDF: Discussions and Challenges

Pub/sub systems have been studied for some time now and are well established,
but there subsists a strong need for Quality of Service (QoS) [88], especially
when deployed on top of a best-effort infrastructure such as the Internet. We will
discuss a non-exhaustive list of improvement opportunities, with an emphasis
on QoS, which are applicable to our specific combination of interest, that is, the
publish/subscribe paradigm coupled with the RDF data model.

Research on this combination is still ongoing and there is room for many
improvements both at the subscription and notification processing levels.

The presented works have slightly different mechanisms for dealing with
notifications and subscriptions. Most of them, being based on structured peer-
to-peer overlay directly take advantage of the underlying indexing mechanisms.
Triples are indexed and retrieved using cryptographic functions (except for [100])
and this, generally, for each RDF triple element and their combination. This
multi-indexing technique induces a non negligible processing load, and has pros
and cons as discussed in Section 3.4. Ranger et al. do not index data a priori
but reuse the subscription management and group communication primitives
used for notifications’ propagation offered by Scribe [35]. By adding several
caching mechanisms, in order to maintain the most popular queries and respec-
tive results fresh, they enhanced the data retrieval mechanism. The only work
based on a unstructured overlay network [10] relies on super-peers to manage
and process subscriptions as well as route notifications.

Improvements related to subscription processing. Several techniques
do exist in order to improve the processing of subscriptions. Subscription sub-
sumption [63] and summarization [117] are two optimization techniques whose
goals are to reduce subscription dissemination traffic and enhanced processing.
The former exploits the “covering” relationship between a pair of subscriptions
while the latter aims at representing them in a much more compact form. Core
pub/sub systems such as SIENA [34], REBECA [94] and PADRES [78] imple-
ment pair-wise subscription cover checking to reduce redundancy in subscrip-
tion forwarding. A more efficient approach, argued in [63], would be to exploit
subscription subsumption relationship between a new subscription and a set
of existing active ones. In the presented pub/sub systems, only one [10] takes
advantage of this kind of subscription subsumption technique, while none uses
summarization. We have yet to see the combination of these two improvement
techniques applied to RDF-based pub/sub systems.

Improvements related to notification processing. Depending on the
type of the application, there might be the need to ensure a (stronger or weaker)
form of reliability as far as notifications are concerned. For instance, in a finan-
cial system such as the New York Stock Exchange (NYSE) or the the French
Air Traffic Control System, reliability is critical as argued in [22, 23]. For some
other type of systems, such as peer-to-peer streaming video, a more relaxed
reliability would be more appropriate since it will not make a lot of sense to

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions

Pub/Sub system Direct related
work(s)

Contribution details

Cai et al. [32] extends RDF-
Peers [31] • Subscription to atomic, disjunctive, range and conjunc-

tive multi-predicate queries is possible.
• Some combinations of conjunctive and disjunctives

queries are not supported in subscriptions.
• A replication mechanism is provided for both subscrip-

tions and data (for atomic queries), inherited from
MAAN [30].

• Support for highly skewed subscription patterns is offered.

DSS [55] influenced
by Small-
World [70]

• Subscriptions are mapped to a semantic cluster and for-
warded to all nodes within the cluster to be locally pro-
cessed.

Chirita et al. [10] influenced
by Edutella
[97] and P2P-
DIET [75]

• Super-peer-based system.
• Formalism of their system using a typed first-order lan-

guage is given.
• Resources advertisement managed by the super-peers us-

ing local partially order sets (reducing network traffic).
• Subscriptions are arranged in a hierarchical structure and

take advantage of subscription subsumption.
• Notification matching and offline notifications’ manage-

ment are done by super-peers.
• Integrated authentication mechanisms.

ATLAS [74] extends Bam-
boo [102] • RDF Update Language (RUL) for meta-data insertion,

deletion and update.
• Subscriptions and matching mechanisms directly derive

from QC and SBV [81].
SQC and MQC [80] extends Idreos

et al. [60] and
Tryfonopoulos
et al. [118]

• RDF queries in the style of RDQL.
• Conjunctive multi-predicates queries are supported

through two DHT-agnostic algorithms that extend the
Query Chain (QC) algorithm (Section 3.2.11):

– Single Query Chain (SQC)
– Multiple Query Chain(MQC)

CQC and CSBV [79] extends Liarou
et al. [81, 80] • Only focuses on conjunctive queries (the motivation being

that it is a core construct of RDF query languages).
• Arbitrary continuous conjunctive queries are considered

through two algorithms:

– Continuous Query Chain (CQC): multiple nodes,
forming a chain of fixed length, participate in the
resolution of a subscription.

– Continuous Spread-By-Value (CSBV): can be
seen as a dynamic version of CQC where partici-
pating nodes are chosen during the subscription’s
processing.

• Optimizations are provided to reduce network traffic, such
as IP caching or query chain optimization.

Ranger et al. [100] based on
Scribe [35] • Queries are expressed in a SPARQL dialect.

• No data indexing a priori is used.
• Various caching mechanisms (cached lookups, redundant

caching, etc.) and grouping of related predicates of the
same subject on the same node.

• Queries are translated into a tree of atomic or complex
queries.

• Various logical trees of nodes are created during subscrip-
tion processing, in which they can either(i) actively par-
ticipate in a query resolution, (ii) forward query results
to other nodes, (iii) simply act as consumers of query
results.

Table 3: P2P-based Publish/Subscribe systems for RDF data storage and re-
trieval.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 40

re-send lost frames for live feeds. But still, ensuring a correct dissemination of
streams despite failures does require a particular form of resiliency. Most of the
presented works do not extensively offer QoS guarantees from the notification
point of view (or even for subscription for that matter). Some use replication
techniques to ensure data availability, but few if any discuss other aspects of
QoS in depth such as the latency, bandwidth, delivery semantics, reliability
and message ordering. As argued in [88], a lot of efforts are underway to build
a generation of QoS-aware pub/sub systems. As a matter of fact, adaptation
and QoS-awareness constitute major open research challenges that are naturally
present in RDF-based pub/sub systems. The following three classes of service
guarantees constitute most of the interesting challenges:

(i) Delivery semantics. Delivery semantics come into play at the last hop,
prior to notifying the subscriber. Depending on the network reliability and the
support for duplicate message, notifications can be delivered in a best effort
way (and thus can be duplicated at the destination); they can follow an at
most once semantic which guarantees that a subscriber will receive only one
notification (even if the notification was duplicated in the medium); the at
least once delivery semantic ensures that the subscriber will receive at least one
notification of an event instance (but duplicate instances can be received); finally
the exactly once delivery semantic guarantees the reception of a single instance
of a notification (but duplicates can be cached at intermediate nodes to ensure
reliability). All these delivery guarantees are implemented by a wide variety of
broadcast algorithms which can be found in [56]. The message complexity in
these algorithms is generally high and thus, depending also on the application
guarantee requirements, they will have to be adapted to peer-to-peer systems.

(ii) Reliability. Also, the few works providing service guarantees generally
follow a publisher-offered, subscriber (client)-requested pattern. None of the
works take the reverse approach, that is, providing application-specific quality
of service guarantees explicitly specified by the client, as argued in [87]. Ear-
lier works at the overlay layer such as RON [11] and TAROM [115] focused
their efforts on resiliency from the ground up, the problem is that they “only”
consider link reliability without taking into account the node quality (load, sub-
scriber/publishers degree, churn rate, etc). Hermes, an event-based middleware
based on Pastry [104], explicitly deals with routing robustness by introducing a
reliability model at the routing level which enables event brokers to recover from
failures. However, Hermes does not provide any client-specified service level re-
liability guarantees. Pub/sub systems which consider event routing based on
reliability requirements are rare schemes as authors in [89] pointed out.

(iii) Message ordering. In pub/sub systems, some applications, such as the
ones cited above (financial systems, air traffic control, Facebook feeds) empha-
size on the preservation of a temporal order between the reception of events. The
most common message orderings are: random, FIFO/LIFO, priority, causal or
total. Adopting a message ordering can have a significant impact not only on
the routing algorithms but also on how the subscriber’s node processes arriv-
ing messages. Detecting causal relationships in distributed computations is far
from being a trivial task as argued in [111], perhaps because computer scien-
tists misunderstand it as reported in a famous controversy [119]. Maybe this
misinterpretation finds its roots in physics, where the very notion of causality
was greatly criticized by prominent physicist Bertrand Russel in [105] and more
recently by Price [99]. Borrill perfectly perceived this confusion, and from a

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 41

distributed systems perspective raises interesting questions worthy of new re-
flections in the light of modern relativistic physics theories [25].

Strong dissemination abstractions such as a Reliable Causal Broadcast, well
known and well studied in the traditional distributed systems literature, provide
strong guarantees. However, because of their inherent inability to scale, their
usage cost is prohibitive and limits their application in large-scale settings, as
argued in [56] and in [43]. Since the majority of the systems presented are built
on top of structured overlay networks, one should take advantage of the present
structure to disseminate events in a smarter way, as in Scribe [35] or using effi-
cient dissemination algorithms atop structured p2p networks [47]. The problem
with Scribe is that it only provides best effort guarantees, even if authors state
that strengthening the algorithm to make it reliable should not be that difficult.
One possible solution, that can be used for a large family of structured overlay
networks, would be the use of a pseudo-reliable broadcast abstraction as pre-
sented in [51] which ensures the correct dissemination of messages provided the
root of the tree which is constructed and used to broadcast the events does not
crash.

The study of these algorithms is now being revisited by the Distributed Sys-
tems research community in the context of dynamic distributed systems [15, 14].
A dynamic distributed system is, according to the same authors, a continuously
running system in which an arbitrary large number of processes are part of the
system during each interval of time and, at any time, any process can directly
interact with only an arbitrary small part of the system. This informal definition
shed a light on the nature of such systems, which is a coupling of two distinct
concepts that are large-scale and dynamicity. Pub/sub systems fall into the
realm of this definition combining the two aforementioned concepts; not only
publishers and subscribers come and go at will (churn), but data itself is dy-
namic (events are continuously fed into the system, sometimes rendering prior
events obsolete).

Another key point in large-scale and highly dynamic system is its ability to
manage complexity. In order to face an increasing complexity, realizing auton-
omy is crucial [68]. This well known vision from IBM took the form of “special”
properties in complex systems, namely self-* properties [13]. Properties such as
self-management [120] and self-stabilization [45] are two prominent properties
in decentralized systems and researchers apply these two concepts to pub/sub
systems [62], in the case of self-management and in [96] in the case of self-
stabilization. We could easily envision the usage of such algorithmic concepts
in the context of RDF-based pub/sub systems as well as studying other self-*
properties in this context.

Finally a ultimate challenge would be to consider pub/sub systems in ex-
tremely large-scale settings (at exascale26) for which there is a strong need to
design new algorithms and data structures [46]. Again, from a QoS point of
view, much has to be done [33]. The successful deployment of RDF in pub/sub
systems at the Internet-scale is somehow correlated with solving it at the exas-
cale.

26http://www.exascale.org

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 42

5 Conclusion and Perspectives

5.1 Summary

The Semantic Web enables users to model, manipulate and query information at
a conceptual level in an unprecedented way. The underlying goal of this grand
vision is to allow people to exchange information and link the conceptual layers
of applications without falling into technicalities. At the core of the Semantic
Web lies a powerful data model - RDF - an incarnation of the universal relation
model developed in the 1980ies [90]. Peer-to-Peer technologies addresses system
complexity by abandoning the centralization of knowledge and control in favor
of a decentralized information storage and processing. The last generation of
P2P networks - structured overlay networks [48] - represents an important step
towards practical scalable systems.

This survey has presented various research efforts on RDF data management
in P2P systems emphasizing on RDF data indexing, retrieval and integration.
The motivation behind this survey was to attempt to answer the following ques-
tion: “how RDF data have to be indexed in a distributed P2P environment to
be efficiently retrieved ? ”. RDF-based P2P approaches discussed in this survey
combine two research directions: research efforts that concentrate on the data
model and query languages and efforts that attempt to take advantage of the
expressiveness and the flexibility of such data model. The goal remains the fol-
lowing: to build large scale distributed applications using the P2P technologies
in order to come up with fully distributed and scalable infrastructure for RDF
data storage. The idea of clustering semantically related data in (unstructured)
P2P networks was at the heart of Crespo et al. ’s work [39], coining the term
semantic overlay network. They presented methods for grouping and classify-
ing data using hierarchies and show how search can be improved when data is
grouped. However, they did not mention any specific data model or took ad-
vantage of the lookup guarantees offered by structured overlay networks.
As a natural extension, the publish/subscribe paradigm, built atop a P2P sub-
strate, illustrates a more dynamic way of querying RDF data in a continuous
manner. The main goal of these systems is to offer advanced query mecha-
nisms and sophisticated information propagation among interested peers. Even
though they are built on top of P2P systems, thus encompassing already dis-
cussed research points found at the P2P level, they incorporate research issues
of their own as shown in Section 4.2: subscription processing and notification
propagation. A full taxonomy of the presented works, along with their relative
relationships, is depicted in Figure 9.

5.2 Perspectives

Leveraging orthogonal ideas, such as federation, could provide further control on
the overall scalability and autonomy of the system by allowing different entities
to keep the control on their own data while still collaborating. Garces et al. in
[77] introduced a two-tier hierarchical structure using Chord at the top level and
another DHT at the lower level. This structure, mimicking Autonomous Systems
(ASes) generally found on the Internet, is used to connect heterogeneous groups
(at the lower level) together. This is done by having a subset of peers, within
each group, acting as gateways at the top level. This hierarchical structure

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 43

inspired the work proposed by Baude et al. [19] to create Semantic Spaces. A
semantic space groups together semantically related RDF triples by storing them
in a three dimensional CAN overlay network. These spaces are referenced at the
top level by Chord nodes. This structure has several benefits in terms of QoS
management since a semantic space is administered by a single organizational
group which can react faster in case of problems for instance.

Research on multi-dimensional data management on top of decentralized
systems is also an interesting correlated research stream [108, 110, 123, 124].
This branch of research can be seen as a generalization or an abstraction of RDF
data management on top of P2P systems. In this regard, we believe that readers,
interested in a deeper understanding of more generalized data management in
P2P systems, will greatly benefit from the works presented in this survey. The
reason is that they provide a solid and concrete first approach towards a more
complex and more abstract data management in large-scale P2P systems.

A multitude of open research problems and directions are laid out in Sections
3.4 and 4.3. QoS management in such systems is still in its nascent stages and
represents a considerable research issue. In order to fully grasp all the issues
related with dynamism in P2P and pub/sub systems, we need to have sound
models to reason analytically on the very nature of churn, such as the ones
presented in [72].

We have seen that the combination of P2P technologies such as structured
overlay networks and the RDF data model is a promising step towards an effec-
tive Internet-scale Semantic Web. Both research communities made a tremen-
dous effort, both on their own side, to provide solid and sound foundations.
This interdisciplinary effort has proven that both communities can benefit from
one another and that they can push forward the existing Web frontier.

Acknowledgement

The presented work is funded by the EU FP7 NESSI strategic Integrated Project
SOA4All (http://www.soa4all.eu) and EU FP7 Specific Targeted Research
Project PLAY (http://www.play-project.eu).

References

[1] Gnutella RFC. http://rfc-gnutella.sourceforge.net/.

[2] Jena - a Semantic Web Framework for java. http://jena.sourceforge.
net/.

[3] RDFStore. http://rdfstore.sourceforge.net/.

[4] Resource Description Framework. http://www.w3.org/RDF/.

[5] SETI@home. http://setiathome.ssl.berkeley.edu/.

[6] SPARQL Query Language. http://www.w3.org/TR/

rdf-sparql-query/.

[7] W3C Semantic Web Activity. http://www.w3.org/2001/sw/.

RR n° 7457

http://www.soa4all.eu
http://www.play-project.eu
 http://rfc-gnutella.sourceforge.net/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://rdfstore.sourceforge.net/
http://setiathome.ssl.berkeley.edu/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2001/sw/

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 44

Chord [114]

RDFPeers [31]

uses
MAAN [30]

Cai et
al. [32]

DSS [55]

P-Grid [8]

GridVine [40]

Unistore
[66, 65]

HyperCup [109] Edutella [97] Chirita et
al. [10]

CAN [101] RDFCube [91]

Pastry [104]

Ranger et

al. [100]

based on
Scribe [35]

Unstructured
Bibster [61]

S-RDF [125]

DHT-
Agnostic

QC and
SBV [81]

Battré et
al.[18, 58]

Liarou et
al.[80, 79]

Bamboo [102] Atlas [74]

Page [44]

Yars [57]

Routing overlay
layer

RDF-based in-
dexation and
storage level

RDF-based
pub/sub level

Figure 9: Taxonomy of the presented works and their relative connections to
other works. The arrows carry an “extend/reuse” semantic. DSS and Atlas
overlap two categories because they support one-time and continuous queries.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 45

[8] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: a self-organizing structured P2P
system. ACM SIGMOD Record, 32(3):33, 2003.

[9] Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth, and Tim Van
Pelt. GridVine: Building Internet-Scale Semantic Overlay Networks. In
International Semantic Web Conference, 2004.

[10] P. Alex, R. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Designing
Semantic Publish/subscribe Networks using Super-Peers. In Semantic
Web and Peer-To-Peer, January 2004.

[11] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris.
Resilient overlay networks. In Proceedings of the 18th ACM symposium
on Operating systems principles, pages 131–145, Banff, Alberta, Canada,
2001. ACM.

[12] Medha Atre, Jagannathan Srinivasan, and James Hendler. BitMat: A
Main-memory Bit Matrix of RDF Triples for Conjunctive Triple Pattern
Queries. In 7th International Semantic Web Conference (ISWC), October
2008.

[13] Ozalp Babaoglu, Mark Jelasity, Alberto Montresor, Christof Fetzer, Ste-
fano Leonardi, Aad van Moorsel, and Maarten van Steen. Self-star Prop-
erties in Complex Information Systems. Springer, 2005.

[14] R. Baldoni and A.A. Shvartsman. Theoretical aspects of dynamic dis-
tributed systems: report on the workshop, Elche, Spain, September 26,
2009. Special Interest Group on Algorithms and Computation Theory
(SIGACT) News, 40(4):87–89, 2010.

[15] Roberto Baldoni, Marin Bertier, Michel Raynal, and Sara Tucci-
Piergiovanni. Looking for a definition of dynamic distributed systems.
In Parallel Computing Technologies, pages 1–14. Springer, 2007.

[16] Dominic Battre. Caching of intermediate results in DHT based RDF
stores. International Journal on Metadata Semantics and Ontologies,
3(1):84–93, 2008.

[17] Dominic Battré. Query Planning in DHT Based RDF Stores. In Proceed-
ings of the 2008 IEEE International Conference on Signal Image Tech-
nology and Internet Based Systems (SITIS), pages 187–194, Washington,
DC, USA, 2008. IEEE Computer Society.

[18] Dominic Battré, Felix Heine, André Höing, and Odej Kao. On Triple
Dissemination, Forward-Chaining, and Load Balancing in DHT Based
RDF Stores. In DBISP2P, pages 343–354, 2006.

[19] Françoise Baude, Imen Filali, Fabrice Huet, Virginie Legrand, Elton
Mathias, Philippe Merle, Cristian Ruz, R. Krummenacher, E. Simperl,
C. Hamerling, and J.-P. Lorré. ESB Federation for Large-Scale SOA. In
Proceedings of the ACM Symposium on Applied Computing (SAC), pages
2459–2466, 2010.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 46

[20] T. Berners-Lee. Linked data. W3C Design Issues, 2006.

[21] Abraham Bernstein, Christoph Kiefer, and Markus Stocker. OptARQ:
A SPARQL Optimization Approach based on Triple Pattern Selectivity
Estimation. Technical report, University of Zurich, 2007.

[22] K.P. Birman. A Review of Experiences with Reliable Multicast. Software:
Practice and Experience, 29(9):741–774, 1999.

[23] K.P. Birman, R.V. Renesse, and R. Van Renesse. Reliable Distributed
Computing with the Isis Toolkit. IEEE Computer Society Press Los Alami-
tos, CA, USA, 1994.

[24] Burton H. Bloom. Space/Time Trade-offs in Hash Coding With Allowable
Errors. Communications of the ACM, 13(7):422–426, 1970.

[25] Paul Borrill. Smart data and wicked problems. 2008.

[26] Djelloul Boukhelef and Hiroyuki Kitagawa. Multi-ring infrastructure for
content addressable networks. In Proceedings of the OTM 2008 Confed-
erated International Conference, pages 193–211, Berlin, Heidelberg, 2008.
Springer-Verlag.

[27] Djelloul Boukhelef and Hiroyuki Kitagawa. Dynamic load balancing in
rcan content addressable network. In Proceedings of the 3rd International
Conference on Ubiquitous Information Management and Communication
(ICUIMC), pages 98–106, New York, NY, USA, 2009. ACM.

[28] Jeen Broekstra and Arjohn Kampman. SeRQL: An RDF Query and
Transformation Language. August 2004.

[29] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame:
An Architecture for Storing and Querying RDF Data and Schema Infor-
mation. In Semantics for the WWW. MIT Press, 2001.

[30] Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely. MAAN: A multi-
attribute Addressable Network for Grid Information Services. In Journal
of Grid Computing, volume 2, 2003.

[31] Min Cai and Martin R. Frank. RDFPeers: a scalable distributed RDF
Repository Based on a Structured Peer-to-Peer Network. In WWW, pages
650–657, 2004.

[32] Min Cai, Martin R. Frank, Baoshi Yan, and Robert M. MacGregor. A
subscribable Peer-to-Peer RDF Repository for Distributed Metadata Man-
agement. J. Web Sem., 2(2):109–130, 2004.

[33] Franck Cappello, Al Geist, Bill Gropp, Sanjay Kale, Bill Kramer, and
Marc Snir. Toward exascale resilience. Technical Report TR-JLPC-09-01,
INRIA, 2009.

[34] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and Evaluation of a Wide-Area Event Notification Service. ACM Trans.
Comput. Syst., 19(3):332–383, 2001.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 47

[35] M. Castro, P. Druschel, A.M. Kermarrec, and A.I.T. Rowstron. SCRIBE:
A large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications, 20(8):1489–1499,
2002.

[36] Miguel Castro, Manuel Costa, and Antony Rowstron. Peer-to-peer over-
lays: Structured, Unstructured, or Both. Technical Report MSR-TR-
2004-73, Microsoft Research, 2004.

[37] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking Some
Myths about Structured and Unstructured Overlays. In Proceedings of
the 2nd conference on Symposium on Networked Systems Design and Im-
plementation (NSDI), pages 85–98. USENIX Association, 2005.

[38] Douglas Comer. The ubiquitous b-tree. ACM Computing Surveys, 11:121–
137, 1979.

[39] A. Crespo and H. Garcia-Molina. Semantic Overlay networks for P2P
Systems. Agents and Peer-to-Peer Computing, pages 1–13, 2005.

[40] Philippe Cudré-Mauroux, Suchit Agarwal, and Karl Aberer. Gridvine:
An infrastructure for peer information management. IEEE Internet Com-
puting, 11:36–44, 2007.

[41] R.V. Guha Dan Brickley. RDF Vocabulary Description Language 1.0:
RDF schema. http://www.w3.org/TR/rdf-schema/.

[42] Anwitaman Datta, Manfred Hauswirth, Renault John, Roman Schmidt,
and Karl Aberer. Range queries in trie-structured overlays. In P2P ’05:
Proceedings of the Fifth IEEE International Conference on Peer-to-Peer
Computing, pages 57–66, Washington, DC, USA, 2005.

[43] R. de Juan, H. Decker, E. Miedes, J. E. Armendariz, and F. D. Munoz. A
Survey of Scalability Approaches for Reliable Causal Broadcasts. Techni-
cal Report ITI-SIDI-2009/010, 2009.

[44] E. Della Valle, A. Turati, and A. Ghioni. PAGE: A distributed infrastruc-
ture for fostering RDF-based interoperability. In Distributed Applications
and Interoperable Systems (DAIS), pages 347–353. Springer, 2006.

[45] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.

[46] Greg Eisenhauer, Matthew Wolf, Hasan Abbasi, and Karsten Schwan.
Event-based systems: opportunities and challenges at exascale. In Pro-
ceedings of the Third ACM International Conference on Distributed Event-
Based Systems, pages 1–10, Nashville, Tennessee, 2009. ACM.

[47] Sameh El-Ansary, Luc Alima, Per Brand, and Seif Haridi. Efficient Broad-
cast in Structured P2P Networks. In Peer-to-Peer Systems II, pages 304–
314. Springer, 2003.

[48] Sameh El-Ansary and Seif Haridi. An overview of structured overlay net-
works. In Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless
and Peer-to-Peer Networks. CRC Press, 2005.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 48

[49] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–
131, 2003.

[50] Jun Gao and Peter Steenkiste. An adaptive protocol for efficient support
of range queries in dht-based systems. In Proceedings of the 12th IEEE
International Conference on Network Protocols (ICNP), pages 239–250,
Washington, DC, USA, 2004. IEEE Computer Society.

[51] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash
Tables. Thesis, KTH - Royal Institute of Technology, 2006.

[52] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of
Consistent Available Partition-Tolerant Web Services. In ACM SIGACT
News, page 2002, 2002.

[53] Li Gong. JXTA: A Network Programming Environment. IEEE Internet
Computing, 5(3), 2001.

[54] Medha Atre Gregory Todd Williams, Jesse Weaver and James A. Hendler.
Scalable Reduction of Large Datasets to Interesting Subsets. In 8th In-
ternational Semantic Web Conference, 2009.

[55] Tao Gu, Hung Keng Pung, and Daqing Zhang. Information Retrieval
in Schema-based P2P Systems Using One-dimensional Semantic Space.
Computer Networks, 51(16):4543–4560, 2007.

[56] R. Guerraoui and L. Rodrigues. Introduction to reliable distributed pro-
gramming. Springer-Verlag New York Inc, 2006.

[57] Andreas Harth and Stefan Decker. Optimized Index Structures for Query-
ing RDF from the Web. In Proceedings of the Third Latin American Web
Congress (LA-WEB), page 71, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[58] Felix Heine. Scalable p2p based RDF querying. In Proceedings of the
1st international conference on Scalable information systems (InfoScale),
page 17, New York, NY, USA, 2006. ACM.

[59] A. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. RCQ-GA: RDF
Chain Query Optimization Using Genetic Algorithms. In Proceedings of
the 10th International Conference on E-Commerce and Web Technologies,
pages 181–192. Springer-Verlag, 2009.

[60] S. Idreos, C. Tryfonopoulos, and M. Koubarakis. Distributed Evaluation
of Continuous Equi-join Queries over Large Structured Overlay Networks.
In Proceedings of the 22nd International Conference on Data Engineering
(ICDE), pages 43–43, 2006.

[61] J. Broekstra and Marc Ehrig and Peter Haase and Frank van Harmelen
and Maarten Menken and Peter Mika and Bjorn Schnizler and Ronny
Siebes. Bibster - A Semantics-Based Bibliographic Peer-to-Peer System.
In The Second Workshop on Semantics in Peer-to-Peer and Grid Com-
puting (SEMPGRID), New York, May 2004.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 49

[62] M.A. Jaeger. Self-Managing Publish/Subscribe Systems. PhD thesis, Tech-
nischen Universitat Berlin, 2007.

[63] Hojjat Jafarpour, Bijit Hore, Sharad Mehrotra, and Nalini Venkatasub-
ramanian. Subscription Subsumption Evaluation for Content-based Pub-
lish/Subscribe Systems. In Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, pages 62–81. Springer-Verlag
New York, Inc., 2008.

[64] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel
Lewin, and Rina Panigrahy. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide web.
In In ACM Symposium on Theory of Computing, pages 654–663, 1997.

[65] M. Karnstedt, K. U Sattler, M. Richtarsky, J. Muller, M. Hauswirth,
R. Schmidt, R. John, and T. U. Ilmenau. UniStore: querying a DHT-
based universal storage. In IEEE 23rd International Conference on Data
Engineering (ICDE), pages 1503–1504, 2007.

[66] Marcel Karnstedt, Kai-Uwe Sattler, Manfred Hauswirth, and Roman
Schmidt. A DHT-based Infrastructure for Ad-hoc Integration and Query-
ing of Semantic Data. In Proceedings of the 2008 international sympo-
sium on Database engineering and applications (IDEAS), pages 19–28,
New York, NY, USA, 2008. ACM.

[67] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris
Plexousakis, Forth Vassilika Vouton, and Michel Scholl. RQL: A Declar-
ative Query Language for RDF. In Proceedings of the 11th international
conference on World Wide Web (WWW), pages 592–603. ACM Press,
2002.

[68] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, 2003.

[69] Raddad Al King, Abdelkader Hameurlain, and Franck Morvan. Query
Routing and Processing in Peer-to-Peer Data Sharing Systems. Inter-
national Journal of Database Management Systems, pages 116–139, May
2010.

[70] J. Kleinberg. The small-world phenomenon: an algorithm perspective.
In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 163–170. ACM New York, NY, USA, 2000.

[71] P. Knežević, A. Wombacher, and T. Risse. DHT-Based Self-adapting
Replication Protocol for Achieving High Data Availability. Advanced In-
ternet Based Systems and Applications, pages 201–210, 2009.

[72] Steven Y. Ko, Imranul Hoque, and Indranil Gupta. Using tractable and
realistic churn models to analyze quiescence behavior of distributed pro-
tocols. In IEEE Symposium on Reliable Distributed Systems, volume 0,
pages 259–268, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[73] Donald Kossmann. The State of The Art in Distributed Query Processing.
ACM Computing Surveys, 32(4):422–469, 2000.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 50

[74] M. Koubarakis, I. Miliaraki, Z. Kaoudi, M. Magiridou, and A. Papadakis-
Pesaresi. Semantic Grid Resource Discovery using DHTs in Atlas. In Pro-
ceedings of 3rd GGF Semantic Grid Workshop, Athens, Greece, February
2006.

[75] M. Koubarakis, C. Tryfonopoulos, S. Idreos, and Y. Drougas. Selective
information dissemination in P2P networks: problems and solutions. ACM
SIGMOD Record, 32(3):71–76, 2003.

[76] Salma Ktari, Mathieu Zoubert, Artur Hecker, and Houda Labiod. Per-
formance Evaluation of Replication Strategies in DHTs Under Churn. In
Proceedings of the 6th International Conference on Mobile and Ubiquitous
Multimedia (MUM), pages 90–97, New York, NY, USA, 2007. ACM.

[77] PA Felber L Garces-Erice, EW Biersack and G Urvoy-Keller. Hierarchical
Peer-to-peer Systems. In Proceedings of ACM/IFIP International Confer-
ence on Parallel and Distributed Computing (Euro-Par), pages 643–657,
2003.

[78] G. Li, S. Hou, and H.A. Jacobsen. A Unified Approach to Routing, Cover-
ing and Merging in Publish/Subscribe Systems Based on Modified Binary
Decision Diagrams. In Proceedings of 25th IEEE International Conference
on Distributed Computing Systems (ICDCS) 2005, pages 447–457, 2005.

[79] E. Liarou, S. Idreos, and M. Koubarakis. Continuous RDF Query Pro-
cessing over DHTs. Lecture Notes in Computer Science, 4825:324–339,
2008.

[80] Erietta Liarou, Stratos Idreos, and Manolis Koubarakis. Pub-
lish/Subscribe with RDF Data over Large Structured Overlay Networks.
In DBISP2P, pages 135–146, 2005.

[81] Erietta Liarou, Stratos Idreos, and Manolis Koubarakis. Evaluating Con-
junctive Triple Pattern Queries over Large Structured Overlay Networks.
In Proceedings of 5th International Semantic Web Conference (ISWC),
2006.

[82] Meng-Jang Lin and Keith Marzullo. Directional gossip: Gossip in a wide
area network. In EDCC, pages 364–379, 1999.

[83] Ying Liu and Beth Plale. Survey of Publish Subscribe Event Systems.
Technical report, Indiana University, 2003.

[84] Björn Lohrmann, Dominic Battré, and Odej Kao. Towards parallel pro-
cessing of rdf queries in dhts. In Globe, pages 36–47, 2009.

[85] Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes. IEEE Communi-
cations Surveys and Tutorials, pages 72–93, 2005.

[86] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In ICS ’02: Proceed-
ings of the 16th international conference on Supercomputing, pages 84–95.
ACM, 2002.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 51

[87] Shruti P. Mahambre and Umesh Bellur. An Adaptive Approach for Ensur-
ing Reliability in Event Based Middleware. In Proceedings of the second
international conference on Distributed event-based systems, pages 157–
168. ACM, 2008.

[88] Shruti P. Mahambre, Madhu Kumar S.D, and Umesh Bellur. A Taxonomy
of QoS-Aware, Adaptive Event-Dissemination Middleware. IEEE Internet
Computing, 11(4):35–44, 2007.

[89] SP. Mahambre and U. Bellur. Reliable Routing of Event Notifications over
P2P Overlay Routing Substrate in Event Based Middleware. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 1–8, 2007.

[90] David Maier, Jeffrey D. Ullman, and Moshe Y. Vardi. On the Foundations
of the Universal Relation Model. ACM Transactions on Database Systems
(TODS), 9(2):283–308, 1984.

[91] Akiyoshi Matono, Said Pahlevi, and Isao Kojima. RDFCube: A P2P-
Based Three-Dimensional Index for Structural Joins on Distributed Triple
Stores. Databases, Information Systems, and Peer-to-Peer Computing,
pages 323–330, 2007.

[92] Elena Meshkova, Janne Riihijärvi, Marina Petrova, and Petri Mähönen.
A Survey on Resource Discovery Mechanisms, Peer-to-Peer and Service
Discovery Frameworks. Comput. Netw., 52(11):2097–2128, 2008.

[93] Yuqi Mu, Cuibo Yu, Tao Ma, Chunhong Zhang, Wei Zheng, and Xiaohua
Zhang. Dynamic Load Balancing With Multiple Hash Functions in Struc-
tured P2P Systems. In Proceedings of the 5th International Conference on
Wireless communications, networking and mobile computing (WiCOM),
pages 5364–5367, Piscataway, NJ, USA, 2009. IEEE Press.

[94] Gero Muhl. Large-Scale Content-based Publish/Subscribe Systems. Ph.D
Dissertation, Darmstadt University of Technology, Germany, 2002.

[95] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed Event-Based
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[96] Gero MÃĳhl, Michael A. Jaeger, Klaus Herrmann, Torben Weis, Andreas
Ulbrich, and Ludger Fiege. Self-stabilizing publish/subscribe systems: Al-
gorithms and evaluation. In 17th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM), pages 233–
238. Springer, 2005.

[97] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-
tek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmer, and Tore Risch.
EDUTELLA: A P2P Networking Infrastructure Based on RDF. In Pro-
ceedings of the 11 International World Wide Web Conference (WWW),
May 2002.

RR n° 7457

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 52

[98] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Christoph Schmitz, Mario
Schlosser, Ingo Brunkhorst, and Alexander Löser. Super-peer-based rout-
ing and clustering strategies for RDF-based peer-to-peer networks. In Pro-
ceedings of the 12th international conference on World Wide Web, pages
536–543. ACM, 2003.

[99] H. Price and R. Corry. Causation, physics, and the constitution of reality:
Russell’s republic revisited. Oxford University Press, USA, 2007.

[100] D. Ranger and J. F Cloutier. Scalable Peer-to-Peer RDF Query Algo-
rithm. In Proceedings of Web information systems engineering Interna-
tional Workshops (WISE), page 266, November 2005.

[101] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proceedings of the
2001 Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (SIGCOMM), pages 161–172. ACM,
2001.

[102] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Han-
dling Churn in a DHT. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (ATEC), pages 10–10, 2004.

[103] J. Risson and T. Moors. Survey of Research Towards Robust Peer-to-Peer
Networks: Search Methods. Computer Networks, 50(17):3485–3521, 2006.

[104] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Lo-
cation, and Routing for Large-scale Peer-to-Peer systems. In Middleware,
pages 329–350. Springer, 2001.

[105] B. Russell. On the notion of cause. In Proceedings of the Aristotelian
Society, volume 13, pages 1–26. Williams and Norgate, 1912.

[106] R.V.Guha. rdfDB: An RDF Database. http://guha.com/rdfdb/.

[107] O.D. Sahin, D. Agrawal, and A. El Abbadi. Techniques for efficient routing
and load balancing in content-addressable networks. In 5th IEEE Interna-
tional Conference on Peer-to-Peer Computing , pages 67–74, Aug.-2 Sept.
2005.

[108] OD Sahin, A. Gulbeden, F. Emekci, D. Agrawal, and A. El Abbadi.
PRISM: indexing Multi-dimensional Data in P2P Networks using Ref-
erence Vectors. In Proceedings of the 13th Annual ACM International
Conference on Multimedia, page 955. ACM, 2005.

[109] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl. Hy-
perCuP - Hypercubes, Ontologies and Efficient Search on P2P Networks.
In LNCS, pages 112–124. Springer, 2002.

[110] T. Schutt, F. Schintke, and A. Reinefeld. A Structured Overlay for multi-
dimensional Range Queries. Euro-Par, pages 503–513, 2007.

[111] R. Schwarz and F. Mattern. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distributed Computing,
7(3):149–174, 1994.

RR n° 7457

http://guha.com/rdfdb/

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 53

[112] Andy Seaborne. RDQL - A Query Language for RDF. Technical report,
W3C (proposal), 2004.

[113] S. Staab and H. Stuckenschmidt. Semantic Web and Peer-to-Peer.
Springer, 2006.

[114] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Inter-
net Applications. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), pages 149–160, New York, NY, USA, 2001. ACM.

[115] C. Tang and P.K. McKinley. Improving Multipath Reliability in Topology-
Aware Overlay Networks. In In proceedings of the 25th IEEE Interna-
tional Conference on Distributed Computing Systems Workshops (ICD-
CSW), pages 82–88. IEEE, 2005.

[116] Tim Berners-Lee. Notation3 language. http://www.w3.org/

DesignIssues/Notation3.

[117] Peter Triantafillou and Andreas Economides. Subscription Summariza-
tion: A New Paradigm for Efficient Publish/Subscribe Systems. In Pro-
ceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS’04), pages 562–571. IEEE Computer Society, 2004.

[118] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. LibraRing: An archi-
tecture for distributed digital libraries based on DHTs. Lecture notes in
computer science, 3652:25, 2005.

[119] R. Van Renesse. Causal Controversy at Le Mont St.-Michel. ACM
SIGOPS Operating Systems Review, 27(2):44–53, 1993.

[120] P. Van Roy, S. Haridi, A. Reinefeld, J.B. Stefani, R. Yap, and T. Coupaye.
Self Management for Large-Scale Distributed Systems: An Overview of
the Selfman project. In Formal Methods for Components and Objects,
pages 153–178. Springer, 2008.

[121] Spyros Voulgaris, Etienne Rivière, Anne-Marie Kermarrec, and
Maarten Van Steen. Sub-2-sub: Self-organizing content-based publish
subscribe for dynamic large scale collaborative networks. In Proceedings
of the fifth International Workshop on Peer-to-Peer Systems (IPTPS),
2006.

[122] B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. In
Proceedings of the 19th International Conference on Data Engineering
(ICDE), volume 1063, pages 17–00, 2003.

[123] C. Zhang, A. Krishnamurthy, and R. Wang. Brushwood: Distributed
Trees in Peer-to-Peer Systems. Peer-to-Peer Systems IV, 3640:47–57,
2005.

[124] C. Zhang, A. Krishnamurthy, and R.Y. Wang. Skipindex: Towards a
Scalable Peer-to-Peer Index Service for High Dimensional Data. Techni-
cal report, Department of Computer Science, Princeton University, New
Jersey, USA, 2004.

RR n° 7457

http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/Notation3

RDF Data Indexing and Retrieval: A survey of Peer-to-Peer based solutions 54

[125] Jing Zhou, Wendy Hall, and David De Roure. Building a Distributed
Infrastructure for Scalable Triple Stores. Journal of Computer Science
and Technology, 24(3):447–462, May 2009.

RR n° 7457

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Context and Background
	The RDF Data Model
	Structured P2P Systems
	Chord
	Bamboo
	Content Addressable Network (CAN)
	P-Grid
	MAAN

	RDF Data Processing on top of P2P Systems: What are the main challenging aspects ?

	RDF Data Storage and Retrieval in P2P Systems
	RDF Data Storage and Retrieval in Unstructured P2P Networks
	Bibster
	S-RDF

	RDF Data Storage and Retrieval in Structured P2P Networks
	Edutella
	RDFPeers
	Atlas
	Dynamic Semantic Space
	RDFCube
	GridVine
	UniStore
	YARS
	PAGE
	Battré et al.
	Query Chain and Spread by Value algorithms

	Complementary Techniques for Search Improvements
	Caching
	Parallel RDF Query Processing

	P2P and RDF: Discussions and Challenges

	Publish/Subscribe Communication Model
	Background
	P2P-based Publish/Subscribe Systems for RDF Data Storage and Retrieval
	Cai et al.
	DSS
	Chirita et al.
	Atlas
	Single and Multiple Query Chain Algorithms
	Continuous Query Chain and Continuous Spread-By-Value Algorithms
	Ranger et al.

	Pub/sub and RDF: Discussions and Challenges

	Conclusion and Perspectives
	Summary
	Perspectives

