
HAL Id: inria-00540493
https://hal.inria.fr/inria-00540493

Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compilation of Polychronous Data Flow Equations
Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin

To cite this version:
Loïc Besnard, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin. Compilation of Polychronous
Data Flow Equations. Sandeep K. Shukla and Jean-Pierre Talpin. Synthesis of Embedded Software,
Springer, pp.1-40, 2010, 978-1-4419-6399-4. �10.1007/978-1-4419-6400-7_1�. �inria-00540493�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50036425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00540493
https://hal.archives-ouvertes.fr

Compilation of polychronous data flow
equations

Loı̈c Besnard, Thierry Gautier, Paul Le Guernic, and Jean-Pierre Talpin

1 Introduction

High-level embedded system design has gained prominence in the face of rising
technological complexity, increasing performance requirements and shortening time
to market demands for electronic equipments. Today, the installed base of intellec-
tual property (IP) further stresses the requirements for adapting existing components
with new services within complex integrated architectures, calling for appropriate
mathematical models and methodological approaches to that purpose.

Over the past decade, numerous programming models, languages, tools and
frameworks have been proposed to design, simulate and validate heterogeneous
systems within abstract and rigorously defined mathematical models. Formal de-
sign frameworks provide well-defined mathematical models that yield a rigorous
methodological support for the trusted design, automatic validation, and systematic
test-case generation of systems. However, they are usually not amenable to direct
engineering use nor seem to satisfy the present industrial demand.

Despite overwhelming advances in embedded systems design, existing tech-
niques and tools merely provide ad-hoc solutions to the challenging issue of the
so-called productivity gap [1]. The pressing demand for design tools has sometimes
hidden the need to lay mathematical foundations below design languages. Many il-
lustrating examples can be found, e.g. the variety of very different formal semantics
found in state-diagram formalisms [2]. Even though these design languages ben-
efit from decades of programming practice, they still give rise to some diverging
interpretations of their semantics.

Loı̈c Besnard
CNRS/IRISA, Campus de Beaulieu, Rennes, France, e-mail: Loic.Besnard@irisa.fr
Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin
INRIA, centre de recherche Rennes - Bretagne Atlantique, Campus de Beaulieu, Rennes, France, e-
mail: Thierry.Gautier@inria.fr,Paul.LeGuernic@inria.fr,Jean-Pierre.
Talpin@inria.fr

1

2 Loı̈c Besnard et al.

The need for higher abstraction-levels and the rise of stronger market constraints
now make the need for unambiguous design models more obvious. This challenge
requires models and methods to translate a high-level system specification into (dis-
tributed) cooperating (sequential) processes and to implement high-level semantics-
preserving transformations such as hierarchical code structuration, sequentialization
or desynchronization (protocol synthesis).

Synchronous hypothesis, in this aim, has focused the attention of many aca-
demic and industrial actors. This synchronous paradigm consists of abstracting the
non-functional implementation details of a system. In particular, latencies due to
effective computing and communications depend on actual implementation archi-
tecture; thus they are handled when low level implementation contraints are consid-
ered; at higher level, time is abstracted as sequences of (multiple) events in a logical
time model. Thus the designer can forget those details and focus his or her attention
on the functionalities of the system, including logical synchronizations.

With this point of view, synchronous design models and languages provide intu-
itive models for embedded systems [3]. This affinity explains the ease of generating
systems and architectures, and verifying their functionalities using compilers and
related tools that implement this approach.

Synchronous languages rely on the synchronous hypothesis: computations and
behaviors of a synchronous process are divided into a discrete sequence of atomic
computation steps which are equivalently called reactions or execution instants. In
itself this assumption is rather common in practical embedded system design.

But the synchronous hypothesis adds to this the fact that, inside each instant, the
behavioral propagation is well-behaved (causal), so that the status of every signal or
variable is established and defined prior to being tested or used. This criterion en-
sures strong semantic soundness by allowing universally recognized mathematical
models to be used as supporting foundations. In turn, these models give access to
a large corpus of efficient optimization, compilation, and formal verification tech-
niques.

The polychronous model [4] extends the synchronous hypothesis to the context
of multiple logical clocks: several synchronous processes can run asynchronously
until some communication occurs; all communications satisfy the synchronous hy-
pothesis. The resulting behaviors are then partial orders of reactions, which is obvi-
ously more general than simple sequences. This model goes beyond the domain of
purely sequential systems and synchronous circuits; it embraces the context of com-
plex architectures consisting of synchronous circuits and desynchronization proto-
cols: globally asynchronous and locally synchronous architectures (GALS).

The SIGNAL language [5] supports the polychronous model. Based on data flow
and equations, it goes beyond the usual scope of a programming language, allowing
for specifications and properties to be described. It provides a mathematical foun-
dation to a notion of refinement: the ability to model a system from the early stages
of its requirement specifications (relations, properties) to the late stages of its syn-

Polychronous data flow equations 3

thesis and deployment (functions, automata). The inherent flexibility of the abstract
notion of signal handled in the SIGNAL language invites and favors the design of
correct-by-construction systems by means of well-defined model transformations
that preserve both the intended semantics and stated properties of the architecture
under design.

The integrated development environment POLYCHRONY [6] provides SIG-
NAL program transformations that draw a continuum from synchrony to asynchrony,
from specification to implementation, from abstraction to refinement, from interface
to implementation. SIGNAL gives the opportunity to seamlessly model embedded
systems at multiple levels of abstraction while reasoning within a simple and for-
mally defined mathematical model. It is being extended by plugins to capture Sys-
temC modules or real-time Java classes within the workbench. It allows to perform
validation and verification tasks, e.g. with the integrated SIGALI model checker [7],
or with the Coq theorem prover [8]. C, C++, multi-threaded and real-time Java and
SYNDEX [9] code generators are provided.

This chapter focuses on formal transformations, based on the polychronous se-
mantic model [4], that can be provided by a safe methodology to generate “correct-
by-construction” executable code from SIGNAL processes. It gives a thorough pre-
sentation on program analysis and code generation techniques that can be imple-
mented to transform synchronous multi-clocked equation systems into various exe-
cution schemes such as sequential and concurrent programs (C) or object-oriented
programs (C++). Most of these techniques are available in the toolset POLY-
CHRONY to design embedded real-time applications.

This chapter is structured as follows: Section 2 presents the main features of the
SIGNAL language and introduces some of the mathematical properties on which
program transformations are based. In Section 3, some of the modularity features
of SIGNAL are first introduced; then an example, used in the rest of this chapter, is
presented. Section 4 is dedicated to Data Control Graph models that support pro-
gram transformations; their use to guide various code generation schemes that are
correct by construction is then considered. Section 5 introduces those various modes
of code generation, illustrated on the considered example.

2 SIGNAL language

SIGNAL [10, 11, 12, 13, 14, 15] is a declarative language expressed within the poly-
chronous model of computation. SIGNAL relies on a handful of primitive constructs,
which can be combined using a composition operator. These core constructs are of
sufficient expressive power to derive other constructs for comfort and structuring.
In the following, we present the main features of the SIGNAL language and its as-
sociated concepts. We give a sketch of the primitive constructs and a few derived
constructs often used. For each of them, the corresponding syntax and definition are
mentioned. Since the semantics of SIGNAL is not the main topic of this chapter, we

4 Loı̈c Besnard et al.

give simplified definitions of operators. For further details, we refer the interested
reader to [4, 5].

2.1 Synchronized data flow

Consider as an example the following expression in some conventional data flow
formalism:

if a > 0 then x = a endif; y = x+a

Considering the data flow semantics given by Kahn [16] as functions over flows,
y is the greatest sequence of values a′t+at where a′ is the subsequence of strictly
positive values in a. Thus in an execution where the edges are considered as FIFO
queues [17], if a is a sequence with infinitely many non-positive values, the queue
associated with a grows forever, or (if a is a finite sequence) the queue associated
with x remains eventually empty although a is non-empty. Now, suppose that each
FIFO queue consists of a single cell [18]. Then as soon as a negative value appears
on the input, the execution (of the + operator) can no longer go on because its first
operand (cell) does not hold a value (is absent): there is a deadlock. These results
are not acceptable in the context of embedded systems where not only deadlocks
but also uncontrolled time responses can be dramatic. Synchronized data flow in-
troduces synchronizations between occurrences of flows to prevent such effects. In
this context, the lack of value is usually represented by nil or null; we represent it
by the symbol # (stating for “no event”).

It would be somewhat significant if such deadlocks could be statically prevented.
For that, it is necessary to be able to statically verify timing properties. Then the #
should be handled when reasoning about time. In the framework of synchronized
data flow, the # will correspond to the absence of value at a given logical instant for
a given variable (or signal). In particular, to reach high level modularity allowing for
instance internal clock rate increasing (time refinement), it must be possible to insert
#’s between two defined values of a signal. Such an insertion corresponds to some
resynchronization of the signal. However, the main purpose of synchronized data
flow is to completely handle the whole synchronization at compile time, in such a
way that the execution phase has nothing to do with #. This is assumed by a static
representation of the timing relations expressed by each operator. Syntactically, the
overall detailed timing are implicit in the language. SIGNAL describes processes
which communicate through (possibly infinite) sequences of (typed) values with
implicit timing: the signals.

Polychronous data flow equations 5

2.2 Signal, execution, process in SIGNAL

More precisely, a pure signal s is a (total) function T →D, where T , its time domain,
is a chain in a partial order (for instance an increasing sequence of integers) and D
is some data type; we name pure flow of such a pure signal s, the sequence of its
values in D.

For all chains T T , T ⊂ T T , a pure signal s : T →D can be extended to a synchro-
nized signal ss : T T →D# (where D# = D∪{#}) such that for all t in T, ss(t) = s(t)
and ss(t) = # when t is not in T ; we name synchronized flow of a synchronized signal
ss the sequence of its values in D#; conversely we name pure signal of the synchro-
nized flow ss, the unique pure signal s from which it is extended and pure flow of
ss the pure flow of s . The pure time domain of a synchronized signal is the time
domain of its pure signal. When it is clear from the context, one may omit pure
or synchronized qualifications. Given a pure signal s (respectively, a synchronized
signal ss), st (respectively, sst) denotes the tth value of its pure flow (respectively, its
synchronized flow).

An execution is the assigment of a tuple of synchronized signals defined on the
same time domain (as synchronized signals), to a tuple of variables. Let T T be the
time domain of an execution, a clock in this execution is a “characteristic function”
clk : T T −→ {#, true}; notice that it is a synchronized signal. The clock of a signal
x in an execution is the (unique) clock that has the same pure time domain as x; it is
denoted by x̂.

A process is a set of executions defined by a system of equations over signals
that specifies relations between signal values and clocks. A program is a process.

Two signals are said to be synchronous in an execution iff they have the same
clock (or equivalently the same pure time domain in this execution). They are said
to be synchronous in a process (or simply synchronous), iff they are synchronous in
all executions of this process.

Consider a given operator which has, for example, two input signals and one out-
put signal all being synchronous. They are logically related in the following sense:
for any t, the tth token on the first input is evaluated with the tth token on the sec-
ond input, to produce the tth token on the output. This is precisely the notion of
simultaneity. However, for two occurrences of a given signal, we can say that one
is before the other (chronology). Then, for the synchronous approach, an event is
associated with a set of instantaneous calculations and communications.

2.3 SIGNAL data types

A flow is a sequence of values that belong to the same data type. Standard data
types such as Boolean, integer. . . (or more specific ones such as event—see below)
are provided in the SIGNAL language. One can also find more sophisticated data
types such as sliding window on a signal, bundles (a structure the fields of which

6 Loı̈c Besnard et al.

are signals that are not necessarily synchronous), used to represent union types or
signal multiplexing.

• The event type: to be able to compute on (or to check properties of) clocks,
SIGNAL provides a particular type of signals called event. An event signal is
true if and only if it is present (otherwise, it is #).

• Signal declaration: tox x declares a signal x whose common element type is
tox. Such a declaration is a process that contains all executions that assign to x
a signal the image of which is in the domain denoted by tox.

In the remainder of this chapter, when the type of a signal does not matter or when
it is clear from the context, one may omit to mention it.

2.4 SIGNAL elementary processes

An elementary process is defined by an equation that associates with a signal vari-
able an expression built on operators over signals; the arguments of operators can
be expressions and variables.

• Stepwise extensions. Let f be a symbol denoting a n-ary function [[f]] on values
(e.g., Boolean, arithmetic or array operation). Then, the SIGNAL expression

y := f(x1,...,xn)
defines the process equal to the set of executions that satisfy:{
− the signals y, x1, . . . , xn are synchronous,
− their pure flows have same length l and satisfy ∀t ≤ l,yt = [[f]](x1t , . . . ,xnt)

If f is a function, its stepwise extension is a pure flow function. Infix notation is
used for usual operators.

Derived operator

◦ Clock of a signal: ˆx returns the clock of x; it is defined by
(ˆx) =∆ (x = x), where = denotes the stepwise extension of usual equality
operator.

• Delay. This operator defines the signal whose tth element is the (t−1)th element
of its (pure flow) input, at any instant but the first one, where it takes an initialization
value. Then, the SIGNAL expression

y := x $ 1 init c
defines the process equal to the set of executions that satisfy:− y, x are synchronous,

− pure flows have same length l and satisfy ∀t ≤ l,
{

(t > 1)⇒ yt = xt−1
(t = 1)⇒ yt = c

Polychronous data flow equations 7

The delay operator is thus a pure flow function.

Derived operator

◦ Constant: x := v; when x is present its value is the constant value v;
x := v is a derived equation equivalent to x := x $ 1 init v.
Note that this equation does not have input: it is a pure flow function with arity 0.

• Sampling. This operator has one data input and one Boolean “control” input.
When one of the inputs is absent, the output is also absent; at any logical instant
where both input signals are defined, the output is present (and equal to the current
data input value) if and only if the control input holds the value true. Then, the
SIGNAL expression

y := x when b
defines the process equal to the set of executions that satisfy:− y, x, b are extended to the same infinite domain T, respectively as yy, xx, bb,

− synchronized flows are infinite and satisfy ∀t ∈ T
{

(bbt = true)⇒ yyt = xxt
(bbt 6= true)⇒ yyt = #

The when operator is thus a synchronized flow function.

Derived operators

◦ Clock selection: when b returns the clock that represents the (implicit) set of
instants at which the signal b is true; in semantics, this clock is denoted by [b].
(when b) =∆ (b when b) is a pure flow function.

◦ Null clock: the signal when(b when (not b)) is never present: it is called
null clock and is denoted by ˆ0 in the SIGNAL syntax, 0̂ as a semantic constant.

◦ Clock product: x1ˆ∗ x2 (denoted by ∗̂ as a semantic operator) returns the clock
that represents the intersection of pure time domains of the signals x1 and x2.
When their clock product is 0̂, x1 and x2 are said to be exclusive.
(x1ˆ∗ x2) =∆ ((ˆx1) when (ˆx2))

• Deterministic merging. The unique output provided by this operator is defined
(i.e., with a value different from #) at any logical instant where at least one of its
two inputs is defined (and non-defined otherwise); a priority makes it deterministic.
Then, the SIGNAL expression

z := x default y
defines the process equal to the set of executions that satisfy:

− the time domain T of z is the union of the time domains of x and y,
−z, x, y are extended to the same infinite domain T T ⊇ T, resp. as zz, xx, yy,

− synchronized flows satisfy ∀t ∈ T T
{

(xxt 6= #)⇒ zzt = xxt
(xxt = #)⇒ zzt = yyt

The default operator is thus a synchronized flow function.

8 Loı̈c Besnard et al.

Derived operators

◦ Clock union (or clock max): x1ˆ+ x2 (denoted by +̂ as a semantic operator)
returns an event signal that is present iff x1 or x2 is present.
(x1ˆ+ x2) =∆ ((ˆx1) default (ˆx2))

◦ Clock difference: x1ˆ− x2 returns an event signal that is present iff x1 is
present and x2 is absent.
(x1ˆ− x2) =∆ (when ((not ˆx2) default ˆx1))

Derived equations

◦ Partial signal definition: y ::= x is a partial definition for the signal y which
is equal to x, when x is defined; when x is not defined its value is free.
(|y ::= x|) =∆ (|y := x default y|)
This process is generally non deterministic. Nevertheless, it is very useful to de-
fine components such as transitions in automata, or modes in real-time processes,
that contribute to the definition of the same signal. Moreover, it is heavily used in
the process of code generation (communication of values via shared variables,
see 3.1).
The clock calculus can compute sufficient conditions to guarantee that the overall
definition is consistent (different components cannot give different values at the
same instant) and total (a value is given at all instants of the time domain of y).

2.5 SIGNAL process operators

A process is defined by composing elementary processes.

• Restriction. This operator allows one to consider as local signals a subset of
the signals defined in a given process. If x is a signal with type tox defined in a
process P,

P where tox x or P where x
defines a new process Q where communication ways (for composition) are those
of P, except x. Let A the variables of P and B the variables of Q: we say that P
is restricted to B, and executions of P are restricted in Q to variables of B. More
precisely, the executions in Q are the executions in P from which x signal is re-
moved (the projection of these executions on remaining variables). This has several
consequences:

– the clock of each execution may be reduced,
– the ability to (directly) add new synchronization constraints to x is lost,
– if P has a single output signal named x, then P where x is a pure synchroniza-

tion process. The generated code (if any) is mostly a synchronization code used
to ensure signal occurrence consumptions.

– if P has a single signal named x, P where x denotes the neutral process: it
cannot influence any other process. Hence no code is generated for it.

Polychronous data flow equations 9

Derived equations

◦ (| P where x, y |) =∆(| (| P where x |) where y |)
◦ Synchronization: x1 ˆ= x2 specifies that x1 and x2 are synchronous.

(| x1 ˆ= x2 |) =∆ (| h := (ˆx1 = ˆx2) |) where h
◦ Clock inclusion: x1 ˆ< x2 specifies that time domain of x1 is included in

time domain of x2.
(| x1 ˆ< x2 |) =∆ (| x1 ˆ= (x1 ˆ* x2) |)

• Parallel composition: Resynchronizations (by freely inserting #) have to take
place when composing processes with common signals. However, this is only a for-
mal manipulation. If P and Q denote two processes, the composition of P and Q, writ-
ten (| P | Q |) defines a new process in which common names refer to com-
mon synchronized signals. Then, P and Q communicate (synchronously) through
their common signals. More precisely, let XPP (resp., XQQ) be the variables of P
(resp., Q); the executions in (| P | Q |) are the executions whose projections
on XPP are executions of P, and projections on XQQ are executions of Q. In other
words, (| P | Q |) defines the set of behaviors that satisfies both P and Q con-
straints (equations).

Derived operators

◦ y := x cell c init x0 behaves as a synchronized memory cell: y is
present with the most recent value of x when x is present or c is present and
true. It is defined by the following program:
(| y := x default (y $1 init x0) | y ˆ= x ˆ+ when c |)

◦ y := var x init x0 behaves as a standard memory cell: when y is present,
its value is the most recent value of x (including the current instant); the clock
of x and the clock of y are mostly independent (the single constraint is that their
time domains belong to a common chain). It is defined by the following program:
y := (x cell ˆy init x0) when ˆy

Polychrony example: (| x := a | y := b|) defines a process that has two
independent clocks. This process is a Kahn process (i.e., is a flow function); it can
be executed as two independent threads, on the same processor (provided that the
scheduler is fair) or on distinct processors; it can also be executed as a single re-
active process, scanning its input and then executing none, one or two assignments
depending on the input configuration.

10 Loı̈c Besnard et al.

2.6 Parallel semantics properties of SIGNAL

A SIGNAL specification close to the example given in Section 2.1
if a > 0 then x = a endif; y = x+a

is the following “DeadLocking Specification”:
DLS ≡ (| x := a when a > 0 | y := x + a |)

DLS denotes the set of executions in which at > 0 for all t. Then safe execution
requires this program to be rejected if one cannot prove (or if it is not asserted) that
the signal a remains strictly positive when it is present.
Embedding DLS without changing it with the following front-end process results
in a safe program that accepts negative values for some occurrences of a; these
negative values are not transmitted to DLS:

ap := a when a > 0 | (| (| DLS | a := ap |) where a |)

Process expression in normal form. The following properties of parallel composi-
tion are intensively used to compile processes:

• associativity: (| P | Q |) | R ≡ P | (| Q | R |)
• commutativity: P | Q ≡ Q | P
• idempotence: P | P ≡ P is satisfied by processes that do not produce side

effects (for instance due to call to system functions). This property allows to
replicate processes.

• externalization of restrictions: if x is not a signal of P,
P | (| Q where x |) ≡ (| P | Q |) where x

Hence, a process expression can be normalized, modulo required variable substitu-
tion, as the composition of elementary processes, included in terminal restrictions.

Signal expression in normal form. Normalizations can be applied to expressions
on signals thanks to properties of the operators, for instance:

• when is associative and right-commutative:
(a when b)when c ≡ a when(b when c) ≡ a when(c when b)

• default can be written in exclusive normal form:
a default b ≡ a default (b when (bˆ-a))

• default is assocative and default commutes in exclusive normal form:
if a and b are exclusive then a default b ≡ b default a

• when is right-distributive over default:
(a default b) when c≡ (a when c) default (b when c)

• Boolean normalization: logical operators can be written as expressions involving
only not, false and operators on event type. For example:
AB := a or b ≡ (| AB := (when a) default b | a ˆ= b |)

Process abstraction. A process Pa is, by definition, a process abstraction of a pro-
cess P if P|Pa = P. This means that every execution of P restricted to variables of
Pa is an execution of Pa and thus all safety properties satisfied by executions of Pa
are also satisfied by executions of P.

Polychronous data flow equations 11

3 Example

As a full example to illustrate the SIGNAL features and the compilation techniques
(including code generation) we propose the description of a process that solves iter-
atively equations aX2 + bX + c = 0. This process has three synchronous signals a,
b, c as inputs. The output signals x1, x2 are the computed solutions. When there
is no solution at all or infinitely many solutions, their synchronized flows hold #
and an output Boolean x_st is set. Before presenting this example let us introduce
modularity features than can be found in SIGNAL.

3.1 SIGNAL modularity features

Process model: Given a process (a set of equations) P_body, a process model MP
associates an interface with P_body, such that P_body can be expanded using this
interface. A process model is a SIGNAL term

process MP (? t_I1 I1; ...; t_Im Im;
! t_O1 O1; ...; t_On On)

P_body

that specifies its typed input signals after “?”, and its typed output signals after
“!”. Assuming that there is no name conflict (such a conflict is solved by trivial
renaming), the instantiation of MP is defined by:

(| (Y1, ..., Yn) := MP(E1, ..., Em) |)
=∆

(| I1:=E1 |...| Im:=Em | P_body | Y1:=O1 |...| Yn:=On |)
where t_I1 I1; ...; t_Im Im; t_O1 O1; ...; t_On On

Example When a is equal to 0, the second degree equation becomes bX + c = 0.
This first degree equation is solved using the FirstDegree process model.

process FirstDegree = (? real b, c; ! boolean x_st; real x;)
(| b ˆ= c
| b1 := b when (b/=0.0)
| c1 := c when (b/=0.0)
| x := -(c1/b1)
| x_st := (c/=0.0) when (b=0.0)
|) where real b1, c1; end

When the factor b is not 0, the output signal x holds the value of the solution
(-c/b), the x_st Boolean signal is absent. Conversely, when b is 0, x is absent
and x_st is either true when the equation has no solution (c is not 0) or f alse
when the equation has infinitely many solutions (c is 0). This process is activated
when the input parameter a equals 0. This is achieved by:
(x_st_1, x11) := FirstDegree (b when (a=0.0), c when (a=0.0))

The interface of a process model can begin with a list of static parameters given
between “{” and “}”; see for instance real epsilon in the interface of rac
(Example 3.2).

12 Loı̈c Besnard et al.

Local process model: A process model can be declared local to an other process
model as process rac local to process SecondDegree in Example 3.2.

Shared variables: A variable x that has partial definitions (2.4) in a process model
MP, or in process models local to MP, is declared as variable shared real x,
local to MP. A shared signal x cannot appear in the interface of any process.

3.2 Full example with time refinement

In our example, the resolution of the equation aX2 + bX + c = 0 uses the iterative
Newton method: starting from ∆ ≥ 0, the computation of R =

√
∆ is defined by the

limit of the series (Rn)n≥0:

∆ = b2−4ac R0 =
∆

2
Rn+1 =

(Rn ∗Rn +∆)/Rn

2
(n≥ 0)

The iterative method for computing the square root of the discriminant is imple-
mented in SIGNAL using a time refinement of the clock of the discriminant.

The process model rac computes in R the sequence of roots Rt of the values of
a signal St assigned to S (corresponding to the discrimant when it is not negative);
epsilon is a static threshold parameter used to stop Newton iteration.

process rac = { real epsilon; }
(? real S; ! boolean stable; real R;)
(| (| S_n := var S

| R_n := (S/2.0) default (next_R_n $1 init 1.0)
| next_R_n := (((R_n+(S_n/R_n))/2.0) when loop) default R_n
|) where real S_n; end

| (| loop := (ˆS) default (not stable)
| next_stable := abs(next_R_n-R_n)<epsilon
| stable := next_stable $1 init true
| R_n ˆ= stable
| R := R_n when (next_stable and loop)
|) where boolean next_stable; end

|) where real R_n, next_R_n; boolean loop; end

The signal S_n holds the current value of S (St,n = St,0 = St). The signal R_n is the
current approximation of the current root to be computed (Rt,n, with Rt,0 = St/2).
The signal next_R_n is Rt,n+1. The signal stable is first true, then f alse until
the instant following the emission of the result in (R).

The clock that triggers steps is that of the signal stable: it represents a refine-
ment of time, with respect to that of the input signal S.

The process model SecondDegree uses rac to compute the solutions of the
second degree equation when the discriminant is positive.

Polychronous data flow equations 13

process SecondDegree = { real epsilon; }
(? real a, b, c; ! event x_st; real x21, x2; boolean stable)
(| delta := (b*b)-(4.0*a*c)
| x_st := when (delta<0.0)
| x1_1 := (-b/(2.0*a)) when (delta=0.0)
| (| (stable, delta_root) := rac{epsilon}(delta when (delta>0.0))

| aa := var a | bb := var b
| x1_2 := -((bb+delta_root)/(2.0*aa))
| x2 := -((bb-delta_root)/(2.0*aa)) |) where aa, bb, delta_root; end

| x21 := x1_1 default x1_2
|) where delta, x1_1, x1_2;

process rac ... end

When the discriminant delta is negative, the current equation does not have solu-
tion: the event x_st output signal is present, x21 and x2 are absent. When delta
is 0 there is a single solution held by x1_1 and then x21, x_st and x2 are absent.
When delta is strictly positive the two solutions are the current values of x21
and x2, x_st is absent. The signal stable is f alse until the instant following the
emission of the result in (R).

The process model eqSolve is the global solver: a, b and c are declared to be
synchronous.
process eqSolve = { real epsilon; }
(? real a, b, c; ! boolean x_st; real x1, x2;)
(| a ˆ= b ˆ= c ˆ= when stable
| (x_st_1, x11) := FirstDegree (b when (a=0.0), c when (a=0.0))
| (x_st_2, x21, x2, stable) :=

SecondDegree{epsilon}(a when (a/=0.0), b when (a/=0.0), c when (a/=0.0))
| x1 := x11 default x21
| x_st := x_st_2 default x_st_1 |)

where ... end

When the value of a is 0, FirstDegree input signals are present (and then
FirstDegree is “activated”), a, b and c are not “transmitted” to SecondDegree
which remains inactive. Conversely when a is not 0, SecondDegree is activated
and FirstDegree is not. The results of the activated modes are merged to gener-
ate x1, x2 and x_st.

4 Formal context for code generation

The equational nature of the SIGNAL language is a fundamental characteristic that
makes it possible to consider the compilation of a process as a composition of endo-
morphisms over SIGNAL processes. We have given in Section 2.6 a few properties
allowing to rewrite processes with rules such as commutativity and associativity
of parallel composition. More generally, until the very final steps, the compilation
process may be seen as a sequence of morphisms rewriting SIGNAL processes to
SIGNAL processes. The final steps (C code generation for instance) are simple mor-
phisms over the transformed SIGNAL processes.

14 Loı̈c Besnard et al.

In some way, because SIGNAL processes are systems of equations, compiling
SIGNAL processes amounts to “solving” these equations. Among relevant questions
arising when producing executable code, for instance, there are the following ones:

– Is the program deadlock free?
– Has it a deterministic execution?
– If so, can it be statically scheduled ?

To answer these questions, two basic tools are used in the compilation process.
The first one is the modeling of the synchronization relation in F3 by polynomi-
als with coefficients in the finite field Z/3Z of integers modulo 3 [19]; the POLY-
CHRONY SIGNAL compiler manipulates a Boolean hierarchy instead of this field.
The second one is the directed graph associated to data dependencies and explicit
precedences. The synchronization and precedence relations are represented in a di-
rected labeled graph structure called the Data Control Graph (DCG); it is composed
of a Clock Hierarchy (CH, Section 4.3.1) and a Conditioned Precedence Graph
(CPG, Section 4.4). A node of this CPG is an elementary process or, in a hierarchi-
cal organization, a composite process containing its own DCG.
This section introduces SIGNAL features used to state properties related to the Data
Control Graph. Principles and algorithms applied to information carried out by this
DCG are presented.

4.1 Endochronous acyclic process

When considering embedded systems specified in SIGNAL, the purpose of code
generation is to synthesize an executable program that is able to deterministically
compute the value of all signals defined in a process. Because these signals are timed
by symbolic synchronization relation, one first needs to define a function from these
relations to compute the clock of each signal. We say that a process is endochronous
when there is a unique (deterministic) way to compute the clocks of its signals. Note
that, for simulation purpose, one may wish to generate code for non deterministic
processes (for example, partially defined ones) or even for processes that may con-
tain deadlocks. Endochrony is a crucial property for processes to be executable:
an endochronous process is a function over pure flows. It means that the pure flows
resulting from its execution on an asynchronous architecture do not depend on prop-
agation delays or operator latencies. It results from this property that a network of
endochronous processes is a Kahn Process Network (KPN) and thus is a func-
tion over pure flows. But it is not necessarily a function over synchronized flows:
synchronizations related to the number of #’s are lost because #’s are ignored.

Whereas synchronization relation determines which signals need to be computed
at a given time, precedence relation tell us in which order these signals have to be

Polychronous data flow equations 15

computed: x precedes y at c, represented as c : x→ y, means that, for all instants in
the pure time domain of the clock signal c, the computation of y cannot be performed
before the value of x is known. Therefore c : x → y is equivalent to c∗̂x∗̂y : x → y.
Hence, we say that c : x → y is in normalized form if and only if c∗̂x∗̂y = c. The
reduced form x→ y denotes the normalized form x∗̂y : x→ y.

An immediate cycle in the conditioned precedence graph denotes a deadlock.
Figure 1 presents the main sources of deadlocks. Figure 1-a is a classical computa-
tion cycle. Figure 1-b is a “schizophrenic” cycle between clock and signal: to know
if zx is present one must know if its value is 0, but to pick up its value it is required
to know if it is present. Figure 1-c is a cyclic dependence due to the free definition
of both x1 and x2 when neither a nor b are present; nevertheless if the clock of
x1 is a ˆ+ b then there is no deadlock during execution (either a is present and
x1 ˆ- a is null or b is present and x2 ˆ- b is null).

a

 a: x:=a+x
 zx:=x$1|
b: xx^= when zx=0

+

x

^x = ^zx

x zx

when nul

x1 := a default x2

x2 := b default x1

a

bzx

 c: we have x1 ^= x2

x1^b

x2^ba

Fig. 1 Paradigms of deadlocks

4.2 SIGNAL graph expressions

The SIGNAL term a --> b when c is an elementary process in the SIGNAL
syntax. It denotes the precedence relation [c] : a→ b. This constraint is usually im-
plicit and related to data dependencies (for instance in x := a+b the constraints
a→ x and b→ x hold), and clock/signal dependencies (the value of a signal x can-
not be computed before x̂, the clock of x, hence the implicit precedence relation
x̂→ x). Precedences can be freely added by the programmer. They can be computed
by the compiler and made available in specifications associated with processes (Sec-
tion 4.6).

Derived expressions
a --> b is a simplified term that means a --> b when (aˆ*b).
Local precedence constraints can be combined as in {b,c} --> {x_st,x}
meaning that for all pairs (u in {b,c}, v in {x_st,x}), u --> v holds.

16 Loı̈c Besnard et al.

The SIGNAL term ll::P is a derived process expression formally defined with
SIGNAL primitive features. For the purpose of this chapter, it is enough to know that
ll::P associates the label ll to the process P. A label ll is a special event signal
that “activates” P. It may occur in synchronization and precedence constraints as
any other signal, with a specific meaning for precedence: if a process P contains
ll1::P1 and ll2::P2 then ll1 --> ll2 in P means that every node in P1
precedes all nodes of P2, while for a signal x, x --> ll2 (resp. ll1 --> x)
means that x precedes (resp. is preceded by) all nodes of P2 (P1).

4.3 Synchronization relation

Table 1 gives the synchronization relation associated with a SIGNAL expression P,
as a SIGNAL expression C (P) (column 2), and as a time domain constraint T (P)
(column 3). The time domain constraints have to be satisfied by all executions of P.
The synchronization relation associated with derived expressions (and normalizable
ones) are deduced from this table. In this table “[E]” stands for “when E”, “ˆ0”
is the “never present” clock, the pure time domain of a signal x is noted “dom(x)”.
Other notations are standard ones and SIGNAL notations.

construct P clocks: C (P) pure time domains T (P)
boolean b [b]ˆ+[not b] ˆ= b | T (C (P))

[b]ˆ*[not b] ˆ= ˆ0
event b [b] ˆ= b | [not b] ˆ= ˆ0 T (C (P))

y := f(x1,...,xn) y ˆ= x1ˆ= ... ˆ= xn T (C (P))
y := x $1 init c y ˆ= x dom(y) = dom(x)
y := x when b xˆ*[b] ˆ= y dom(y) = dom(x)∩dom([b])

y := x when not b xˆ*[not b] ˆ= y dom(y) = dom(x)∩dom([¬b])
z := x default y xˆ+y ˆ= z dom(z) = dom(x)∪dom(y)

P1|P2 C (P1) | C (P2) T (C (P1))∧T (C (P2))
P where x C (P) where x ∃xT (C (P))

Table 1 Synchronization relation associated with a process

The transformation C defined in Table 1 satifies the following property mak-
ing C (P) a process abstraction of P:

(| C (P) | P |) = P

The clock of a Boolean signal b is partitioned into its exclusive sub-clocks [b]
and [¬b] which denote the instants at which the signal b is present and carries the
values true and false, respectively, as shown in Figure 2.

Polychronous data flow equations 17

[b=0],
x_st present

[b/=0],
 x present

b, c present b, c

[b=0], x_st [b/=0], x

b, c absent

Fig. 2 Time subdomains and hierarchy for the FirstDegree process

4.3.1 Clock hierarchy
The synchronization relation provides the necessary information to determine how
clocks can be computed. From the synchronization relation induced by a process, we
build a so-called clock hierarchy [20]. A clock hierarchy is a relation ↘̂ (dominates)
on the quotient set of signals by ˆ= (x and y are in the same class iff they are
synchronous). Informally a class C dominates a class D (C is higher than D) or
equivalently a class D is dominated by C (D is lower than C), written D↙̂C, if the
clock of D is computed as a function of Boolean signals belonging to C and/or to
classes recursively dominated by C.

To compute this relation, we consider a set V of free value Boolean signals (the
free variables of the process); this set contains variables the definition of which
cannot be rewritten using some implemented rewriting rule system: in the current
POLYCHRONY version, input signals, delayed signals, results of most of the non-
Boolean predicates are elements of this set V .

Depending on V , the construction of the relation ↘̂ is based on the following
rules (for x a signal, Cx denotes its class; ↘̂∗

is the transitive closure of ↘̂):

1. If x1 is a free variable such that the clock of x is defined by sampling that of x1
(x̂ = [x1] or x̂ = [¬x1]) then Cx1↘̂Cx : the value of x1 is required to compute the
clock of x;

2. If x̂ = f (x̂1 ..., x̂n), where f is a Boolean/event function, and there exists C
such that C↘̂∗

Cxi for all xi in x1, ...,xn then x̂ is written in canonical form
x̂ = c f (ŷ1 ..., ŷm); c f (ŷ1 ..., ŷm) is either the null clock, or the clock of C, or is tran-
sitively dominated by C; in POLYCHRONY, BDDs are used to compute canonical
forms;

3. If x̂ = c f (ŷ1 ..., ŷm) is a canonical form such that m ≥ 2 and there exists Cz such
that Cz↘̂

∗
Cyi for all yi in y1, ...,ym, then there exists a lowest class C that domi-

nates those Cyi , and C↘̂Cx.

When the clock hierarchy has a unique highest class, like the classes of Bx in Fig-
ure 3-b, the process has a fastest rated clock and the status (presence/absence) of
all signals is a pure flow function: this status depends neither on communication
delays, nor on computing latencies.

The “clock calculus” provided by POLYCHRONY determines the clock hierarchy
of a process. It has a triple purpose:

18 Loı̈c Besnard et al.

– it verifies that the process is well-clocked: synchronization relation of the pro-
cess can be written as a set of acyclic definitions;
– it assigns to each clock a unique normalized definition when possible;
– it structures the control of the process according to its clock hierarchy.

4.3.2 “Endochronization”
A process that is not endochronous can be embedded in a container (Figure 3-c)
such that the resulting process is endochronous. For instance, consider the clock
hierarchy associated with the process y := x when b; it has two independent
classes: the class of ˆx and the class of ˆb (Figure 3-a), the third one is defined by
a clock product.

To get an endochronous process, one can introduce a new highest clock and two
new input Boolean signals Bx and Bb, synchronous with that clock; the sampling of
Bx and Bb defines respectively the clocks of x and b (Figure 3-b). This embedding
can be made by the designer or heuristics can be applied to instrument the clock
hierarchy with a default parameterization.

Bx ^= Bb |
x ^= when Bx |
b ^= when Bb

[¬Bx]

[¬Bb]

Bx, Bb

x b

[b] [¬b]

x ^*[b]: y x
[Bx]

[Bx] ^*[b]: yb
[Bb]

[b] [¬b]

 a: not a tree b: endochronized

y:=x when b
x
b

y

Bx
Bb

 c: clock container

Fig. 3 Endochronization of y := x when b

Building such a container is useful not only to make a process endochronous but
also to insure that the pure flow function associated with a KPN remains a synchro-
nized flow function (i.e., synchronizations are preserved despite various communi-
cation delays).

4.4 Precedence relation

Table 2 gives the precedence relation associated with a SIGNAL expression P, as

a SIGNAL expression S (P) (column 2), and as a path algebra δ−→(P) (column 3).
Notice that the delay equation (line 3) does not order the involved signals. The table
is completed by relations coming from the clock hierarchy.

The transformation S defined in Table 2 satifies the following property
making S (P) a process abstraction of P:

(|S (P) | P |) = P

Polychronous data flow equations 19

construct P precedence: S (P) path algebra: δ−→ (P)
{a --> b when c} {a --> b when c} [c] : a→ b

y := f(x1,...,xn) x1-->y | . . . | xn-->y
δ−→ (S (P))

y := x $1 init c
y:= x when b x-->y x→ y

z:= x default y x-->z | y-->z when (ˆyˆ-ˆx)
δ−→ (S (P))

P1 | P2 S (P1)|S (P2) ((δ−→ (P1)) ∪ (δ−→ (P2)))∗

P where x S (P) where x
δ−→ (P)

clock construct P precedence: S (P) path algebra: δ−→ (P)
x, a signal ˆx --> x x̂→ x

x ˆ= when b b --> ˆx b→ x̂

x ˆ= when not b

y ˆ= cf(ˆx1,...,ˆxn) ˆx1-->ˆy | . . . | ˆxn-->ˆy
δ−→ (S (P))

Table 2 Precedence relation associated with a process; the transitive closure (P)∗, is more pre-
cisely a path algebra presented in Section 4.4.1

4.4.1 Path Algebra δ−→
From basic precedence relation, a simple path algebra can be used to verify deadlock
freeness, to refine precedence and to produce information for modularity. The path

algebra is given by the following rules defining δ−→
∗

for expressions c : x → y in
normalized form:

◦ rule of series c : x→ y and d : y→ z⇒ c∗̂d : x→ z

◦ rule of parallel
c : x→ y
d : x→ y

}
⇒ c+̂d : x→ y

A pseudo cycle in the precedence relation δ−→ associated with a process P is a

sequence c1 : x1 → x2, c2 : x2 → x3 . . .cn−1 : xn−1 → x1 in δ−→
∗
. P is deadlock free

iff for all pseudo cycle c1 : x1 → x2, c2 : x2 → x3 . . .cn−1 : xn−1 → x1 in its precedence
relation, the product c1∗̂c2∗̂ . . . ∗̂cn−1 is null (= 0̂).

4.4.2 Precedence refinement
To generate sequential code for a (sub)process P it is usually necessary to add new
dependencies c1 : x1 → x2 to P, getting so a new process PS which refines prece-
dence of P. But it is wishable that if the composition of P with some process Q is
deadlock free, then the composition of PS with the same process Q remains dead-
lock free; a refinement that satisfies this property is said to be cycle consistent by
composition. In general, maximal cycle consistent refinement is not unique. The
union of all maximal cycle consistent refinements is actually a preorder that can be
computed using the path algebra [21]. The preorder associated with process First-
Degree is shown in Figure 4-b (clocks are omitted): one can for instance compute
b1 before c1 or conversely.

20 Loı̈c Besnard et al.

^b = ^c

b

[b=0]

x_t:=(c=0)when h

c

x:=c1/b1

b1:=b when k c1:=c when k

[b/=0]

h is “when b=0”
^b = ^c

b

[b=0]

x_t:=(c=

c

x:=c

b1:= c1:=

[b/=0]

aclock and graph for FirstDegree b scheduling refinement preorder

IO
Clock hierarchy
scheduling
refinement

k is “when b/=0”

Fig. 4 FirstDegree process DCG and its precedence refinement preorder

4.5 Data Control Graph

The Data Control Graph, composed of a clock hierarchy and a Conditioned Prece-
dence Graph as shown in Figure 4-a, not only associates with every clock node the
set of signals that have this node as clock, but also produces a hierarchy of the CPG
in which with every clock node is associated the subgraph of the calculus that must
be processed when this clock is present (for instance computations of b1, c1, x are
associated with the node [b /= 0] in Figure 4-a).

4.6 SIGNAL process abstraction

The interface of a process model MP can contain, in a process P_abst, a specific
description of relations, typically, clock and precedence relations, applying on its
inputs and outputs:

process MP(?I1, ...,Im; !O1,..., On) spec (|P_abst|) P_body

When the process body P_body of MP is a set of equations, the actual process
associated with MP is not P_body but (|P_abst|P_body|). Hence, P_abst
is by construction an abstraction of (|P_abst|P_body|).

When MP is an external process model, P_abst is assumed to be an abstrac-
tion of the process associated with MP. Supplementary properties are required to
correctly use those external processes. Thus, a process is (can be) declared:

• safe: a safe process P is a single-state deterministic, endochronous automaton;
such a process does not have occurrence of delay operator and cannot “call”
external processes that are not safe; in practice the code generated to interact
with P (to call P) can be freely replicated;

Polychronous data flow equations 21

• deterministic: a deterministic process P is a deterministic, endochronous automa-
ton (it is a pure flow function); such a process cannot “call” external processes
that are not safe; in practice the code generated to interact with P (to step P) can
be replicated only if the internal states of P are also replicated;

• unsafe: a process is unsafe by default.

As an example, the FirstDegree function (Example 3.1) First Degree is
a safe process. Its synchronization and precedence relations are made explicit in its
specification: all output signals depend on all input signals ({b, c} --> {x, x_st}),
the signal x_st is synchronized with the clock at which b is zero, the signal x is
present iff b is non-zero. The abstraction of its generated C code is then given by
the FirstDegree SIGNAL external process presented below.

For a SIGNAL process P such an abstraction can be automatically computed by
the POLYCHRONY SIGNAL compiler: it is the restriction to input/output signals (of
MP) of the process (|C(P)|S ′(P)|), where S ′(P) is the precedence refine-
ment of S (P) taking into account the precedences introduced by code generation.

When the specifications are related to imported processes their source code may
not be available (written in another language such as C++ or Esterel [22]). Legacy
codes can be used in applications developed in SIGNAL, in which they are consid-
ered as external processes via specifications.

Besides, POLYCHRONY provides a translator from C code in SSA form to SIG-
NAL processes [23]. The translated process can be used to abstract the original C
behavior. Each sequence of instructions in the SSA form is associated with a label.
Each individual instruction is translated to an equation and each label is translated
to a Boolean signal that guards its activation. As a result, the SIGNAL interpretation
has an identical behavior as the original C program.

void FirstDegree
(int float b, float c,
float *x, int *x_st) {

if (b != 0.0)

*x = -(c/b);
else

*x_st = (c !=0.0);
}

process FirstDegree =
(? real b, c; ! boolean x_st; real x;)
safe
spec (| b --> c %precedence refinement%

| {b, c} --> {x , x_st}
| b ˆ= c
| x ˆ= when (b/=0.0)
| x_st ˆ= when (b=0.0) |)

external "C" ;

Fig. 5 Legacy C code of the FirstDegree function and its SIGNAL abstraction

Syntactic sugar is made available in SIGNAL to easily handle usual functions.
For instance the arithmetic C function abs used in rac can be declared as
function abs=(? real x; ! real s;); function means that the

process is safe, its input and output signals are synchronous and every input pre-
cedes every output.

22 Loı̈c Besnard et al.

4.7 Clustering

The DCG (Section 4.5) with its CH (Section 4.3.1) ant its CPG (Section 4.4) is the
basis of various techniques applied to structuring the generated code whilst preserv-
ing the semantic of the SIGNAL process thanks to formal properties of the SIGNAL
language (Section 2.6). We give in this section a brief description of several impor-
tant techniques that are illustrated in Section 5.

4.7.1 Data flow execution

The pure data flow code generation provides the maximal parallel execution. If we
consider the FirstDegree example, we can see that some elementary equations
are not pure flow functions, and then the result of their pure data flow execution is
not deterministic. It is the case for c1 := c when (b/=0.0): an occurrence
of c being arrived and b not, b may be assumed absent. A simple solution to this
problem is to consider only endochronous nodes as candidates for data flow exe-
cution. One can get this structure by duplicating the synchronization b ˆ= c. The
resulting code for FirstDegree, in which each line is a pure flow function, is
then:

(| b1 := b when (b/=0.0)
| (| b ˆ= c | c1 := c when (b/=0.0) |)
| x := -(c1/b1)
| (| b ˆ= c | x_st := (c/=0.0) when (b=0.0) |)

This example illustrates a general approach, using properties of the SIGNAL lan-
guage (Section 2.6) to get and manage endochronous subprocesses as sources for
future transformations. Building primitive endochronous nodes does not change the
semantics of the initial process.

4.7.2 Data clustering

Data clustering is an operation that lets unchanged the semantics of a process. It
consists in splitting processes on various criteria thanks to commutativity, associa-
tivity and other properties of process operators (Section 2.6). It is thus possible to
isolate:

– the management of state variables (defined, directly or not, as delayed sig-
nals) in a “State variables” process (required synchronizations are associated with
those variables),
– the management of local shared variables used instead of signal communica-
tions between subprocesses in “Local variables” blocks,
– the computation of specific data types towards multicore heterogeneous archi-
tectures.

Polychronous data flow equations 23

4.7.3 Phylum

Atomic nodes can be defined w.r.t. the following criterion: when two nodes both
depend on (are transitively preceded by) the same set of input variables, they can
be both executed only after the inputs are achieved. This criterion defines an equiv-
alence relation the class of which we name phylums: for a set of input variables A
we name phylum of A the set of nodes that are preceded by A and only A. It results
from this definitions that if a phylum P1 is the phylum of A1, and P2 that of A2,
P1 precedes P2 iff A1 ⊆ A2.
As an example, the FirstDegree function (Example 4.7.1) might have four phy-
lums: the phylum of the empty set of inputs which is empty, the phylum of b that
contains b1 := b when(b/=0.0), the phylum of c which is empty, and finally
the phylum of {b,c} that contains the three remaining nodes. Due to its properties,
an endochronous process can be splitted into a network of endochronous phylums
that can be executed atomically (as function calls for instance).

4.7.4 From cluster to scheduling of actions

Using data clustering and phylums, a SIGNAL process can be transformed in an
equivalent process the local communications of which are made invisible for a user
context. This transformation is illustrated with the FirstDegree process; two
phylums are created: Phylum_B is the phylum of b and Phylum_BC is the phylum
of {b,c}; two labels L_PH_B and L_PH_BC are created to define the “activation
clock” and the precedence related to these phylums. One can notice that this SIGNAL
code is close to a low level imperative code.

process FirstDegree = (? real b, c; ! boolean x_st; real x;)
(| b ˆ= c ˆ= b1 ˆ= bb ˆ= L_PH_B ˆ= L_PH_BC
| L_PH_B :: Phylum_B(b)
| L_PH_BC :: (x_st, x) := Phylum_BC(c)
| L_PH_B --> L_PH_BC
|) where shared real b1, bb;

process Phylum_B = (? real b;)
(| bb ::= b
| b1 ::= b when (b/=0.0) |)

process Phylum_BC = (? real c; ! boolean x_st; real x;)
(| c1 := c when (b/=0.0)
| x := -(c1/b1)
| x_st := (c/=0.0) when (bb=0.0) |) where real c1; end

end

A grey box is an abstraction of such a clustered process: the grey box of a process
contains a specification that describes synchronization and precedence over signals
and labels. The phylums synchronized by these labels are declared as abstract pro-
cesses. The grey box of a process P can be imported in another process PP. The
global scheduling generated for PP includes the local scheduling of P. In the case
of object-oriented code generation, this inclusion can be achieved by inheritance
and redefinition of the scheduling, the methods associated with abstract processes
remaining unchanged. The grey box associated with FirstDegree can be found
below.

24 Loı̈c Besnard et al.

process FirstDegree = (? real b, c; ! boolean x_st; real x;) %grey box%
safe
spec (| b ˆ= c ˆ= L_PH_B ˆ= L_PH_BC

| L_PH_B :: Phylum_B(b)
| L_PH_BC :: (x_st, x) := Phylum_BC(c)
| b --> L_PH_B --> c --> L_PH_BC --> {x , x_st}
| x ˆ= when (b/=0.0)
| x_st ˆ= when (b=0.0) |)

where process Phylum_B = (? real b;) external;
process Phylum_BC = (? real c; ! boolean x_st; real x;) external;

end
external ;

4.8 Building containers

The construction of containers previously proposed to build endochronous pro-
cesses (Section 4.3.2) is used to embed a given process in various execution con-
texts. The designer can for instance define input/output functions in some low level
language and import their description in a SIGNAL process providing to the inter-
faced process an abstraction of the operating system; this is illustrated below for the
FirstDegree process:

process EmbeddedFirstDegree = ()
(| (| L_SCAN :: (b,c) := scan() | b ˆ= c ˆ= L_SCAN |)
| (x_st, x) := FirstDegree(b,c)
| (| L_EA :: emitAlarm() | L_EA ˆ= x_st |)
| (| L_PRINT :: print(x) | L_PRINT ˆ= x |)
|) where real b, c, x; boolean x_st;

process scan = (! real b, c;)
spec (| b ˆ= c |)

process emitAlarm()
process print = (? real x)
process FirstDegree = (? real b, c; ! boolean x_st; real x;)

%description of FirstDegree%
end

The statement (b,c) := scan(), synchronized to L_SCAN, delivers the new
values of b and c each time it is activated. The statement print(x) prints the
result when it is present. The statement emitAlarm() is synchronized with x_st,
thus an alarm is emitted each time the equation has not a unique solution.

The construction of containers can be used to execute processes in various con-
texts, including resynchronization of asynchronous communications, thanks to the
var operator (Section 2.5) or more generally to bounded fifos—that can be built in
SIGNAL.

5 Code generation in POLYCHRONY toolset

Section 4 introduces the compilation of a SIGNAL process as a set of transforma-
tions. In this section, we describe how code can be generated, as final step of such

Polychronous data flow equations 25

a sequence of transformations, following different schemes. When a process P is
composed of interconnected endochronous subprocesses, free of clock constraints,
it is a pure flow function (a KPN). One could then generate code for P following the
Kahn semantics. Nevertheless, the execution of the generated code may deadlock.
If this KPN process is also acyclic then deadlock cannot occur: the code generation
functionalities of POLYCHRONY can be applied. The code is generated for differ-
ent target languages (C, C++, Java) on different architectures, preserving various
semantic properties (at least the defined pure flow function). However, it is possible
to produce reactive code or defensive code when the graph is acyclic but there are
remaining clock constraints. In these modes, all input configurations are accepted.
For reactive code, inputs that satisfy the constraints are selected; for defensive code,
alarms are emitted when a constraint is violated during the simulation.

5.1 Code generation principle

The code generation is based on formal transformations presented in the previous
sections. It is strongly guided by the clock hierarchy resulting from the clock calcu-
lus to structure the target language program, and by the conditioned precedence
graph not only to locally order elementary operations in sequences, but also to
schedule component activations in a hierarchical target code. The code generation
follows more or less the structure presented in Figure 6. The “step block” contains a
step scheduler that drives the execution of the step component and updates the state
variables (corresponding to delays). The step component may be hierarchically de-
composed as a set of sub-components (clusters), scheduled by the step scheduler,
and each sub-component has, in the same way, its own local step scheduler. The
step block communicates with its environment through the IO container and it is
controlled by a main program.

MAIN

(Hierarchical)
Step component

Step scheduler

State
variables

Local
variables

IO container

control

data

State variables: zx:=x$1
Local variables: x::=E

C1

Step scheduler

State
variables

Local
variables

Ci Cn

Ci1

Local step scheduler

Local state
variables

Local
variables

Cij CmComponent Ci

Step component

Fig. 6 Code generation general scheme

26 Loı̈c Besnard et al.

Target language code is generated in different files. For example, for C code
generation, we have, for a process P, a main program P_main.c, a program body
P_body.c (that contains the step block) and an input-output module P_io.c
(the IO container). The main program calls the initialization function defined in
the program body, then keeps calling the step function. The IO container defines the
input and output communications of the program with the operating system.

Each component of the target code (except the main program, which is an explicit
loop) may be seen as a SIGNAL process. Every such component, generated in C for
instance, may be abtracted in SIGNAL for reuse in an embedding SIGNAL process.
When target language is an object oriented language, then a class is generated for
each component. This class can be specialized to fit new synchronizations resulting
from embedding the original process in a new context process.

5.1.1 The step function
Once the program and its interface are initialized, the step function is responsible
for performing the execution steps that read data from input streams, calculate and
write results along output streams. There are many ways to implement this function
starting from the clock hierarchy and conditioned precedence graph produced by the
front-end of the compiler. Various code generation schemes [21, 24, 25] are imple-
mented in the POLYCHRONY toolset. They are detailed in the subsequent sections
on the solver example:

• Global code generation

– Sequential (Section 5.2)
– Clustered with static scheduling (Section 5.3)
– Clustered with dynamic scheduling (Section 5.4)

• Modular code generation

– Monolithic (Section 5.5.1)
– Clustered (Section 5.5.2)

• Distributed code generation (Section 5.6)

5.1.2 The IO container
If the process contains input and/or output signals (the designer did not build his or
her IO container), the communication of the generated program with the execution
environment is implemented in the IO container. In the simulation code generator,
each input or output signal is interfaced with the operating system by a stream con-
nected to a file containing input data and collecting output data. The IO container
(Figure 7) declares global functions for opening (eqSolve_OpenIO) and clos-
ing (eqSolve_CloseIO) all files, and for reading (r_eqSolve_a) and writing
(w_eqSolve_x1) data along all input and output signals.

Polychronous data flow equations 27

void eqSolve_OpenIO()
{ fra = fopen("Ra.dat","rt");
if (!fra) {
fprintf(stderr,

"Can’t open %s\n","Ra.dat");
exit(1); }

fwx1 = fopen("Wx1.dat","wt");
if (!fwx1) {
fprintf(stderr,
"Can’t open %s\n","Wx1.dat");

exit(1); }
/* ... idem for b, c, x2, x_st */}

void eqSolve_CloseIO()
{ fclose(fra);
...
fclose(fwx1); }

int r_eqSolve_a(float *a)
{ return (fscanf(fra,"%f",a)!=EOF); }

void w_eqSolve_x1(float x1)
{ fprintf(fwx1,"%f ",x1);
fprintf(fwx1,"\n"); fflush(fwx1); }

/* ... idem for b, c, x2, x_st */

Fig. 7 An extract of the C code generated for the solver: the IO container

The IO container is the place where the interface of generated code with an ex-
ternal visualization and simulation tool can be implemented. The POLYCHRONY
toolset supports default communication functions for various operating systems and
middlewares that can be modified or replaced by the user. The r_xx_yy functions
return an error status that should be removed in embedded programs.

5.1.3 The main program
The main (see Figure 8) program initializes input/output files (eqSolve_OpenIO),
state variables (eqSolve_initialize), and iterates call to the step function
(eqSolve_step). In the case of simulation code, as in Figure 8, the infinite loop
can be stopped if the step function returns error code 0 (meaning that input streams
are empty) and the main program will close communication (eqSolve_CloseIO).

extern int main()
{ int code;
eqSolve_OpenIO(); /* input/output initializing */
code = eqSolve_initialize(); /* initializing the state variables */
while(code) code = eqSolve_step(); /* the steps */
eqSolve_CloseIO(); } /* input/output finalizing */

Fig. 8 Generated C code of the solver: the main program

5.2 Sequential code generation

This section describes the basic, sequential, inlining, code generation scheme that
directly interprets the SIGNAL process obtained after clock hierarchization. This
description is illustrated on the eqSolve process (Figure 9 and Figure 10). Figure 9
contains an extract of the clock hierarchy resulting from the clock calculus applied
to the solver example. The code of the step block is structured according to the clock
hierarchy as it can be observed in Figure 10. The precedence relation is the source
of local deviations. In the eqSolve_step function, an original SIGNAL identifier
xxx has a Boolean clock named C_xxx.

A few observations can be made on the step block that is generated for the
eqSolve SIGNAL process (Figure 10). A first observation is that the master clock,

28 Loı̈c Besnard et al.

stable

[stable]{a,b,c,C_delta,C_,C_x_st,...}

[C_delta]{delta,...} [C_] {...} [C_x_st] {x_st}

{R_n,...} C_delta = not (a=0)
C_ = (a=0) %not C_delta%

Fig. 9 Clock hierarchy of the solver process

which is the clock of the stable variable, ticks every time the step function is
called.

Inputs are read as soon as their clock is evaluated and is true (see for example
r_eqSolve_a(&a), called when the signal stable is true). Outputs are sent as
soon as they are evaluated (see for example w_eqSolve_x_st(x_st), called
when the signal C_x_st is true).

static float a, b, c;
static int x_st;
...
int eqSolve_initialize()
{ stable = 1;
S_n = 0.0e0;
next_R_n = 1.0;
XZX_162 = 0.0e0;
U = 0.0e0;
eqSolve_step_initialize();
return 1; }

void eqSolve_step_initialize()
{ C_ = 0;
C_delta = 0;
C_b1 = 0;
C_x1_1 = 0;
C__250 = 0; }

int eqSolve_step_finalize()
{
stable = next_stable;
C_x_st_1 = 0;
C_231 = 0;
eqSolve_step_initialize();
return 1;

}

int eqSolve_step()
{
if (stable) {

if (!r_eqSolve_a(&a)) return 0;
if (!r_eqSolve_b(&b)) return 0;
if (!r_eqSolve_c(&c)) return 0;
C_ = a == 0.0;
C_delta = !(a == 0.0);
if (C_delta) {

delta = b * b - (4.0*a)*c;
C_231 = delta < 0.0;
C_x1_1 = delta == 0.0;
C__250 = delta > 0.0;
if (C_x1_1) x1_1 = -b/(2.0*a);}

C_234 = (C_delta ? C_231 : 0);
if (C_) {

C_x_st_1 = b == 0.0;
C_b1 = !(b == 0.0);
if (C_x_st_1) x_st_1 = c != 0.0;}

C_x_st_1_220 = (C_ ? C_x_st_1 : 0);
C_x_st = C_x_st_1_220 || C_234;
if (C_x_st) {

if (C_234) x_st=1; else x_st=x_st_1;
w_eqSolve_x_st(x_st); }

}
/* ... */

eqSolve_step_finalize();
return 1;}

Fig. 10 Generated C code of the solver: the step block

The state variables are updated at the end of the step (eqSolve_step_
finalize). One can notice the tree structure of conditional if-then-else statements
which directly translates the clock hierarchy. For instance, the computation of x1_1
is executed only if stable is true and a/=0 (C_delta is true) and delta=0
(C_x1_1 is true). One can also notice the precedence refinement as presented in
4.4.2: to generate sequential code, it is usually necessary to add serializations. To
illustrate this, consider the abstraction, reduced to the precedence relations of the

Polychronous data flow equations 29

solver (Figure 11-a). There is no precedence between the input signals. To generate
the code, precedences are added from a to b and from b to c. This refinement is
expressed in SIGNAL in the abstraction given in Figure 11-b. The same remarks ap-
plies for the local signals. So, the generated code is a specialization of the original
process.

process eqSolve_ABSTRACT =
(? real a, b, c;
! boolean x_st; real x1, x2;)

spec (| {a,b,c} --> {x_st,x1,x2}
| %clocks ... %
|)

a-From the original process

spec (| (| a --> b | b --> c
| x_st --> x2 | x2 --> x1

|)
| {a,b,c} --> {x_st,x1,x2}
| %clocks ... %
|)

b-Precedence refinement

Fig. 11 Abstractions (reduced to precedence relations) of the solver

Note that in this code generation scheme, the scheduling and the computations
are merged.

5.3 Clustered code generation with static scheduling

The scheme presented here uses the result of clustering in phylums to generate code.
This method is particularly relevant in code generation scenarios such as modular
compilation and distribution.

Figure 12 displays the clusters obtained for the eqSolve process. Since there
are three inputs a, b, c, the clustering in phylums can lead to, at most, 23 = 8 clusters,
plus one for state variables. Fortunately clustering is usually far from reaching worst
combinatoric case. In the case of the solver, five clusters are non-empty. The clusters
are subject to inter-cluster precedences that appear in the figure as solid arrows.
Serializations, represented as dotted arrows, are added for static scheduling. The
Cluster_delays is the “State variables” component (Figure 6), in charge of
updating state variables. It is preceded by all other clusters.

Cluster_4

Cluster_2

Cluster_3

Cluster_1 Cluster_delays
a

b

c

{a,c}

{a,b}

{a,b,c}
{a}

x_st

x2x1

Fig. 12 The phylums of the solver

Figure 13 presents the code generated for this structuring of the solver into five
phylums. The function eqSolve_step encodes a static scheduler for these clus-
ters.

30 Loı̈c Besnard et al.

int eqSolve_step()
{
if (stable) {

if (!r_eqSolve_a(&a)) return 0;
if (!r_eqSolve_b(&b)) return 0;
if (!r_eqSolve_c(&c)) return 0;

}
eqSolve_Cluster_4();
eqSolve_Cluster_3();
if (stable) eqSolve_Cluster_2();
eqSolve_Cluster_1();
if (stable) if (C_x_st) w_eqSolve_x_st(x_st);
if (C_x1_2) w_eqSolve_x2(x2);
if (C_x1) w_eqSolve_x1(x1);
eqSolve_Cluster_delays();
return 1;

}

Fig. 13 Generated C code of the solver: statically scheduled clusters

In contrast to the previous code generation method, which globally relies on the
clock hierarchy and locally relies (for each equivalence class of the clock hierarchy)
on the conditioned precedence graph, clustering globally relies on the conditioned
precedence graph and locally relies (for each cluster of the graph) on the clock
hierarchy.
Note. In general any clustering is suitable with respect to some arbitrary criterion,
provided that each cluster remains insensitive to communication delays or oper-
ator latencies. Monolithic clustering (one cluster for the whole process) minimizes
scheduling overhead but has poor concurrency. The finest clustering (one cluster per
signal) maximizes concurrency and unfortunately scheduling overhead. Heuristics
are used in POLYCHRONY to limit the exploration cost.

5.4 Clustered code generation with dynamic scheduling

Clustered code generation can be used for multi-threaded simulation by equipping
it with dynamic scheduling artifacts. The code of a cluster is encapsulated in a com-
ponent implemented as a task. A component is structured as outlined in Figure 14-a:
each component Ti has a semaphore Si used to manage the precedence relation be-
tween the components. Each task Ti starts by waiting on its Mi predecessors with
wait(Si)statements. Each task Ti ends by signaling all its successors j = 1, ..Ni
with signal(Sij). Moreover, one component is generated for each input-output
function. The step scheduler (Figure 14-b) is implemented by a particular task T0:
it starts execution by signaling all source tasks j = 1, ..N0 with signal(S0j)
and ends by waiting on its sink tasks with wait(S0) statements. The semaphores
and tasks are created in the P_initialize function of the generated code. When
simulation code is generated, a P_terminate task is also added to kill all tasks
of the application.

Polychronous data flow equations 31

void * P_Ti() { /* task Ti */
while (true) {
pK_Isem_wait(Si);
...
pK_Isem_wait(Si);
P_Cluster_i();
pK_Isem_signal(Si1);
...
pK_Isem_signal(SiNi);

}
}

a-A step component

void * P_step_Task()
{ /* Task T0 */
while (true) {
/*signal to the clusters
without predecessors */
pK_Isem_signal(S01);
...
pK_Isem_signal(S0N0);

/* wait the signal of the
clusters without
successors */

pK_Isem_wait(S0);
...
pK_Isem_wait(S0);

}
}

b-The step scheduler

Fig. 14 Code template of a cluster task and of the step function

5.5 Modular code generation

Modular compilation consists of compiling a process, then exporting its model, and
use it in another process. For the purpose of exporting and importing the model of
a process whose code has been compiled separately, the POLYCHRONY SIGNAL
compiler provides an annotation mechanism to associate a compiled process with a
profile (Section 4.6).

This profile consists of an abstraction of the original process model consisting of
the synchronization and precedence relations of the input and output signals of the
process. These properties may be provided by the designer (in the case of legacy
C code, for instance) or calculated by the compiler (in the case of a compiled SIG-
NAL process). The annotations also give the possibility to specify the language in
which the process is compiled (C, C++, Java) since the function call conventions
and variable binding may vary slightly from one language to another.

Starting from a SIGNAL process, modular compilation supports the code gen-
eration strategies, with or without clusters, outlined previously. Considering the
specification of the solver, we detail possible compilation scenarios in which the
sub-processes FirstDegree and SecondDegree are compiled separately. The
process SecondDegree has been adapted to the context of modular compilation:
it does not assume that the values of a are different from 0. The clock of the signal
stable is the master clock of the SecondDegree process.

5.5.1 Sequential code generation for modular compilation
A naive compilation method consists in associating each of the sub-processes of
the solver with a monolithic step function. Figure 15 gives the SIGNAL abstraction
(black box abstraction) that is inferred—or could be user-provided—in order to use
the SecondDegree process as external function.

32 Loı̈c Besnard et al.

process SecondDegree_ABSTRACT =
(? real a, b, c;
! boolean x_st; real x21, x2;
boolean stable,C_x1_2,C_delta,C_x_st,C_x21;

)
spec (| (| stable --> {a,b,c}

... |)
| (| stable ˆ= C_x1_2 ˆ= C_x21
| ... |) |)

pragmas BlackBox "SecondDegree" end pragmas
external "C";

Fig. 15 Black box abstractions of the FirstDegree and SecondDegree process models

The interface of the process SecondDegree has been modified: it is necessary
to export Boolean signals that are used to define clocks of output signals. Then
the interface of SecondDegree is endochronous. The process eqSolve_bb,
Figure 16, is the SIGNAL process of the solver in which the separately compiled
processes FirstDegree (its abstraction and generated code can be found in Ex-
ample 5) and SecondDegree are called.

process eqSolve_bb = {real epsilon}
(? real a, b, c; ! boolean x_st; real x1, x2;)

(| a ˆ= b ˆ= c ˆ= when stable
| (x_st_1, x11) := FirstDegree_ABSTRACT(b when (a=0.0), c when (a=0.0))
| (x_st_2, x21, x2, stable, C_x1_2, C_delta, C_x_st2, C_x21)

:= SecondDegree_ABSTRACT(a, b, c)
| x1 := x11 default x21
| x_st := when x_st_2 default x_st_1
|) where ...

Fig. 16 Importing separately compiled processes in the specification of the solver

Unfortunately, the code from which SecondDegree_ABSTRACT is an ab-
straction is a sequential code. And it turns out that the added precedence relations,
put in the context of process eqSolve, form a causality cycle that is reported by the
compiler (Figure 17): the abstraction of SecondDegree exhibits the precedence
stable --> a, the function call to SecondDegree_ABSTRACT implies that
the input signal a precedes the output signal stable, hence the cycle. Code gen-
eration cannot proceed further.

process eqSolve_bb_CYC = ()
(| (x_st_2, x21,x2, stable, C_x1_2, C_delta, C_x_st2, C_x21)

:= SecondDegree_ABSTRACT(a,b,c)
| stable --> a |)

Fig. 17 Trace of causality cycle in the specification of the solver

Polychronous data flow equations 33

5.5.2 Clustered code generation for modular compilation
To avoid spurious causality cycles from being introduced, it is better suited to ap-
ply clustering code generation techniques. The profile of a clustered and separately
compiled process (grey box abstraction), Figure 18, provides more information than
a black box abstraction: it makes the clusters apparent and details the clock and
precedence relations between them. In turn, this profile contains sufficient informa-
tion to schedule the clusters, and hence, call them in the appropriate order dictated
by the calling context.

process SecondDegree_ABSTRACT =
(? real aa, bb, cc; ! boolean x_st; real x21, x2;

boolean stable, C_x1_2, C_delta, C_x_st, C_x21;)
pragmas

GreyBox "SecondDegree"
end pragmas

(| (| Tick := true
| when Tick ˆ= stable ˆ= C_x1_2 ˆ= C_x21
| when stable ˆ= aa ˆ= bb ˆ= cc ˆ= C_delta
| when C_x1_2 ˆ= x2 | when C_delta ˆ= C_x_st
| when C_x_st ˆ= x_st | when C_x21 ˆ= x21 |)

| (| lab :: (x_st,x21,x2,C_x1_2,C_x_st,C_x21) := SecondDegree_Cluster_1()
| lab ˆ= when Tick |)

| (| lab_1 :: C_delta := SecondDegree_Cluster_2(aa)
| lab_1 ˆ= when Tick |)

| (| lab_2 :: SecondDegree_Cluster_3(bb) | lab_2 ˆ= when stable |)
| (| lab_3 :: SecondDegree_Cluster_4(cc) | lab_3 ˆ= when stable |)
| (| lab_4 :: stable := SecondDegree_Cluster_delays() | lab_4 ˆ= when Tick |)
| (| cc --> lab | bb --> lab | aa --> lab | lab_1 --> lab_3 | lab_1 --> lab_2

| lab_1 --> lab | aa --> lab_1 | lab_2 --> lab | bb --> lab_2
| aa --> lab_2 | lab_3 --> lab | cc --> lab_3 | aa --> lab_3
| lab_3 --> lab_4 | lab_2 --> lab_4 | lab_1 --> lab_4 | lab --> lab_4
|) |) where %Declarations of the clusters% end;

Fig. 18 The grey box abstraction of the SecondDegree process model

The calling process schedules the generated clusters in the order best appropriate
to its local context, as shown in Figure 19. The step associated with FirstDegree
and the clusters of the separately compiled process SecondDegree are called in
the very order dictated by scheduling constraints of the solver process, avoiding the
introduction of any spurious cycle.

34 Loı̈c Besnard et al.

extern int eqSolve_gb_step()
{
if (stable) {
if (!r_eqSolve_gb_a(&a)) return 0;
if (!r_eqSolve_gb_b(&b)) return 0;
if (!r_eqSolve_gb_c(&c)) return 0;
C_ = a == 0.0;
if (C_) { FirstDegree_step(&FirstDegree1,b,c,&x_st_1,&x11);

C_x11 = !(b == 0.0); }
C_x_st_1_227 = (C_ ? (b == 0.0) : 0); }

SecondDegree_Cluster_2(&SecondDegree2,a,&C_delta);
C_x11_236 = (C_ ? C_x11 : 0);
if (stable) {

SecondDegree_Cluster_3(&SecondDegree2,b);
SecondDegree_Cluster_4(&SecondDegree2,c); }

SecondDegree_Cluster_1(&SecondDegree2,&x_st_2,&x21,&x2,
&C_x1_2,&C_x_st2,&C_x21);

...
if (C_x1_2) w_eqSolve_gb_x2(x2);
if (C_x1) { if (C_x11_236) x1 = x11; else x1 = x21; w_eqSolve_gb_x1(x1); }
eqSolve_gb_step_finalize();
return 1; }

Fig. 19 Generated C code for the first and second degree clusters steps

5.6 Distributed code generation

Distributed code generation in POLYCHRONY follows along the same principles as
dynamically scheduled clustered code generation (Section 5.4). The final embed-
ded application implemented on a distributed architecture can be represented by the
Figure 20.

main

(Hierarchical)
Step

component

Step scheduler

State
variables

Local
variables

IO container

main

(Hierarchical)
Step

component

Step scheduler

State
variables

Local
variables

IO container

Communication
support

Fig. 20 Overview of a distributed code

While clustered code generation is automatic, distribution requires additional in-
formation provided by the user. Namely:

• A block-diagram and topological description of the target architecture.
• A mapping of software diagrams onto the target architecture blocks.

Automated distribution consists of a global compilation script that proceeds with
the following steps:

Polychronous data flow equations 35

1. DCG computation for the main process structure (Section 4.5).
2. Booleanization: extension of event signals to Boolean signals according to the

clock hierarchy.
3. Clustering of the main process according to the given target architecture and

mapping (Section 5.6.1).
4. Endochronization of each cluster (Section 4.3.2); this is made by importing/exporting

Boolean signals between clusters, according to the global DCG.
5. Addition of communication information (Section 5.6.2).
6. Individual compilation of all clusters.
7. Generation of the IO container (Section 5.6.3) and the global main program.

5.6.1 Topological annotations
Figure 21, the distribution methodology is applied on the example of Section 3. The
user defines the mapping of the elementary components over the target architecture
with a few pragmas. The pragma RunOn specifies the processors on which a set
of components has to be located. For example, the expression RunOn {e1} "1"
specifies that the component labelled with e1 is mapped on the location 1 (e1 is
declared in the statement e1 :: PROC1{} as being the label of the component
consisting of the subprocess PROC1).

process eqSolve =
{real epsilon}
(? real a, b ,c;
! boolean x_st;
real x1, x2;)

pragmas
Topology {b,a} "1"
Topology {c} "2"
Topology {x1,x2} "2"
Topology {x_st} "1"
Target "MPI"
RunOn {e1} "1"
RunOn {e2} "2"

end pragmas
(| e1 :: PROC1{}
| e2 :: PROC2{}
|)

process PROC1 =
(? real a, b, c, x11;

boolean x_st_1;
! boolean stable;
real x2, x1;
boolean x_st;)

(| (x_st_2, x21, x2, stable)
:= SecondDegree{.}(...)

| x1 := x11 default x21
| x_st := x_st_2

default x_st_1
|)
;

process PROC2 =
(? boolean stable;

real b, c;
! real x11;
boolean x_st_1;
)

(| a ˆ= b ˆ= c
ˆ= when stable

| (x_st_1, x11)
:= FirstDegree(...)

|)

Fig. 21 Functional clustering of the solver

The pragma Topology associates the input and output signals of the process
with a location. For example, the pragma Topology {a,b} "1" tells that the
input signals a and b must be read on location 1. The pragma Target speci-
fies the API used to generate code that implements communication: for instance,
Target "MPI" tells that the MPI library is used for that purpose.

5.6.2 Communication annotations
Figure 22 displays the process transformation resulting of the functionClustering
requested by the user. A few signals have been added to the interface of each com-

36 Loı̈c Besnard et al.

ponent: signals and clocks produced on one part of the system and used on the other
one have to be communicated.

process eqSolve_EXTRACT_1_TRA=
(? boolean x_st_1;

real x11, c, b, a;
boolean C_b1, C_x_st_1_490,

C_, C_x_st_1;
! boolean x_st;
real x1, x2;
boolean stable;

)
pragmas

RunOn "1"
Environment {c} "1"
Environment {b} "3"
Environment {a} "5"
Environment {x_st} "7"
Environment {x1} "8"
Environment {x2} "9"
Sending {stable} "10"
"eqSolve_EXTRACT_2"

Receiving {x_st_1} "11"
"eqSolve_EXTRACT_2"

Receiving {x11} "12"
"eqSolve_EXTRACT_2"

Receiving {C_} "13"
"eqSolve_EXTRACT_2"

Receiving {C_x_st_1} "14"
"eqSolve_EXTRACT_2"

Receiving {C_x_st_1_490} "15"
"eqSolve_EXTRACT_2"

Receiving {C_b1} "16"
"eqSolve_EXTRACT_2"

end pragmas;
...

process eqSolve_EXTRACT_2_TRA=
(? real c, b, a;

boolean stable;
! boolean x_st_1;
real x11;
boolean C_, C_x_st_1,

C_x_st_1_490, C_b1;
)

pragmas
RunOn "2"
Environment {c} "2"
Environment {b} "4"
Environment {a} "6"
Receiving {stable} "10"
"eqSolve_EXTRACT_1"

Sending {x_st_1} "11"
"eqSolve_EXTRACT_1"

Sending {x11} "12"
"eqSolve_EXTRACT_1"

Sending {C_} "13"
"eqSolve_EXTRACT_1"

Sending {C_x_st_1} "14"
"eqSolve_EXTRACT_1"

Sending {C_x_st_1_490} "15"
"eqSolve_EXTRACT_1"

Sending {C_b1} "16"
"eqSolve_EXTRACT_1"

end pragmas

Fig. 22 The extracted subgraphs after the distribution

Required communications are automatically added using additional pragmas.
The pragma Environment associates an input or output signal with the location
of a communication channel. For instance, Environment {c} "1" means that
signal c is communicated along channel 1. The pragma Receiving associates
an input signal with a channel location and its sender process. To send the signal
x11 from process eqSolve_EXTRACT_1_TRA along channel 11, the follow-
ing pragma is written: Receiving {x11} "11" "eqSolve_EXTRACT_2".
Similarly, the pragma Sending associates an output signal with a channel loca-
tion and its receiving processes. For example, the output signal stable of process
eqSolve_EXTRACT_1_TRA is sent along channel 10 to process eqSolve_
EXTRACT_2 by: Sending {stable} "10" "eqSolve_EXTRACT_2".

5.6.3 IO Code generation
Multi-threaded, dynamically scheduled, code generation, as described in Section 5.4,
is applied on the process resulting from the transformations performed for au-

Polychronous data flow equations 37

tomated distribution. The information carried by the pragmas Environment,
Receiving and Sending is used to generate communications. Figure 23 gives
as illustration the code that implements communications of the signal C_ (see Fig-
ure 22), using the MPI library, between the sender eqSolve_EXTRACT_2 and the
receiver eqSolve_EXTRACT_1.

From the file : eqSolve EXTRACT 1 io.c
int r_eqSolve_EXTRACT_1_C_(int *C_) {

MPI_Recv(C_, /* name */
1,MPI_INT, /* type */
eqSolve_EXTRACT_2, /* received from */
13, /* the logical tag of the receiver */
MPI_COMM_WORLD, /* MPI specific parameter */
MPI_STATUS_IGNORE); /* MPI specific parameter */

return 1;
}

From the file : eqSolve EXTRACT 2 io.c
void w_eqSolve_EXTRACT_2_C_(int C_) {

MPI_Send(&C_, /* name */
1,MPI_INT, /* type */
eqSolve_EXTRACT_1, /* sent to */
13, /* the logical tag of the sender */
MPI_COMM_WORLD); /* MPI specific parameter */

}

Fig. 23 Example of communications

6 Conclusion

The POLYCHRONY workbench is an integrated development environment and tech-
nology demonstrator consisting of a compiler (set of services for, e.g., program
transformations, optimizations, formal verification, abstraction, separate compila-
tion, mapping, code generation, simulation, temporal profiling, etc.), a visual editor
and a model checker. It provides a unified model-driven environment to perform em-
bedded system design exploration by using top-down and bottom-up design method-
ologies formally supported by design model transformations from specification to
implementation and from synchrony to asynchrony.

In order to bring the synchronous multi-clock technology in the context of model-
driven environments, a metamodel of SIGNAL has been defined and an Eclipse plu-
gin for POLYCHRONY is being integrated in the open-source platforms TopCased
from Airbus [26] and OpenEmbeDD [27]. The POLYCHRONY workbench is now
freely distributed [6].

In parallel with the POLYCHRONY academic set of tools, an industrial imple-
mentation of the SIGNAL language, called SILDEX, was developed by the TNI
company, now included in Geensys. This commercial toolset, which is now called
RT-BUILDER, is supplied by Geensys [28].

38 Loı̈c Besnard et al.

POLYCHRONY supports the polychronous data flow specification language SIG-
NAL. It is being extended by plugins to capture within the workbench specific mod-
ules written in usual software programming languages suchs as SystemC or Java. It
provides a formal framework:

1. to validate a design at different levels,
2. to refine descriptions in a top-down approach,
3. to abstract properties needed for black-box composition,
4. to assemble predefined components (bottom-up with COTS).

To reach these objectives, POLYCHRONY offers services for modeling applica-
tion programs and architectures starting from high-level and heterogeneous input
notations and formalisms. These models are imported in POLYCHRONY using the
data flow notation SIGNAL. POLYCHRONY operates these models by performing
global transformations and optimizations on them (hierarchization of control, desyn-
chronization protocol synthesis, separate compilation, clustering, abstraction) in or-
der to deploy them on mission specific target architectures.

In this chapter, we meant to illustrate the application of a general principle: that
of correct-by-construction design of systems, from the early stages of the design to
the code generation phases on a given architecture. This is obtained by means of
formally defined transformations, based on the mathematical polychrony model of
computation, that may be expressed as source-to-source program transformations.
This has several beneficial consequences for practical usability. In particular, sce-
narios of transformations can be fully controlled by an application designer. Among
possible scenarios, a designer will have to his or her disposal predefined ones al-
lowing for instance simulation of the application following different options, or safe
code generation. This transformation-based mechanism makes it possible to for-
mally validate the final result of a compilation. Moreover, it provides a suitable
level of consideration for traceability purpose.

Source-to-source transformation of programs is used also for temporal analysis
of SIGNAL processes on their implementation platform [29]. Basically, it consists of
formal transformation of a process into another SIGNAL process that corresponds to
a so-called temporal interpretation of the initial process. The temporal interpretation
is characterized by quantitative characteristics of the implementation architecture.
The new process can serve as an observer of the initial one.

Here, we focused more particularly on formal context for code generation (Sec-
tion 4) and on code generation strategies available in POLYCHRONY (Section 5) by
considering a SIGNAL process solving second degree equations (Section 3). While
mathematically simple, this process exhibits non-trivial modes, synchronization re-
lation, precedence relation, which we analyzed and transformed to illustrate several
usage scenarios and for which we applied the following code generation strategies:

• Sequential code generation, Section 5.2, consists of producing a single step func-
tion for a complete SIGNAL process.

• Clustered code generation with static scheduling, Section 5.3, consists of par-
titioning the generated code into one cluster per set of input signals. The step
function is a static scheduler of these clusters.

Polychronous data flow equations 39

• Clustered code generation with dynamic scheduling, Section 5.4, consists of a
dynamic scheduling of a set of clusters.

• Distributed code generation, Section 5.6, consists of physically partitioning a
process across several locations and of installing point to point communications
between them.

• Sequential code generation for separate compilation, Section 5.5.1, consists of
associating the sequential generated code of a process with a profile describing
its synthesized synchronization and precedence relations. The calling context of
the process is passed to it as parameter.

• Clustered code generation for separate compilation, Section 5.5.2, consists of
associating the clustered generated code of a process with a profile describing
the synchronization and precedence relations of and between its clusters. The
scheduler of the process is generated in each call context.

These code generation strategies are based on formal operations, such as abstrac-
tions, that make possible separate compilation, code substitutability and reuse of
legacy code. The multiplicity of these strategies is a demonstration of the flexibility
of the compilation and code generation tools provided in POLYCHRONY. It is also
an indicator for the possibility offered to software developers to create new gen-
erators using the open-source version of POLYCHRONY. Such new generators will
be needed for developing new execution schemes or to adapt the current ones in
enlarged contexts providing for example a design-by-contract methodology [30].

References

1. S. K. Shukla, J.-P. Talpin, S. A. Edwards, and R. K. Gupta. High Level Modeling and Valida-
tion Methodologies for Embedded Systems: Bridging the Productivity Gap. In VLSI Design
2003, 9–14.

2. M. Crane and J. Dingel. UML vs. classical vs. rhapsody statecharts: not all models are created
equal. In Software and Systems Modeling, 6(4):415–435, December 2007.

3. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The
synchronous languages twelve years later. In Proceedings of the IEEE, 91(1):64–83, January
2003.

4. P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for System Design. In Journal for
Circuits, Systems and Computers, 12(3):261–304, April 2003.

5. L. Besnard, T. Gautier, and Paul Le Guernic. SIGNAL V4-Inria Version: Reference manual.
http://www.irisa.fr/espresso/Polychrony.

6. The Polychrony platform http://www.irisa.fr/espresso/Polychrony.
7. M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal verification of programs

specified with Signal: application to a power transformer station controller. In Science of
Computer Programming, 41:85–104, 2001.

8. M. Kerbœuf, D. Nowak, and J.-P. Talpin. Specification and Verification of a Steam-Boiler with
Signal-Coq. In Theorem Proving in Higher Order Logics (TPHOLs’2000), Lecture Notes in
Computer Science, Springer, 2000.

9. T. Grandpierre and Y. Sorel. From algorithm and architecture specifications to automatic gen-
eration of distributed real-time executives: a seamless flow of graphs transformations. In For-
mal Methods and Models for Codesign Conference, Mont-Saint-Michel, France, June 2003.

40 Loı̈c Besnard et al.

10. P. Le Guernic. SIGNAL : Description algébrique des flots de signaux. In Architecture des
machines et systèmes informatiques, 243–252. Hommes et Techniques, November 1982.

11. P. Le Guernic and A. Benveniste. Real-time, synchronous, data-flow programming: the lan-
guage SIGNAL and its mathematical semantics. Technical Report 533 (revised version: 620),
INRIA, June 1986.

12. P. Le Guernic and T. Gautier. Data-flow to von Neumann: the SIGNAL approach. In J. L.
Gaudiot and L. Bic, editors, Advanced Topics in Data-Flow Computing, 413–438, 1991.

13. A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with events and
relations: the SIGNAL language and its semantics. In Science of Computer Programming,
16:103–149, 1991.

14. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time applications
with SIGNAL. In Proceedings of the IEEE, 79(9):1321–1336, Sep. 1991.

15. A. Gamatié. Designing Embedded Systems with the SIGNAL Programming Language.
Springer, 2009.

16. G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,
editor, Information Processing 74, 471–475. North-Holland, 1974.

17. Arvind and K.P. Gostelow. Some Relationships between Asynchronous Interpreters of a
Dataflow Language. North-Holland, 1978.

18. J. B. Dennis, J. B. Fossen, and J. P. Linderman. Data flow schemas. In A. Ershov and
V. A. Nepomniaschy, editors, International Symposium on Theoretical Programming, 187–
216. Lecture Notes in Computer Science, 5, Springer-Verlag, 1974.

19. M. Le Borgne. Dynamical systems over Galois fields: Applications to DES and to the Signal
Language, In Lecture Notes of the Belgian-French-Netherlands Summer School on Discrete
Event Systems, Spa, Belgium, June 1993.

20. T. Amagbegnon, L. Besnard, and P. Le Guernic. Arborescent Canonical Form of Boolean
Expressions. Inria report n. 2290, 1994.

21. O. Maffeı̈s and P. Le Guernic. Distributed Implementation of SIGNAL: Scheduling & Graph
Clustering. In 3rd International School and Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, 1994. Lecture Notes in Computer Science vol. 863, Springer-
Verlag, 547–566.

22. D. Potop-Butucaru, S.E. Edwards, and G. Berry. Compiling Esterel. Springer, 2007.
23. L. Besnard, T. Gautier, M. Moy, J.-P. Talpin, K. Johnson, and F. Maraninchi. Automatic trans-

lation of C/C++ parallel code into synchronous formalism using an SSA intermediate form,
In Ninth International Workshop on Automated Verification of Critical Systems (AVOCS’09),
2009, L. O’Reilly and M. Roggenbach, editors.

24. T. Gautier and P. Le Guernic. Code generation in the SACRES project. In Towards Sys-
tem Safety, Proceedings of the Safety-critical Systems Symposium, SSS’99, Huntingdon, UK,
Springer, 1999, 127–149.

25. P. Aubry, P. Le Guernic, and S. Machard. Synchronous distribution of SIGNAL programs. In
Proc. of the 29th Hawaii International Conference on System Sciences, vol. 1. 1996, IEEE
Computer Society Press, 656–665.

26. The Topcased platform http://www.topcased.org.
27. The OpenEmbeDD platform http://www.openembedd.org.
28. Geensys’ RT-Builder http://www.geensys.com/?Outils/RTBuilder.
29. A. Kountouris and P. Le Guernic. Profiling of SIGNAL programs and its application in the

timing evaluation of design implementations. In Proceedings of the IEE Colloq. on HW-SW
Cosynthesis for Reconfigurable Systems, pp. 6/1–6/9, Bristol, UK, February 1996. HP Labs.

30. Y. Glouche, T. Gautier, P. Le Guernic, and J.-P. Talpin. A Module Language for Typing
SIGNAL programs by Contracts, In this book.

