
HAL Id: inria-00540505
https://hal.inria.fr/inria-00540505

Submitted on 29 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurately Measuring the Satisfaction of Visual
Properties in Virtual Camera Control

Roberto Ranon, Marc Christie, Tommaso Urli

To cite this version:
Roberto Ranon, Marc Christie, Tommaso Urli. Accurately Measuring the Satisfaction of Visual Prop-
erties in Virtual Camera Control. Smart Graphics, 10th International Symposium on Smart Graphics,
Jun 2010, Banff, Canada. pp.91-102, �10.1007/978-3-642-13544-6_9�. �inria-00540505�

https://hal.inria.fr/inria-00540505
https://hal.archives-ouvertes.fr

Accurately Measuring the Satisfaction of Visual

Properties in Virtual Camera Control

Roberto Ranon1, Marc Christie2, and Tommaso Urli1

1 HCI Lab, University of Udine, via delle Scienze 206, 33100, Udine, Italy
2 IRISA/INRIA Rennes Bretagne Atlantique, Campus de Beaulieu, 35042, Rennes

Cedex, France

Abstract. Declarative approaches to camera control model inputs as
properties on the camera and then rely on constraint-based and/or op-
timization techniques to compute the camera parameters or paths that
best satisfy those properties. To reach acceptable performances, such
approaches often (if not always) compute properties satisfaction in an
approximate way. Therefore, it is difficult to measure results in terms
of accuracy, and also compare approaches that use different approxima-
tions. In this paper, we propose a simple language which can be used
to express most of the properties proposed in the literature and whose
semantics provide a way to accurately measure their satisfaction. The
language can be used for several purposes, for example to measure how
accurate a specific approach is and to compare two distinct approaches
in terms of accuracy.

1 Introduction

Camera Control is an essential component of a large range of 3D applications,
including 3D games, data exploration and visualization, virtual walk-throughs,
3D modelling and virtual storytelling [9]. In the literature, a number of camera
control techniques have been proposed, ranging from interactive techniques –
where the user directly or indirectly controls the camera parameters– to auto-
mated approaches in which that camera parameters and paths are computed
automatically in a way that supports the user in the realisation of his tasks.

Within the category of automated approaches, declarative approaches focus
on providing a general solution to the problem of camera control by following a
three-step process: first design a general language to model camera control prob-
lems, then provide techniques to solve the problems described by the language,
and finally propose means to explore the classes of solutions. Such declarative
approaches generally model camera control problems as a set of properties that
need to hold (i.e. constraints to solve) and a set of properties that should hold
whenever possible (i.e. cost functions to optimize). The literature on declarative
approaches to camera control reports three classes of properties:

– properties that directly bind camera parameters/path parameters to given
values e.g. fix the camera up vector to ensure a horizontal view;

– properties that express geometric requirements on camera parameters/paths
with respect to objects in the scene, e.g. requiring that the camera be at a
certain distance from an object;

– properties that express requirements on the image(s) the camera will gener-
ate, e.g. requiring a certain object to be positioned in a given portion of the
screen and not be occluded.

The last category of properties (hereinafter referred to as screen-space proper-
ties) is particularly interesting for several reasons. First, screen-space properties
allow the user (or the application) to reason in terms of the result of the camera
control process, rather than in terms of values for camera parameters or camera
paths. Second, these are closer to the language a photographer/cinematographer
would use to position a camera in a real world. For example, the approach de-
scribed by Christie and Normand [8] uses properties such as Close-up and Long
shot to express requirements on the size of objects in images. Third, they rep-
resent an expressive groundwork on which to build more abstract properties for
example derived from cinematography and photography (e.g. rules of the thirds;
Gooch et al. [11] use this rule to improve the composition of shots through local
modifications of the camera parameters).

An overlooked issue in approaches to declarative camera control is accuracy:
how exact is the evaluation of a shot, with regard to a set of properties. To
reach acceptable computing times, declarative approaches often (if not always)
compute satisfaction of screen-space properties in an approximate way or using
approximate models, therefore leading to situations where the layout of objects
on screen does not fully satisfy the given specification (e.g. an object may be eval-
uated as fully occluded while it is only partially occluded). Approximate models
and approximate evaluations lead to both false-good and false-bad cases. A con-
tribution may then consist in designing exact methods to accurately evaluate
camera configurations with regard to screen-space properties, thereby offering
means to compare the quality of different approaches, and to precisely evaluate
the loss in accuracy of approximate models and approximate evaluators. The
difficulty of reasoning about the efficiency/accuracy tradeoff is, in our view, one
of the factors that limits the development of better declarative camera control
approaches.

This papers deals with the above issues in two ways:

– it proposes a simple language which can be used to write expressions that
capture most of the screen-space properties proposed in the literature, with
the aim of providing a way to clearly express the meaning of screen-space
properties;

– the language semantics provides a way to accurately measure if a camera
satisfies an expression written in the language, thus allowing one to reason
about the accuracy of a solution provided by existing declarative camera
control approaches, or compare solutions together. However, while in princi-
ple our evaluation method could be used in place of approximate techniques
in declarative camera control approaches developed so far, it is currently

too computational costly for that purpose (see discussion at the end of the
paper).

In this paper, we restrict our proposal to static camera control problems,
i.e. Virtual Camera Composition problems, where the task is to compute the
optimal configuration of camera parameters given a set of properties that must
hold in a given 3D scene at a certain instant in time. Extensions to dynamic
situations (where the task is to find camera paths, or more generally how camera
parameters must change in time) represents a far more complex task and will be
considered in future work.

The paper is organized as follows: Section 2 provides an overview of screen-
space properties proposed by approaches in the literature; Section 3 presents
our language for camera control, while in Section 4 we show how to express
screen-space properties from the literature using our language. In Section 5 we
present an example where we evaluate the accuracy of an existing approach in
the literature in a specific situation. Finally, in Section 6 we conclude the paper
and mention future work.

2 Screen-space Properties in the Literature

Declarative approaches to camera control have been constantly exploring the bal-
ance between two orthogonal aspects: expressiveness and computational cost [9].
Expressiveness encompasses the range, nature and accuracy of constraints with
which properties can be expressed over camera shots. For example, the classical
Framing property constrains a target object to project inside a user-defined
frame on the screen. The need for improving the expressiveness i.e. design-
ing a cinematographic language that is both able to express a large range of
properties, and that offers means to compose these properties, is of increasing
importance with regard to the evolution of viewpoint computation and cine-
matography as demonstrated in most recent computer games [14]. On the other
hand, the computational cost allotted to any camera control process directly
drives the implementation of declarative approaches, generally at the cost of
reducing the expressiveness. More importantly, the computational cost drives
the level of abstraction of the geometry (how precisely should objects be repre-
sented and which geometric abstractions should be considered for the different
properties). For example, a number of contributions rely on bounding represen-
tations for computing the visibility of targets, by casting rays from the camera
to the vertices of the axis aligned bounding box [4, 5]. Furthermore limitations in
the solving techniques restrict the range of possible abstractions (e.g. gradient-
based techniques would require the evaluation of properties to be a differentiable
function, or at least a smooth one [10]).

To provide the readers with an overview of screen-space properties used in
declarative languages for camera control, we identified and gathered most com-
mon properties from the literature and display them in Table 1.

Property Description

Occlusion

Checks if target T is occluded on the screen Occluded(T) [7], Occlusion Avoidance (T) [1] Evaluation of occlusion is performed using pro-
jected bounding spheres.

Checks if target T 2 occludes T 1 Occluded (T 1, T 2) [8] OccludedBy (T 1, T 2)

[13]
Evaluation uses occlusion cones defined by the
spherical bounds of the targets or hierarchical
bounding spheres plus z-buffer.

Checks if target T is not occluded on the screen Occluded (T) [13] Evaluation uses hierarchical bounding spheres
plus z-buffer.

Checks if no more than fraction min of the target
T is occluded

OBJ OCCLUSION MINIMIZE (T, min) [2, 3] Evaluation performed with nine-rays ray-casting
to the bounding volume or off-screen rendering.

Checks if a target T is out of view or occluded OBJ EXCLUDE OR HIDE(T) [2] Evaluation not described in paper.

Framing

Checks whether a target T projects into a rectan-
gular frame F on the screen

Framing(T,F) [7, 8] Evaluation not described in papers.

Checks whether target T projects into intervals X

and Y

CenterXY(T,X,Y) [13] Evaluation not described in paper.

Checks whether horizontal/vertical orientation of
target T projects into intervals X and Y

AngleXY(T,X,Y) [13] Evaluation not described in paper.

Checks whether target T is location (r)ight, (l)eft
or (c)enter on the screen

Placement(T,r|l|c) [4] Evaluation not described in paper.

Screen Separation
Checks whether a target T 1 is at a distance d to
target T 2 on the screen

ScreenSeparation(T 1,T 2,d) [7, 13] Evaluated as distance between the projected cen-
ters, minus the projected radiuses of the objects.

In Field Of View

Checks whether a target T is projected in the field
of view

OBJ IN FIELD OF VIEW(T) [2, 3], InViewVolume(T) [5,
6], InView(T) [4], InViewport(T) [13]

Evaluated by projecting the bounding box or lo-
cus sphere of the object on the screen and check-
ing if it is completely enclosed.

Checks if a target T is out of view or Occluded OBJ EXCLUDE OR HIDE(T) [2] Evaluation not described in paper.
Checks if a target T is excluded from the field of
view

Excluded(T) [4] Evaluation not described in paper.

Size

Checks the projected size of a target T is in a
given range v={close-up, medium close-up, long-
shot...}

Projection(T,v) [8] The distance is estimated from the size of the
projected object: distance = (sizeObject

screenSize) ·

(1
tan(fov/2)

). An epsilon is used to shift the scale

shots.
Checks the area of a projected target T is equal
to a value v

ProjectedArea(T,v) [13] Size(T,v)
[4, 5, 12], ProjectionSize(T,v) [6],
OBJ PROJECTION SIZE(T,v) [2, 3]

Evaluation uses the projected radius of the
bounding sphere, the longest edge of the bound-
ing box, the convex hull of the projected bounding
box or off-screen rendering.

Relative Spatial Location

Checks whether projected target T 1 is
(l)eft/(r)ight/(a)bove/(b)elow projected tar-
get T 2

RelativePositioning (T 1,T 2,l|r|a|b) [3, 8] Evaluation done as geometric reasoning on the
projected bounding volume of the objects or con-
sidering the position of the camera with respect
to a plane which passes through the centers of the
objects.

Checks whether projected target T 1 is between
projected targets T 2 and T 3 in X or Y dimensions

BetweenObjects(T 1,T 2, T 3,X|Y) [13] Evaluation not explained in paper.

Table 1: Main screen-space properties from the literature.

For a thorough overview of solving techniques in virtual camera control, we
refer the readers to the overview proposed in [9].

3 The Camera Evaluation Language

In this Section, we propose the Camera Evaluation Language (hereinafter, CEL).
Its design is guided by two motivations: first, to propose a simple language that
can be used by present and future declarative approaches to express their screen-
space properties, and then to provide a way to reason about accuracy and the
approximations that eventually need to be included. As we will see, all screen-
space properties in table 1 can be expressed with a few simple CEL primitives,
namely the Rendering and Pixel Set operators, and the common mathematical,
logical and set operators and relations.

Operator or Relation Returns

R(subscene) PS = the set of pixels p that results from rendering subscene
from camera, with pside = 0 for each p

CR(subscene) PS = the set of pixels p that results from rendering subscene
from the position of camera, using 90 degrees FOV, perspec-
tive projection and view direction towards any face of a cube
centered in the camera, with pside = 0, . . . , 5 depending on
which side of the cube p belongs to

Maxx(PS, side) max({px|p ∈ PS ∧ pside = side})
Minx, Maxy, Miny . . .
Maxz, Minz . . .

Avgx(PS) avg({px|p ∈ PS})
Avgy, Avgz . . .

Overlap(PS1, PS2) set of pixels in PS1 that have the same x, y, side coordinates
of some pixels in PS2

CoveredBy(PS1, PS2) set of pixels of PS1 that would be covered by pixels of PS2

if we rendered together the subscenes that produced PS1 and
PS2

Left(PS1, PS2) set of pixels of PS1 that are left of any pixel in PS2, consid-
ering only pixels with pside = 0

Right, Above, Below . . .

Distance(PS1, PS2) min(distance(p, p′) where p ∈ PS1, p
′ ∈ PS2, , considering

only pixels with pside = 0

Table 2: Operators and relations in CEL. In the table, PS,PS1, PS2 denote pixel sets.

3.1 Rendering Operators

Rendering operators take any subpart of a 3D scene (e.g., an object, a group
of objects, or the entire scene), render it into an image with size imageWidth,

imageHeight (or a cube map), and return a set containing all pixels that, in
the image, refer to the part of the 3D scene given as argument. Rendering oper-
ators are the primitive components of the language on which all operations are
performed.

Rendering operators assume the existence of a current camera, from which
rendering is performed. This is the camera we want to evaluate with respect to
a set of properties. CEL defines two rendering operators, R and CR (see table
2, first two rows). The first one just returns the set of pixels resulting from
rendering its argument into a 2D texture. The second one returns the set of
pixel resulting from rendering its argument into a cube map from the camera
position, using six orthogonal views (i.e., the operator arguments are rendered
six times, one for each face of the cube map, starting from the current camera
view direction).

Pixel sets that are returned by rendering operators are defined as follows:
each pixel p is defined by its coordinates px, py, pz, pside where px, py are the
coordinates of the pixel in the rendered image (or side of the cube map), pz it
its distance from camera and pside = 0, 1, . . . , 5 denotes one of the sides of the
cube in case a cube map has been rendered, and is 0 in case we have rendered
a 2D image. The concept of pixel set is similar to the notion of depth sprite or
nailboard in image-based rendering [15].

At a practical level, the resulting pixel set can be easily computed by ren-
dering the specified subscene part, and then take the resulting pixels (i.e. where
color is different from the background, or the corresponding value of the Z-buffer
is less than the maximum z value of the depth buffer).

3.2 Pixel Set Operators and Relations

Once the rendering is performed into pixel sets, a number of comparisons can
be performed by applying simple operators over the pixel sets (e.g. computing
the overlapping regions or relative spatial location). Such Pixel Set operators
(see table 2, third to eighth row) and relations act on sets of pixels, perform
calculations, and return numbers or pixel sets. In the following, p(x, y, z, side) ∈
PS is true if there exists a pixel p ∈ PS with such coordinates (similarly, we
define also p(x, y, side)).

Besides the operators that perform basic calculations on one set (Max, Avg
and distance, see Table 2, third and fourth row), we define the Overlap oper-
ator (Overlap(PS1, PS2)) that returns those pixels in PS1 that have the same
x, y, side coordinates as pixels in PS2 (see figure 1), i.e.:

Overlap(PS1, PS2) = {p(x, y, side) ∈ PS1|p
′(x, y, side) ∈ PS2}

Since we consider also the side coordinate in the operator, when two pixel sets
resulting from CR are used, the comparison is done on each of the six generated
images.

The operator CoveredBy(PS1, PS2) returns the pixels in PS1 that would be
discarded by z-test if we rendered together the subscenes that produced PS1 and

PS2, i.e. it takes into account the overlapping region, and perform comparison
on the z coordinate:

CoveredBy(PS1, PS2) = {p(x, y, side) ∈ PS1|p
′(x, y, side) ∈ PS2 ∧ pz > p′z}

The following operators act only on pixels with pside = 0. More specifically,
Left(PS1, PS2) returns the pixels in PS1 that are left of any pixel in PS2, i.e.

Left(PS1, PS2) = {p ∈ PS1|px < Minx(PS2)}

Similarly, we define also Right, Above, and Below (these last two perform the
comparison using the y coordinate).

Fig. 1: The overlap operator (left) and the Left operator (right) in the case of pixel sets
obtained by using the R operator.

4 Using CEL to build and evaluate screen-space

properties

In this Section, we propose some CEL expressions to measure values related to
the screen-space properties defined in the literature.

The following expressions express and evaluate the size of a target T relative
to the viewport size, i.e. its height, width or area on the viewport:

Height(T) =
Maxy(R(T)) − Miny(R(T))

imageHeight

Width(T) =
Maxx(R(T)) − Minx(R(T))

imageWidth

Area(T) =
|R(T)|

imageWidth× imageHeight

The following expressions express and evaluate the relative position on the view-
port of two targets T1, T2:

ScreenSeparation(T1, T2) =
Distance(R(T1), R(T2))

imageWidth

LeftOf (T1, T2) =
|Left(R(T1), R(T2))|

|R(T1)|

RightOf(T1, T2) =
|Right(R(T1), R(T2))|

|R(T1)|

AboveOf(T1, T2) =
|Above(R(T1), R(T2))|

|R(T1)|

BelowOf(T1, T2) =
|Below(R(T1), R(T2))|

|R(T1)|

InFrontOf (T1, T2) =
|CoveredBy(Overlap(R(T1), R(T2)), R(T1))|

|Overlap(R(T1), R(T2))|

InsideOf(T1, T2) =
|CoveredBy(R(T2), R(T1))|

|R(T1)|

To express and evaluate inclusion of a target in the viewport, we use an additional
geometry CVV (Camera View Volume) whose shape, position and orientation
corresponds to the Camera View Volume:

InViewVolume(T) =
|CoveredBy(CR(T), CR(CV V))|

|CR(T)|

i.e., we compute the fraction of pixels of the target that are covered by pixels of
the view volume. By using CR, we also take into account the pixels that are out
of the viewport.

To express and evaluate framing, we use a similar idea, i.e. we render an
additional geometry SAS (Screen Aligned Shape) which is a 2D shape positioned
just after the camera near plane):

Framing(T, SAS) =
|CoveredBy(CR(T), CR(SAS))|

|CR(T)|

i.e., we compute the fraction of pixels of the targeted that are covered by pixels
of the view volume. This approach allows to use any shape as the frame, and
also, since we use CR, to set the frame (partly) outside the viewport.

Finally, occlusion can be expressed and measured by the following expressions
(Scene denotes the entire scene):

Occluded(T) =
|CoveredBy(R(T), R(Scene − T))|

|R(T)|

OccludedBy(T1,T2) =
|CoveredBy(R(T1), R(T2))|

|R(T1)|

In cases where, for some argument T of an operator, R(T)=∅ (i.e. the argu-
ment is not in the camera view volume), there might be two problems:

– the expression computes a division by zero (e.g. Occluded), or

– the expression does not know how to compute a result (e.g. ScreenSepara-
tion).

In those cases, we define the expression to return -1 as a result. Note that this is
not the case of Height, Width and Area, where if the target is not in the camera
view volume, the computed result (i.e. zero) is correct.

The accuracy of evaluating an expression depends on the size of the image to
which rendering operators compute their results. Of course, since these operators
are based on rasterization, they can never be perfectly correct. However, we can
safely assume the evaluation as accurate when rendering to images that are at
least the same size as the intended application window, since using a greater
accuracy would not be appreciable by the user.

Since screen-space properties in the literature typically are expressed with
respect to some desired value (e.g. height of an object equal to ...), in order to
express screen-space properties we define also a comparison function:

Equal(expr1, expr2, v0, v1, bl) =







0 if expr1 /∈ [v0, v1] ∨ expr2 /∈ [v0, v1]

1 + |expr1 − expr2|
bl − 1

v1 − v0
otherwise

where expr1, expr2 are two CEL expressions (or possibly, just a numeric
value), 0 ≤ v0 < v1 define an interval inside which the comparison is at least
partly satisfied, and 0 ≥ bl ≥ 1 defines the minimum value of satisfaction when
both expr1, expr2 are in [v0, v1]. Equal returns a value in [0,1] indicating how
close the actual values computed for the expressions are, provided that they are
inside the acceptable range (if not, the returned value is zero):

Figure 2 shows the Equal function with different baseline settings.

Fig. 2: The Equal function with bl=0 (left), bl=0.6 (right). To simplify the graph, we
have represented |expr1 − expr2| in the horizontal axis

For example, Equal(OccludedBy(T1, T2), 0.7, 0.5, 1, 0) means that we would
like T1 occluded by T2 for the 70% of its rendered area. Satisfaction will be
therefore 1 for that value. If the occluded fraction is less than 0.5, satisfaction
will be 0. For values between 0.5 and 0.7, satisfaction will vary in [0,1] and be
proportional to how close the value is to the desired 0.7 value.

5 Example: using CEL to measure the accuracy of

existing approaches

In this Section, we show how to use CEL to measure the accuracy of the ap-
proaches proposed by Burelli et al. [5] and Christie et al. [8] for a specific situa-
tion, i.e. the camera from which the picture in figure 3 has been rendered. The
set of screen-space properties we consider in this example are (in the formula-
tion adopted in [5]) listed in the first column of Table 3 (t is the transporter in
figure 3, which shows also its bounding box); their CEL equivalent expressions
are shown in the third column of the same table.

Fig. 3: The image computed by the camera we are evaluating with respect to the
properties in Table 3

The first property requests the transporter to be entirely in the camera view
volume. In [5], the paper abstracts the transporter using an Axis Aligned Bound-
ing Box (AABB) representation, it returns 1 if all the corners of its AABB are in
the camera view volume, 0 if no corner is in the camera view volume, and 0.5 oth-
erwise. Thus the value computed by [5] is 0.5 (partially in view volume) whereas
the target is fully included in the view volume. The second property requires the
transporter to be fully unoccluded. Since [5] measures that by ray casts towards
the corners and center of the transporter AABB, it reports the object to by fully
unoccluded which is obviously false. The third property requires the transporter
projected size to be 30% of the image area. Since [5] measures size by evaluating
the area of the projected bounding sphere, it returns the value 0.88 (i.e. we are
88% close to the desired value). Now, the fourth column of Table 3 reports the
values obtained by accurate evaluation using the equivalent CEL expressions.
The total error accumulated by [5] is 1.33, i.e. the approach is off by an average
of 44% compared to accurate evaluation, and the worst approximation is given
by the objProjSize property. Now, we compare the results with Christie & Nor-
mand [8]. The authors rely on a spherical representation to abstract targets and

since the transporter is a long shaped object, the Framing property returns a
very approximate result (only 37% is in the frame). The NoOcclusion studies the
overlap of the projecting spheres of the target and of the occluders and clearly
states that the target is occluded by a large value (the bounding of the lamp is
very large). Since the projection size is not modeled in [8], we replace it by a
Long Shot property. Average mistake in the case of paper [8] is 68%.

Property (as in [5]) value (as in [5]) CEL expression CEL value Error

objInFOV (t, 1.0, 1.0) 0.5 InViewVolume(t) = 1 1.0 50%
objOcclusion(t, 0.0, 1.0) 1.0 Occluded(t) = 0 0.87 13%
objProjSize(t, 0.3, 1.0) 0.88 Area(t) = 0.3 0.18 70%

Property (as in [8]) value (as in [8]) CEL expression CEL value Error

Framing(t,−1, 1,−1, 1) 0.37 InViewVolume(t) = 1 1.0 63%
NoOcclusion(t) 0.1 Occluded(t) = 0 0.87 90%

LongShot(t) 0.7 Area(t) = 0.3 0.18 52%

Table 3: Properties and their measured values for the viewpoint displayed in Figure 3;
t is the transporter.

6 Discussion and Conclusions

In this paper, we have presented a simple but expressive language for specifying
screen-space properties in Virtual Camera Control problems. The language en-
ables a clear specification of most properties in the literature and furthermore
enables the accurate measuring of their satisfaction. We hope that the language
can also be a valuable tool in measuring accuracy when designing and imple-
menting new camera control approaches where complex geometries need to be
abstracted and approximations performed for the sake of performance. To this
purpose, an implementation of the language, as well as more examples of using
it are available at http://www.cameracontrol.org/language.

Future work will consist in extending the language to deal with dynamic
camera control, and use it in the direction of establishing a benchmarking en-
vironment to compare models, techniques and algorithms in Virtual Camera
Control. Moreover, we are also exploring the possibility of computing CEL ex-
pressions in the GPU, together with low resolution pixel sets, and see if we can
get performances that are acceptable to be used inside a declarative camera
control approach.

Acknowledgments Authors acknowledge the financial support of the Ital-
ian Ministry of Education, University and Research (MIUR) within the FIRB
project number RBIN04M8S8, as well as European Grant number 231824.

References

[1] W. H. Bares and J. C. Lester. Intelligent multi-shot visualization interfaces
for dynamic 3d worlds. In IUI ’99: Proceedings of the 4th international
conference on Intelligent user interfaces, pages 119–126. ACM, New York,
NY, USA, 1999.

[2] W. H. Bares, S. McDermott, C. Boudreaux, and S. Thainimit. Virtual 3d
camera composition from frame constraints. In MULTIMEDIA ’00: Pro-
ceedings of the eighth ACM international conference on Multimedia, pages
177–186. ACM, New York, NY, USA, 2000.

[3] W. H. Bares, S. Thainimit, and S. McDermott. A model for constraint-
based camera planning. In Proceedings of AAAI Spring Symposium on
Smart Graphics, pages 84–91. 2000.

[4] O. Bourne, A. Sattar, and S. Goodwin. A constraint-based autonomous
3d camera system. Constraints, 13(1-2):180–205, 2008. ISSN 1383-7133.
doi:http://dx.doi.org/10.1007/s10601-007-9026-8.

[5] P. Burelli, L. Di Gaspero, A. Ermetici, and R. Ranon. Virtual camera
composition with particle swarm optimization. In SG ’08: Proceedings of the
9th international symposium on Smart Graphics, pages 130–141. Springer-
Verlag, Berlin, Heidelberg, 2008.

[6] P. Burelli and A. Jhala. Dynamic artificial potential fields for autonomous
camera control in 3d environments. In Proceedings of Artificial Intelligence
and Interactive Digital Entertainment (AIIDE09). AAAI Press, 2009.

[7] M. Christie and E. Languénou. A constraint-based approach to camera
path planning. In Smart Graphics, pages 172–181. 2003.

[8] M. Christie and J.-M. Normand. A semantic space partitionning approach
to virtual camera control. In Proceedings of the Annual Eurographics Con-
ference, pages 247–256. 2005.

[9] M. Christie, P. Olivier, and J.-M. Normand. Camera control in computer
graphics. Comput. Graph. Forum, 27(8):2197–2218, 2008.

[10] S. M. Drucker and D. Zeltzer. Intelligent camera control in a virtual envi-
ronment. In Proceedings of Graphics Interface 94, pages 190–199. 1994.

[11] B. Gooch, E. Reinhard, C. Moulding, and P. Shirley. Artistic composition
for image creation. In Proceedings of the 12th Eurographics Workshop on
Rendering Techniques, pages 83–88. Springer-Verlag, London, UK, 2001.
ISBN 3-211-83709-4.

[12] N. Halper, R. Helbing, and T. Strothotte. A camera engine for computer
games: Managing the trade-off between constraint satisfaction and frame
coherence. Comput. Graph. Forum, 20(3), 2001.

[13] N. Halper and P. Olivier. CamPlan: A camera planning agent. In Smart
Graphics 2000 AAAI Spring Symposium, pages 92–100. AAAI Press, 2000.

[14] B. Hawkins. Real-Time Cinematography for Games (Game Development
Series). Charles River Media, Inc., Rockland, MA, USA, 2004. ISBN
1584503084.

[15] G. Schaufler. Nailboards: A rendering primitive for image caching in dy-
namic scenes. In Rendering Techniques 97: Proceedings of the Eurographics
Rendering Workshop, pages 151–162. Springer Verlag, 1997.

