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COMMUTABILITY OF HOMOGENIZATION AND LINEARIZATION AT
IDENTITY IN FINITE ELASTICITY AND APPLICATIONS

ANTOINE GLORIA AND STEFAN NEUKAMM

ABSTRACT. In this note we prove under some general assumptions oticedagrgy densities
(namely, frame indifference, minimality at identity, ndegeneracy and existence of a qua-
dratic expansion at identity) that homogenization anddifmation commute at identity. This
generalizes a recent result by S. Muller and the secondabth dropping their assumption
of periodicity. As a first application, we extend th&lfconvergence commutation diagram for
linearization and homogenization to the stochastic gpttivder standard growth conditions. As
a second application, we prove that theclosure is local at identity for this class of energy
densities.
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1. INTRODUCTION

This note is devoted to the study of the commutability of dinzation and homogenization
at identity in finite elasticity. We consider an open boundiggschitz domainD ¢ R¢, and a
family of integral functionals

7. : HY(D) — [0, +00], U / We(z, Vu(z)) dx
D

whereW. : D x M? — [0, +o0] is a Borel function. As it is common in finite elasticity,
we assume thall, is frame indifferent and minimal at identity. Moreover, wesame that
W, is non-degenerate and admits a quadratic expansion aitydeith quadratic ternt).; as
a consequence, in situations when the deformation is ctoserigid-body motion, say when
|Vu —1d| ~ h < 1, we can accurately describe the functioBalafter scaling by, ~?2) by the
guadratic functional

E :HY(D) = [0,+00], g~ / Q-(x,Vg(x))dz with g(z) :== b~ (u(z) — ).
D
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2 ANTOINE GLORIA AND STEFAN NEUKAMM

Since Q- (-, F') genuinely only depends on the symmetric part of the straawlignt F', the
energy&. corresponds to linear elasticity. On the other hand,.ihas some specific struc-
ture in space rescaled hy(think of periodicity for instance), we may expect a homadgan

tion property to hold ag vanishes, which justifies to replace the nonlinear osiitiain-
space energy density, F') — W_.(x, F') by a nonlinear homogeneous-in-space energy density
F +— Wyom(F) (or more generally by an energy density, F') — W*(x, F') whose oscilla-
tions inx are independent af).

In this paper, we address the commutability of both limits {iand <), and prove that they
indeed commute in the following sense: The quadratic expardf the homogenized energy
Whom (resp. W*) at identity coincides with the homogenization of the qadidrexpansion
Q- of the heterogeneous energy density at identity. In Theda2elhhwe study functionals
with standard growth and prove that the commutability hdluisth, on the level of densities
and on the level of the functionals), providgd can be homogenized in the sense that
I'(L?)-converges to a functional of the form

u&—>/ W*(z,Vu) dz.
D

In Theorem2.2we study unbounded energies and show that the commutadtilitiholds pro-
vided bothZ. and&. can be homogenized. This theorem covers in particular the wdoen
W.(z,F) = 400 if det F < 0 — as it is desirable in finite elasticity. Our results general
ize a recent work by S. Miller and the second authoMiN] (see also INeulQ) by relaxing
the periodicity assumption oW, (as well as the growth condition from above). MN] the
central object in the analysis is a multi-cell homogen@atiormula that allows in the periodic
setting to compute the homogenized density,,, by solving a sequence of periodic mini-
mization problems on cubic domains invadig§. In [Neul the commutability of homog-
enization and linearization (solely ad’aconvergence statement on the level of the energies)
has been extended in the periodic case to energy densitlesutvgrowth condition from above
by extensive use of two-scale convergence methods. In therglesituation considered in the
present contribution, both the multi-cell homogenizatformula and two-scale convergence
approaches do not apply. Instead, we study the asymptotiwuta

Wp(F) := lim { inf Z.(op +v) }
e=0 | veH (D)

which is well defined whenevef, T'-converges and is equi-coercive. In PropositihB we

establish a quadratic expansion at identityfidgp — which is the key insight in our analysis.

As afirst application of Theore 1, we show that linearization and stochastic homogenization
commute at identity for energy densities which satisfy déad growth conditions (see Theo-
rem3.2). In a nutshell, what holds ilMN] in the periodic setting is also proved to hold here in
the stochastic setting. This shows that the arguments ys8dMiuller and the second author in
[MN] are quite stable with respect to the structure assumptitishwensures homogenization
— at the core of the proof the quantitative rigidity estimat¢FJMO02.

As a second application of Theoretri, we prove a “weak local property” of tHe-closure of

a class of integral functionals at identity. The problenT'eflosure consists in characterizing
all the energy densities which can be reachedl'bgonvergence starting from a composite
made of a finite number of constituents with prescribed va@draction. In particular, thé'-
closure is said to be local in some class of integrands if arg ibany such “homogenized”
energy density is the pointwise limit of a sequence of homigel energy densities obtained
by periodichomogenization. In the linear case, this property has bemred independently by
Tartar in [Tar84 and Lurie and Cherkaev in.[C84]. The corresponding locality property of the
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G-closure for monotone operators is due to RaitumsRai(Q]] (generalizing an unpublished
work by Dal Maso and Kohn). Related results of locality of thelosure in the class of convex
integrands can be found iBB09]. Yet, the local character of tHe-closure is an open question
in the class of quasiconvex nonconvex integrands satigfgtandard growth conditions. We
focus here on a smaller class. In particular, we considerggngensities which are frame
indifferent, non-degenerate, minimal at identity, adnmguadratic Taylor expansion at identity,
and satisfy standard growth conditions. Then, we show traafy ' — W*(F) in theI'-
closure of this set, there exists a sequence of periodiggrdansities whose homogenized
energy densities have quadratic Taylor expansions ampitlase to the Taylor expansion of
W* at identity (see Theorer.l). This can be seen as a weak version of the local character
of theI'-closure in this set at identity. Although quite restrictédds is the first such result for
guasiconvex nonconvex energy densities.

This article is organized as follows: In Secti@we state and prove our main theorem, the
commutability of linearization and homogenization at ititggn In Section3 we apply this re-
sult to stochastic homogenization. The last section isadeed to the local character of the
I"-closure at identity.

We will make use of the following notation throughout thettex

— R* := [0, +00) is the set of non-negative real numbers;

— dis the dimension;

— M denotes the space @k d real matrices, and for all € M?, sym F = 1/2(F+F7T)
is the associated symmetric matrix, asidv ' = F' — sym I’ the associated skew-
symmetric matrix;

— SO(d) is the set of rotations aR¢;

- Tgym denotes the space of symmetric fourth order tensof®%n

— D denotes an open bounded subseR6fwith a Lipschitz boundary (except for Theo-
rem2.2and Propositior2.3in Section2 whereD is further assumed to bg');

- U = (0,1)%is the unit cell;

— for all ' € M, we define the functiopr : R? — R¢ aspp :  +— F;

— forallp € [1, +oc], LP(D), H'(D), W'?(D), H}(D), andW, (D) denote the stan-
dard Lebesgue, Hilbert and Sobolev spaces of maps fiotm R?, and the associated
subspaces of functions vanishing on the bounddpy(in the sense of traces);

— ¢ andh denote generic elements of vanishing families of positivabers(c) and(h),
respectively.

— p (andp’) denotes a modulus of approximation, icds an increasing function frof +
to [0, +o00] such thatimy_.o p(h) = 0.

2. GENERAL COMMUTABILITY RESULTS

Throughout this article, we make the following assumptionghe energy densities.
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Definition1. Foralla > 0 and every modulus of approximatignwe denote byV,, , the set of
measurable energy densitis : M¢ — [0, +oco] which satisfy the following three properties:

(W1) W is frame indifferent, i.e.
W(RF)=W(F) forall F e M R e SO(d);
(W2) W is non degenerate, i.e.
W(F) > Ldist*(F,S0(d))  forall F € M%
(W3) W is minimal atld and admits the following quadratic expansioridat
(W(Id+G) — Q(G)]

< p(6 forall § > 0,
0<IG|<s GI? ©)

whereQ : M? — [0, c0) is a quadratic form satisfying
0<Q(G) < alG]? for all G € M.

For some results (in particular Theorétrl) we consider continuous energy densities that ad-
ditionally satisfy standard growth conditions:

Definition 2. For allp € [1,+00) anda > 0, we denote byV?% the set of continuous energy
densitiesiV : M — R which satisfy the following standard growth condition oflerp:

(W4) VF e M? : LIFP—a < W(F) < o|FIP +1).

In addition, we seW; , := W, , N WA for every modulus of approximatiop. Note that
WE, =0 forp < 2,andW5 , # () forp > 2.

Remarkl. Let W € W, , and let@ denote the quadratic form associated withthrough
(W3). Because of\(/1) — (W3) the quadratic form@ generically satisfies conditions that are
common in linear elasticity; namely, the growth and eltijyi condition

(Q1) VG e M? : L lsymG)* < Q(G) < o |G)?
for some positive constant’ that only depends on, and
(Q2) VG e M9 : Q(skwG) = 0.

Definition 3. We denote byQ,, the set of non-negative quadratic for)s: M¢ — R+ satis-

fying (Q1) and Q2).

Throughout this article we consider measurable mi&pgom D to W, , such thatiV (-, -) is

a Borel function onD x M¢ (or equivalent to a Borel function), so that— W.(z, Vu(z)) is

a measurable function for all € W' (D). We call such maps “admissible energy densities”
from D to W, ,. Note that measurable maps franto WY , are Carathéodory functions and
therefore admissible.

Let us consider a familyiV, ) of admissible energy densities franto W, ,. For almost every
x € D, we denote by).(z, -) the quadratic form associated wit¥i. (z, -) through {V3); thus,
Q- can be written as the pointwise limit
o1
(,G) — Q:(x,G) := illli% ﬁWE(:U,Id +h@G),

and therefore inherits the measurability propertie$lof We then define two families of inte-
gral functionals, namel§. : H'(D) — [0, +oc] characterized by

(1) To(u) i= /D W.(z, Vu()) de,
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andé&. : HY(D) — [0, +o0) characterized by

(2) E(u) IZ/DQe(x,vu(ZE))dSC.

The main theorem of this paper is the following result, whigneralizes§IN, Theorems 1
& 2] to the non-periodic setting.

Theorem 2.1. Let2 < p < 400, and let(W,) denote a family of measurable energy densities
from D to W5 ,. Assume that the associated family of energy functiofialdefined in(1)
I'(LP)-converges to an integral function@l on W' (D), defined by

T*(u) = /DW*(QC,Vu(m))dm,

wherelV* is a Caratteodory function orD x M? with W*(z, -) € W4 for almost every: € D.
Then
(@ W*(x,-) € Wg,ﬁ, for almost everyr € D, wherea’ > 0 and the modulus of approxi-
mationp’ only depend o and p;
(b) there exist” > 0 and a measurable ma@* : D — Q. such that the energy func-
tionals £. defined in(2) I'(L?)-converge t&€* : H'(D) — [0, +00) defined by

E* (u) ::/DQ*(m,Vu(x))dx;

(c) the expansion
W*(z,1d+G) = Q*(x,G) + o(|G[*)
holds for almost every € D and for allG € M
(d) the following diagram commutes

(1)

gh,a — &

@) |®

Ghom N — Ehom

(4)
whereg, . and Gporm 1, denote the functionals frof} (D) to [0, +oo] defined as

1 1
Onhe(g) == ﬁfa(ﬂﬂld + hg), Ghom n(9) == ﬁfhom(tﬂld + hg);

and (1),(4), and (2),(3) mealt-convergence i (D) with respect to the strong topol-
ogy of L?(D) ash — 0 ande — 0, respectively. Moreover, the famili€g.) and (£.)
are equi-coercive w. r. t. weak convergencetp(D).

Remark2. Due to the compactness of integral functionals with stash@agrowth conditions
w. r. t. I'(LP)-convergence (see for instand}98, Theorem 12.5]), the assumptionsBnare
always satisfied up to extraction of a subsequence.

Remark3. If (W) satisfies a growth condition from below of orger 2 (uniformly in €) then
I. = +ooon H'(D) \ W'P(D) and it is natural to study the restricted function@l$y1.» )

w. r. t. the strong topology ii?(D). In particular,Z.|y1.»(py is sequentially weakly lower
semicontinuous MV 1?(D) if and only if it is lower semicontinuous w. r. t. strong conve
gence inLP(D). Note that due to conditionN2), (W;) generically satisfies a uniform growth
condition from below of ordep = 2.
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Remark4. As in [MN], in Theorem2.1 part (d), we can replace the function spadé&(D) by
the space

A, :={geH'(D): g=00ny},
wherey denotes a closed subsetdd with positived — 1-dimensional Hausdorff measure, and
regular enough so that, N W1>°(D) is dense inA, (see MN, Proof of Proposition 1] and
[DMNPOZ for details).

In finite elasticity it is desirable to consider energy déasiwith the physical behavior
W(z,F) =400  forall F e M?with det F < 0.

In order to allow such energy densities we have to droptgeowth condition from above. The
following theorem shows that for unbounded energy demssitinearization statement holds as
well — although in that case homogenization is an open proble

Theorem 2.2. Suppose that the domainis C. Let(1V.) denote a family of admissible energy
densities fromD to W, ,. Suppose that there exist> 2, and homogeneous-in-space energy
densities},om : M¢ — [0, +00] and Qpom : M¢ — R, such that ag — 0

(i) the energy functionalg.|y1.»py defined in(1) I'(L?)-converge to

Thom : WIP(D) — [0, +oc], u / Whom (Vu(z)) dz.
D

(i) the quadratic energy functional§. defined in(2) I'(L?)-converge teyon, : H' (D) —
[0, 4+00) given by

Enom : H' (D) — R, U /DQhom(Vu(x)) dz.

If the homogenized density,,.,, satisfies for all’ € M? the asymptotic formula
(3 Whon(F) = lim iy inf{Z.(¢r +v) : v e Wy P (D)},

thenWi,., admits a quadratic expansion &t given byQpom, i-€. for all G € M¢, there holds
(4) Whom(I1d +G) = Qo (G) + o(|G]?).

Remarkb. The quadratic expansiod) of W, does not depend on the exponent for which
theI'(LP)-convergence holds.

Theoremg.1& 2.2follow from a result which is somewhat unrelated to homoagatidn, and
establishes a quadratic expansiofdator the asymptotic formula

(5) Wp(F) := lim inf  Z.(pr+0)
e—0 UGWOI’I)(D)

if it exists.

Proposition 2.3. Let2 < p < +oo, let the domainD be C!, and let(W.) be a family of
admissible energy densities frathto W, ,. Suppose that the lim{b) exists in0, +-oo] (where
T.is as in(1) ) for all F € M¢?, and that the functional$. defined in(2) I'(L?)-converge to
a functional€* on H'(D). Then there exist a constant > 0 that only depends on and a
modulus of approximatiop’ that additionally depends gmand on the geometry @b, such that
ﬁWD € Wa/,pl and
(Wp(Id+G) — inf E*(pa+v)|
vEH (D)
G2

(6) < [DI(IG)

forall G € M“.
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Remark6. In the proof of Propositior2.3we makep’ explicit:

4+43p

@) p(h) = cmax{,o(m\/ﬁ)(ump(h))+h4<2—‘iw(1+a+p(h))m,

h# 4 p(h 4+ Vh)(1 + h?) }

where the constants', 1 > 0 only depend orx and on the geometry db, i.e. C andu are
invariant under dilation, rotation, and translation/of Note that forh < 1, (7) reduces to

p(h) ~ C(p(VR) + him).

Remark?7. The assumption od, is no restriction. In particular, by the compactnessGof
convergence (see for instancP94 Section 12.2]), we can always extract a subsequence of
(e) to which Propositior2.3applies.

In the proof of Propositior2.3we will make use of the following higher integrability andolsk
chitz truncation result for minimizers of quadratic furctals:

Proposition 2.4. Letae > 0, G € M?, and@ : D — Q, be a measurable map. Set
St HY(D) [0, 4o%),  Ealg) = [ QoG+ Vg)da,
D

(@) The functionak admits a unique minimizer € H} (D), characterized by the Euler-
Lagrange equation

/ (L(z)(G + Vg*, V) de =0 forall ¢ € H}(D)
D

wherelL € L>°(D, T2 ) is defined by

Q(.%',A + B) B Q(I‘,A) B Q(I‘,B)

(L(x)4, B) = g

forall A, B € M? and almost every € D.
(b) (Meyers’ estimate). If in addition the domain is C!, then there exists a Meyers’
exponenf; > 0 and a positive constar’ such that

IV |28, ) < CIDI G2

The exponent and the constant’ only depend o and on the geometry of the domain
D.

(c) (Lipschitz truncation). Lek > 0. If in addition the domairD is C*, then there exists a
mapg € W, "*°(D) such that

|Vg(z)| <A  fora.e.x e D,
Ealg) — Eclg™) < CA ™ |D||G]*H

where 11 is a Meyers’ exponent, and the constaritonly depends om and on the
geometry of the domaiP (in particular, it is independent of, G, and ).

The first statement of Propositich4 is standard and relies on Korn's inequality. The second
statement is a higher integrability result for gradient$inear elasticity, as proved ir5j\W94.
This is the only place where we use the regularity of the dam&he third statement is essen-
tially a combination of Meyers’ estimate and of a Lipschitaication argument fromHIM02.

The constant€”’ and . only depend on the geometry of the domain in the sense thatctre

be chosen invariant under translation, rotation, andidilabf the domain. The proof of this
statement is deferred to the appendix.
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Proof of Propositio2.3. We divide the proof in three steps. In the first step, we inioeda
guadratic form associated witlYp. The last two steps are dedicated to the prooBppfoper.

Stepl. Definition of the quadratic forr@p.

By the assumptions ol¥/; the associated quadratic for@. is a measurable map froi to
Qs , Where the > 0 only depends om. Remarkl and Korn’s inequality onD thus imply
that the quadratic energiek are equi-coercive functionals di (D), so that the associated
elliptic operators are compact w. .r.(¢-convergence (see for instanciK[D94 Section 12.2]).
In particular, this yieldd'-convergence of the energy functionals to an integral fanet (see
for instance GMT93, Subsection 4.4]): There exigt’ depending only ony, and a measur-
able mapQ* from D to Q4 such that€. T'(L?)-converges (up to extraction) to the functional
£*: H'(D) — R characterized by

(8) E tur / Q*(z, Vu(z)) dz.
D
This shows that* is a quadratic integral functional.
We are now in position to define the m&yp, : M¢ — [0, +00) as

Qp(GQ) = inf E&*(pg+v).
UEH&(D)
Because of the representatid),(the mapQp is a quadratic form of clas®; for a positive
constanty depending only om.

We claim thatﬁWD is of classW,/ » wherey' is defined by 7). It is clear thatﬁWD is
frame indifferent. It also satisfies a property of typed) as an application ofMIN, Lemma 2]
(its proof actually does not use periodicity, but only thgraptotic formula )). The expansion
property ¥V3) is equivalent to §). As in [MN] we notice that it is sufficient to prove the

following: For all families(G},) € R? with |G},| = 1, we have:

1
(lower bound) 3 Wo(1d+hGh) = Qp(Gh) — DLy (),
1
2
We prove both statements separately.

(upper bound) Wp(Id +hGp) < Qp(Gh) + @p’(h).

Step2. Proof of the lower bound.
By definition of W, (see b)), for all h > 0,

0 < Wp(Id+hGy) < limsup/ We(z,Id +hGp,).
e—0 D

From W3), the fact that). (z, G) < a |G|* for a.e.z € D, and the assumptiof@,| = 1, we
infer that

1
©) 0 < 5Wp(ld+hGyp) < [Dl(a+ p(h)).
By definition of Wp, there exists a sequente, .) € WP (D) with the properties
(10) Une = p1a+h, € WoP(D) C Hy(D),
(11) lir%Ig(uhﬁ) = WD(Id +hGh).
E—

We then define the following sequence of scaled displacesment

_ Upe — PId +hGy,
Ghe ‘= - 5



COMMUTABILITY OF HOMOGENIZATION AND LINEARIZATION AT IDEN TITY 9

By constructiony;, . € H{ (D) and the uniform non-degeneracy assumpti2) on W yields
the estimate

1 . 1
¥ b dlStz(Id +h(Gh + th,e(x))a SO(d)) dz < O‘ﬁzs(uh,e)-
The quantitative geometric rigidity estimate (s€dNM02 Theorem 3.1]) implies the existence
of a rotationR;, . € SO(d) such that

1 . Id—R

ﬁze(uh,e) with Fh’5 = Th,e + Gy,

Except otherwise stated; denotes a positive constant that may vary from line to ling,can
be chosen only depending enand on the geometry dD. Becausey, . vanishes ordD, an
integration by parts shows th&tg;, . and the (constant) matrik;, . are orthogonal w. r. t. the
inner product inL?(D; M):

||Fh,5 + th,e”iz(D) <C

1 Fhe + Vaneltzpy = IDIFnel® + VonellZem) = IV9helZ2(p)-
Hence, the rigidity estimate9), and (1) yield
(12) lim sup IV gnell72(py < CIDI(a + p(h)).
E—

Next, in order to make use of the quadratic expansionit3)( we focus on the set where
h(Gh, + V) is bounded. To this end, we lgt, . denote the indicator function of the set

Xpe:={x €D :|Vgn| <h/?}, and note that

1 1
ﬁIe(uh,e) :ﬁ /D WE(ZE, Id +h(Gh + th,a(x))) dx
1
> [ X)Wl 10 4R(G + Vg e(a))
D

1
- / W (. 1d +hxpe(2)(Gh + Vgne())) da
D

by the non-negativity ofV. and the fact thalV,. vanishes ald. We then write the r. h. s. in the
form

1
13 [ Welw 14 (2) G + Vone(a)) da
D

= /D <Qe($>Xh,a(x)(Gh + th,a(x))) + rh,a(x)> dz,
where, using assumptiol\(3), the remainder;, . satisfies for al: € X, .

the()| = |Gh+ Vgne(a)]
% |W€(:E, Id +h(Gh + th,a(x))) - Qs(% h(Gh + th,a(x))”
h2| G, + Vgpe(x)?

< p(h|Gh| + V1) |Gy + Vane(z))?
= p(h+Vh)|GL+ V()

andry, .(z) = 0fora. e.x € D\ Xj .. Thus, we conclude that

1
(13) ﬁze(uh,e) > /D Q- <3€, Xh,e(Gh + th,e)) dz — p(h+ Vh) |Gy + Vgh,e”iz(p) .
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Appealing to (2) and usingGj| = 1, (13) turns into

|
(14) 11I€IL161f ﬁzs(uh,e)

> lim i(glf/ Q- (%, Xn.e(Gh + Vgne)) dz — C D] p(Vh + h)(1 + a + p(h)).
-0 Jp

Next, we wish to replace the integral term on the r. h. s1dj by the infimum of€. on the set

va, + H (D). By coercivity of €. on this set, this infimum problem is well-posed, and there

existsg;; . € Hj(D) such thawy, . := ¢g, + g;; . satisfies

(15) E(vpe) = /DQE(QU,Vvhﬁ(m))dm = inf /DQa(x,Gh—va(x))dx.

vEHZ (D)

Since&. is equi-coercive orpg, + H} (D), andé. I'(L?)-converges t&€* on H!(D), thel-
limit is coercive, and the sequence of minima converges éomtinimum of &, ON g, +
H{ (D). This yields
(16) lim & (vpe) = inf E*(v) = Qp(Gh).

e—0 vepg, +Hg (D)

We shall actually prove that there exigts> 0 depending only o and on the geometry db
such that

@D tmipt [ (Qe(2.30,(G + Vono)) ~ Qulo Vune(@))) da

w 44-3u

> —C|D|T@ (1 + o + p(h)) 7@
Combined with (1), (14) and ({6), (17) yields the desired lower bound.
The proof of (L7) is the heart of the matter. L&t € L*>°(D, Tgym) denote the uniqgue symmet-
ric 4th order tensor associated with, i.e.
QE('I’ A + B) - Qe(xa A) - QE('T> B)

2
forall A,B € M? and a.e.z € D. Note that(L.) is uniformly bounded inL>*(D, T )
because the operator norm@f (z,-) on M is bounded by for all ¢ > 0 and a.e.x € D.
SinceQ.(z, -) is a non-negative quadratic form, the inequality

Q:(z,A) — Q:(z,B) > 2(L.(x)(A — B), B)

holds for all A, B € M? and a.e.z € D. We use this estimate witd = y,.(z)(G), +
Van(z)) andB = Vuy, . (), which yields by integration oveb:

(18) (Le(2)A, B) =

(19) /D (QE(x> Xh,e(Gh + th,a)(x)) - Qs(% vvh,e(x))) dz

> 2 /D (Le(Xn,e(Gh + Vghe) = Vupe ), Vope) da.
Along the lines of MN, Proof of Theorem 1], we rewrite ther. h. s. as
/D (Le(xne (G + Vone) = Vone ), Voue) de = 1) — 12
with
Ii(Lg = /D (Le(Gh + Vgne — Vune), Vo) da,

12 = / (L(1 = x02)(Gh + Vgn.), Von.) da.
D
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Because[( ) is the weak form of the Euler-Lagrange equation of the mination problem in

(15) with adm|SS|bIe test-functioe, + g — vne € Hi(D), the first term[,(ug vanishes
identically. We now deal with the second term, and claim that

4+43p

(20) lim sup 12| < CIDIATET (1 + a + p(h)) T,

Combined with 19) and I(l) = 0, this implies the desired estimat&7j. To prove R0), we
apply the higher mtegrablllty result of Propositi@ part (b) toVuy, .. In particular, there
exists a Meyers’ exponent > 0 and a positive constaidt such that

(21) / Vope[** da < C|D||Gy|*™" = C|D|.
D
, .. - . . (2)
By Cauchy-Schwarz’ and Hdlder’s inequalities, we mayreate ] f(Lvs by

12| < CNIGH+ Vgn.ll 2y 101 = X0) Tomel 2
(22) <C HGh + VghﬁHB(D) Hl - Xh,EHLq(D) vah,EHL%u(D)

with ¢ := 2244 ¢ (1, o). By definition ofy,, . there holds

I
1= Xne(@)] < VR = xne(2)) [Vgne(@)] < VR Vgpe ()

fora.e.x € D, so that

/ 11— xpnel? do = / |1 — xpel do < \/E/ |Vane| de.
D D D
Hence, by Cauchy-Schwarz’ inequality,

1 1 1
1 _XhﬁHLQ(D) < Ch2a |D|2a thﬁ”I({Il( = C|D|4(2+u)h4(2+u) tha”;ﬁ?g)

which, combined with 12), (21) & (22), proves R0). This concludes the proof of the lower
bound.

Step3. Proof of the upper bound.

As usual, the proof of the upper bound relies on an explicistmiction. As a first step we apply

the Lipschitz truncation argument of Propositiarl part (c): There exists a doubly indexed

sequencégy, ) C Hi(D) and some: > 0 (only depending om and the geometry ab) such

that
E-(pa), + gne) — Q@p(Gr) < Ch*(D.

Here and below(’ denotes a positive constant that may vary from line to lin¢ only depends
ona and on the geometry db.

Since for alle > 0 the quadratic forng. is Korn-elliptic with some constant’ depending only
on «, the second property ir28) and Poincaré’s inequality imply that the sequefgg;)- is
bounded in!(D). Using in addition Step 1 in the form 6§ (G1) < &|D|, this yields the
estimate
(24) IGh + Vaneliapy < C(L+h*)|D].
We set

Upe = PId+hG), T NGhe-
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By definition we have

(25) Wp(Id+hGp) = lim { inf  Z.(¢1a+na, +) } < liminf 7 (up )
e—0 | veH}(D) e—0

e—0

= lim inf/ We(x, Id +h(Gp, + Vgne(z))) d.
D

As in the proof of the lower bound, we expand ther. h. s. as

(26) /DWe(x71d+h(Gh+v9h,e(x)))dx:hz/D (Qe(xaGh+v9h,6(5ﬂ))+rh,e($)> dz,

where, using assumptio{3) and property Z3), the remainder is estimated by

[ lncta)l do < plh+ V) G+ Vol

The combination ofZ5), (26), (24), and the second property iA3) then yields
1

Wp(Id +hGy,) < liminf &(pg, + gne) + limsup p(h + VR) |Gy + Vane|2ap
h? e—0 e—0 ()

IN

Qp(Gy) +C|D| <h2“ + p(h+Vh)(1 + h2“)> .
This proves the upper bound, and concludes the proof of thogition. O
Theoren2.2is an immediate consequence Proposifah

Proof of Theoren2.2 By assumption thé&'-limits 7., and&,.m are integral functionals with
homogeneous integrand®,,, and Qnom, respectively. Thus, the expansidd) (n Proposi-
tion 2.3 simplifies to

inf / Whom(Id+G + Vu(x))dx =  inf / Qhom (G + Vou(z))dz + o(‘GQD.
veWr?(D) JD veH; (D) Jp

The functionalZy,,,, is (as al'(L?)-limit) lower semicontinuous w. r. t. strong convergence in
LP(D). Hence Wi, is WP-quasiconvex, and

inf / Whom (Id+G + Vu(x)) dz = |D| Wyhom (Id +G).
veW, *(D) JD

By convexity ofQunom, We also have

inf / Qnom (G + V(@) dz = [D| Qpom (G).
D

vEH& (D)
This proves 4). a

The proof of Theoren2.1relies on the quantitative version of Proposities3 (see Remari6)
and on a localization argument allowed by ghgrowth condition.

Proof of Theoren2.1. We split the proof into four steps.

Stepl. Localization of the energy..
Let B denote the collection of all open balls containedlinand define for allB € 1B and all
u € WHP(B) the localized functionals

Z.(u; B) ::/BWS(JU,Vu(x))dx and  Z*(u;B) ::/BW*(.%',VU(I'))dI'.

SincelV, satisfies the standagggrowth conditions]I'-convergence is local (seB[D98, Theo-
rem 12.5]), and for alB € B the functionalsZ.(-; B) I'(L?)-converge ta*(-; B).
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Step2. Localization ofe..

We consider a subsequence (not relabeled) suctfthatL?)-converges to a functionadl* on
H'(D). As in Step 1 of the proof of Propositich3, £* is of the form

— / Q" (2, Vg()) de
D

for some measurable ma&p* from D to Q,~, wherea” only depends oma.. Moreover, for all

B € B the localized functionals
B) :/ Q:(z,Vg(x))dx
B

- / Q" (2. Vg(z)) da
B

I'(L?)-converge orH ! (B) to

Step3. Characterization af)*.
For all B € BandG € M? we define

Qp(G) = inf /Q x,G + Vg(x))de,

g€HI(B

Wp(G):= inf / W*(x,G + Vu(z)) dz.
veW,P(B) J B

SinceZ*(-; B) is theI'(LP)-limit of the sequencé.(-; B), the functionalZ*(-; B) is lower

semicontinuous and its energy dendity* satisfies g-growth condition from below. Hence,

infima converge, and we have:

(27) Wg(G) = lim { inf  Z.(pg + v; B) } ,

=0 [ vewy?(B)
which proves thatg) is well-defined. Sincé3 € Bis of classC!, we can apply Propositio?.3
to each of the functional®.(-; B); and since eacl3 € B can be obtained by translation and
dilation of the unit ball inR¢, we deduce that there exist a constahtand a modulus of ap-
proximationy’ (both only depending oa, and onp), such that the following two properties are
fulfilled: For all B € B andG € M there holds

1
(28) —WB € War ps

| B
|B|WB(Id +G) \_}B\QB(G) < PI(‘G’) ’G’2 .
In particular, 29) holds for all ballsB(x, r) with centerz € D and sufficiently small radius

r > 0. Because the l. h. s. 029) is independent af andr, and since for almost evernyc D

}H% \B(x ] Wh(ar(1d +G) = W*(z,1d +G),

hm \B(x )] QB(x r) (Id +G) Q*(ZC, G)a
(see e.g.[DMM864)]), the estimate
(30) W (2,1 +G) — Q"(z,G)| < /'(IG]) |G

holds for allG € M? and almost every: € D. On the one hand, this implies thif* is of
classwg,, »- 0N the other hand, this proves thiat can be characterized by

(29)

Q*(z,q) = fllli% ﬁW (x,Id+hG).
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The limit on the r. h. s. does not depend on the extraction &b 3t so that the entire sequence
&- T(L?)-converges t&*.

Step4. Commutation diagram.
The proof of the diagram, which closely followsIN, Section 6], is left to the reader. a

3. APPLICATION TO STOCHASTIC HOMOGENIZATION

Let us first recall a standard stochastic homogenizationtré&see the original contribution
[DMM86b] in the convex case, and its generalizatiti|94] to the quasiconvex case).

Theorem 3.1. Let(Q2, 7, P) be a probability spacg;r.),r« be a strongly continuous measure-
preserving ergodic translation group, and ét : R? x M¢ x Q — R* be a map such that

(i) W is Lebesgue-measurable in its first variable,
(i) W is F-measurable in its third variable,
(iiiy W(z,-,w) € WE for P-almost every € (2, almost every: € R? and some < (1, c0),
(iv) W is stationary in the sense that f@almost everys € Q, almost every: € R¢, every
F € M? and every: € R?

W(z+ 2z, F,w) = W(x, F,Tw).

Then forP-almost everyw € Q, the integral functionalZ. (w) : WP(D) — R* given for all
e > 0by

T.(w)(u) = /DW(m/a,Vu(x),w)dm

I'(LP)-converges, as vanishes, to the integral functiond},, : W'?(D) — R given by

Tinom (1) = /D Whom (Vau(z)) dz,

where the deterministic homogeneous-in-space energyitgéhs,, is quasiconvex, satisfies
(W4) and the asymptotic formula

(31) Whhom(F) = lim %inf{ oy Wz, F+Vo¢(r),w)de, ¢ € Wol’p((O,R)d)}

R—o00

for all F € M“ andP-almost every € ().
The combination of Theorents2 & 3.1yields

Theorem 3.2. Let W and W}, be as in Theoren3.1 and assume in addition that for some
p > 2 and a modulus of approximatign

W(ZC, 'aw) € Wg,p

for almost every: € R% and P-almost everyw € €. Let@Q denote the quadratic term of the
Taylor expansion ofi” at identity. Then

(a) the density¥},om is of classW?, oo With o/ andp’ as in Theoren?.1;
(b) the energy functionals

E-(w): HYD) — R, u / Qe(x/e, Vu(z),w) dex
D
I'(L?)-converge foiP-almost every € Q to

Enom : HY(D) — R, U — /D Qhom (Vu(z)) dx
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whereQyom IS the deterministic homogeneous-in-space quadraticggnéensity that is
determined by the expansion

VG € M? : Wiom(Id +G) = Quom(G) + o(|GI*);
(c) ForP-almost every € () the following diagram commutes

Onelw) —2 E(w)

®)| |®

ghom,h —— Ehom

(4)
wheregy, . (w) and Gpom,, denote the functionals frofi (D) to [0, +oo] defined as

Ghe(w)(g) == % /D W(w/a,ld —i—th(x),w) dz

1
Ghom,h(9) = 72 /D Whom(ld —i—th(x)) dzx

and (1),(4), and (2),(3) meali-convergence i} (D) with respect to the strong topol-
ogy of L?(D) ash — 0 ande — 0, respectively. Moreover, the famili¢Z. (w))
and (€-(w)) are equi-coercive w. r. t. weak convergenceHp(D) (for P-almost every
w € Q).

Proof. Let Z. (w) andZyom (w) be defined as in TheoreBl ThenZ.(w) I'(L?)-converges to
Thom (w) for P-almost everyw € Q. Now, the statement is a direct consequence of The@rém
which applies foiP-almost everyw € ). a

Corollary 3.3. Within the notation and assumptions of Theof@®) we also have

R—oo

(32) Qhom(G) = lim % inf {/ Q(z,G + Vo(z),w)dz, ¢ € H&((O,R)d)}
(0,R)4

for all G € M¢, and forP-almost every € €, where

.. W (y,Id4+hG,w)
Qly,G,w) := 1121:161f 2 .

Proof. Once we know that. I'(L?)-converges tcS,.,, the uniform coercivity off. and
Ehom implies the convergence of the infima, which yields the d@esfiormula 82). TheT'-
convergence result is either a consequence of The@t@mart (b), or of theG-convergence
of the associated elliptic operator proved for instanceli&Q94 Section 12.3] (by definition,
Q(y, G,w) is stationary for the ergodic translation group). a

Remark8. As can be easily seen, Theor@2 holds as well in the almost-periodic case (see for
instance Bra84 or [BD98, Section 17.2]) and in variants of the stochastic case (gerdtance
[Glo0g).

4. LOCALITY OF THE I'-CLOSURE AT IDENTITY

This section is devoted to the locality of tieclosure inW% , at identity. Givenk homo-
geneous energy densitié®V; }ic1 i) € WK ,, we are interested in characterizing the set of

mapsIW*(z, -) that can be reached as energy densitiés(é# )-limits Z* : Wi?(D) — R

(33) ur—I*(u) = /DW*(QC,Vu(m))dm,
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of energy functionalg,» : W1?(D) — R of the form
k
(34) w— Tyn(u) = / > Wi(Vu(@))x} (z) da
D1

asn goes to infinity. Abovex™ € L>(D,{0,1}*) denotes a vector field wit[le X =1
and satisfieg™ —* 6 weakly-* in L>°(D, [0,1]¥). The components of” can be seen as the
characteristic functions of thephases. Note that also in the limit we haEé“zl 0; = 1.

The I'-closure of{W;};c(1,...} is said to be local if the set of such integrandS'(z, -) for
almost everyx € D coincides with the closure for the pointwise convergencehefset of
energy densitie$Vy,,, obtained by periodic homogenization of mixtures{®¥’; };c(;,. 5} in

the proportions{6;(z)}icq1,.. x}- TO turn this into a rigorous statement, let us recall some
definitions related to periodic homogenization.

Definition 4 (see Mill87] and [Brag8g). Let1 < p < oo, andW be aU = (0,1)? periodic,
measurable density froR? to WE. The homogenized energy density associated Withs
denoted byWom : M? — R and characterized by

R—o0

1
(35)  Whom(F) := lim Td inf{ o W(y, F+ Vu(y))dy,u € W01=p((0, R)d)} .

We are now in position to define the set of periodic homogehereergy densities.

Definition5. Let1 < p < 00, {W;}icq1,. 4y € WA, andd € [0,1]% be such thap~F 6, = 1.
We define the set of periodic homogenized energy densitgscated with{W;, 0;}icq1.. k)
as

Py = {(Wx)hom :M? = R : 3y € L®(RY, {0,1}%) such that

x is U-periodic with / x: dy = 6;
U

k
and (W, )nom is associated withi’, : (y, F') — Z W;(F)xi(y) through (35)},
i=1

and its closure for the pointwise convergence by
Go = {W*:M? =R : I(Wyn)nom € Po» (Wyn)hom — W* pointwise}.
The definition of locality of thd -closure now reads:

Definition6. Let1 < p < oo, {Wi}icq1,.. k) € Wa. We say that th&-closure of Wi}ic1, k)

is local if and only if for every sequencg’ € L>°(D, {0,1}*) with Zle x? = 1 and such
that

— X" —* 6 weakly-* in L>=(D, [0, 1]%),
— the functionalZ,» : W?(D) — R defined in 84) I'(L?)-converges to the functional
7 : WhP(D) — R defined in 83),

one has
W*(z,-) € Go(a)
for almost everyr € D.
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If the k& energy densitiegW; },c(1,... xy are convex functions, then the associafedosure is
local (see for instancdBB09, Theorem 5.1]). In the case of quasiconvex non-convex foimgt

the locality (or non-locality) of thd'-closure is an open problem. In the specific case when
W; e Wh,foralli € {1,...,k}, Theorem2.2 allows us to prove that thE-closure is “local

at identity”. This notion is made precise by the followingotaefinitions.

Definition7. Let2 < p < oo, {Witieq1, 4 € WE,, andé € [0,1]% such thaty"F , 6; = 1.
We define the set of periodic homogenized energy densitgsciaded with{W;, 0;}icq1.. k)
at identity as

P;d = {W* IMd —R: H(Wx)hom € 7)9

such thaf W*(Id +G) — (W )nom (Id +G)| = o(|G[?) }
and its closure:

g})d = {W* :M? — R : there exists a sequentl/y» )nom € Po
such tha W*(Id +G) — lin%(Wxn)hom(Id +G)| = o(\G\Q)}.

is local at identity if and only if for every sequeng& ¢ L>(D, {0,1}*) with Zle XP=1
and such that

— X" —* 6 weakly-* in L>=(D, [0, 1]%),

— the functionalZ,» : W'?(D) — R defined in 84) I'(L?)-converges to the functional

7 : WhP(D) — R defined in 83),
one has
W*(z,-) € Goj

for almost everyr € D.

The above definition is a weakened version of the localityhefIt-closure of Definition6
obtained by restricting the property of approximation bgigedic homogenized energy densities
to a neighborhood of identity via a Taylor expansion. We have

Theorem 4.1. Let2 < p < co and{W;};cq1,.. k) € W4, then thel-closure of{Wi}icq1 iy
is local at identity.

Proof. By [BB09, Theorem 3.5], it is enough to prove the locality propertythie so-called
homogeneous case, that is with a repartition functiére L>(D, {0, 1}*) such that

— x™ weakly-* converges to a constant functiéin L>°(D, [0, 1]%),
— the functionalZ,» : W?(D) — R defined in 84) I'(L?)-converges to the functional
T* : WhP(D) — R defined in 83), wherelV* does not depend on the space variable.

LetEn - H 1(D) — R* denote the quadratic energy functional associated With that is

k
Egn (1) 1= /D S Qi(Vule)x(z) da
=1
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where@); € 9, denotes the quadratic form associated Withthrough (V3). We then apply
Theorem2.1and deduce thal. I'(L?)-converges to

E*: HYD) — [0, 400), E*(u) = / Q*(Vu(x)) dz,
D
where@* € 9,4 for somea > 0, and is characterized by the expansion
(36) W*(1d+G) = Q*(G) + o(|G]?).
Next, we appeal to the locality of tHéclosure for convex linear problems. In particular, there
exists al/-periodic sequencg” € L>(R?, {0, 1}¥) satisfying [, x/'(y) dy = 6; foralln € N
and alli € {1,--- ,k}, and such that the homogenized quadratic funct@@g,m associated

with the periodic quadratic energy densit@s : R? x M? — R
k

Q": (,G) = > QiG)X}(y)

=1
approximateQ* in the sense that for afl € M?,
(37) Jim_ Qfon(G) = Q(G).

We are now in position to prove the claim. To this aim, we definsequence of periodic
integrands?” : RY x M¢ — R as

k
T (,G) = S WHG)R ().
=1

With this sequence of periodic integrands we associate zeseg of homogenized integrands
Wiy, through @5) with W™ in place ofl¥’. Combined with standard periodic homogenization
results (see for instanc®[i187], [Bra8q or [BD98, Section 14.2]), Theorer@.1then shows
that

’W}?om (Id +G) — Qﬁom(G)‘

< (G
ar < 76,
and the theorem follows fron86), (37), and the uniformity of the validity of the Taylor expan-
sion since for alk, Wiy, andW™* are of classV?, , for the same functiop'. O
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APPENDIXA. PROOF OFPROPOSITION2.4

The proof is divided in three steps. In the first two steps ww@ithe statement for a fixed
domainD by combining Meyers’ estimate and the Lipschitz truncamgument of FIM02
Proposition A.3]. We then prove in the third step that thestants can be chosen only depend-
ing on« and on the geometry dp.

Stepl. Control of energy differences.
Let g* € HE(D) denote the unique minimizer of the functiorf on H{ (D). We claim that
for all g € H} (D) there holds

(38) / Qla, G + Vg) da - / Qa, G + V") do < a|Vg — V" )
D D



COMMUTABILITY OF HOMOGENIZATION AND LINEARIZATION AT IDEN TITY 19

To prove this we first expand the formula f@(x, Vg — Vg¢*) (use (8) with A = G + Vg*
andB = Vg — Vg*):
Q(z,G+Vyg) — Q(z,G+Vyg*) = Q(z,Vg — Vg) + (L(z)(G + Vg*),Vg — Vg*).
We integrate this identity oveb and note that the second term on the r. h. s. vanishes as the

first variation of the minimization problem characterizigg Thus, @8) follows from the fact
thatQ(z,-) € Q, fora.e.x € D.

Step2. Proof of the claim for a fixed domain.
We assert that there exiét > 0 andy > 0 such that for allA > 0 there exists a map <
W,>°(D) that satisfies

(40) HVQ \a HL2(D < CAM|IVg* 130 )

We construct the map as follows. By Meyers’ estimate (sechnDonZA part (b)), there exist
C > 0 andp > 0 depending only omx and D such that for alG € M¢,

Vgl 73Eup) < CIDIIG .

L2+r(D

Hence, FIMO02 Proposition A.2] yields a map € WOLOO(D) that satisfies39), and the esti-
mate

C *
(41) DAl < o Ve I3t py,  Dai={zeD:g)#g" ()}
for someC' independent of\ and g*. Let us prove thay also satisfies40). From Holder’'s
inequality with exponentg>t, 2*“) we have

2
PE

I¥9 = Vg lz20) = /D Vg —Vg'| du < |Dy|7+ </D Vg — Vg P dx)
A
On the one hand, the combination 88 and @1) yields

/!Vg—Vg*!2+" dw:/ Vg — Vg |*™ da
D Dy

<C </ |Vg|* dac—|—/ IVg* >t d:v>
Dy D
<c (I s [ vg e a)
D

ﬁCHVQ*Hi;Ffu(D)-

On the other hand4() also implies
2
DA% < ON~ B Vg7 | 5T = ONH Vg
Estimate 89) follows from these last three inequalities.

Step3. Dependence of the constantsion

Step 2 provides a function satisfying the desired properties with some constangd C
which only depend omv and the domairnD. Let us quickly show that both constants can be
chosen invariant under dilations, translations, andimatof D. Assume thaD is a translated,
rotated, and dilated version of some reference domini.e. D := 7 + rRD with 7 € R¢,

R € SO(d), andr > 0. We shall prove that’ andy only depend orx and Dy. To this end we
set

go(x) == %g* (t+rRx) and Qo(z,G):=Q (1 +rRx,G).
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Theng; is the unique minimizer of

H{j(Do) > go — Qo(z,G + Vo) dz.
Dy

For all A > 0, Step 2 yields a mag, € W,°(Dy) with
Vgo(z)] <A fora.e.x e Dy,

Qo(w,G + Vgo(z))de — | Qo(w,G + Vgi(x))dz < CoA™ | Dol [GI*7,
Do Dy

wherepy andCy only depend omv and D. A simple change of variables shows that the map

o(o) = rao ("R

satisfies 89) & (40) with 4 = pp andC = Cy.
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