
HAL Id: hal-00541310
https://hal.archives-ouvertes.fr/hal-00541310

Submitted on 30 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling multi-clocked data-flow programs using the
Generic Modeling Environment

Christian Brunette, Jean-Pierre Talpin, Loïc Besnard, Thierry Gautier

To cite this version:
Christian Brunette, Jean-Pierre Talpin, Loïc Besnard, Thierry Gautier. Modeling multi-clocked data-
flow programs using the Generic Modeling Environment. Synchronous Languages, Applications, and
Programming, Mar 2006, Vienna, Austria. pp.SLAP 2006. �hal-00541310�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50035692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00541310
https://hal.archives-ouvertes.fr

SLAP 2006

Modeling multi-clocked data-flow programs
using the Generic Modeling Environment

Christian Brunette 1 Jean-Pierre Talpin 2 Loı̈c Besnard 3

Thierry Gautier 4

IRISA-INRIA-CNRS

Campus Beaulieu

F-35042 RENNES Cedex, FRANCE

Abstract

This paper presents Signal-Meta, the metamodel designed for the synchronous data-flow

language Signal. It relies on the Generic Modeling Environment (Gme), a configurable

object-oriented toolkit that supports the creation of domain-specific modeling and program

synthesis environments. The graphical description constitutes the base to build multi-clock

environments, and a good front-end for the Polychrony platform. To complete this front-

end, we develop a tool that transforms the graphical Signal-Meta specifications to the Si-

gnal code. This modeling paradigm constitutes a first work for generalizing the use of

formal methods proposed by Polychrony.

Key words: Metamodeling, Signal, Gme, synchronous languages,

model transformation

1 Introduction

The synchronous hypothesis has been proposed in the late ’80s and extensively

used ever since to facilitate design of control-dominated systems. Nowadays syn-

chronous languages are commonly used in the European industry, especially in

avionics, to rapidly prototype, simulate, verify and synthesize embedded software

for mission critical applications. However, synchronous programming languages,

such as Lustre, Lucid Synchrone, Esterel, Signal are most commonly regarded

as ”domain-specific” languages, as their usage is mostly restricted to aid highly-

trained engineers to design mission-critical systems.

In the aim of bringing synchronous technologies to a vaster community aware

of model-driven engineering, we have developed a simple and highly extensible

1 Email: Christian.Brunette@irisa.fr
2 Email: Jean-Pierre.Talpin@irisa.fr
3 Email: Loic.Besnard@irisa.fr
4 Email: Thierry.Gautier@irisa.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Brunette et al.

interface to the Polychrony workbench, that implements the multi-clocked syn-

chronous data-flow language Signal, with the Generic Modeling Environment (or

Gme) [14]. This interface is the medium to experiments with relating the poly-

chronous model of computation of the workbench with more ergonomic and dia-

grammatic notations such as data-flow diagrams, Uml state diagrams and the com-

bination of both as mode automata [15]. The aim of this experiment is to find the

simplest and most ergonomic representation of a formal model of time such as that

of the Polychrony workbench in the forthcoming real-time profiles for more vastly

known notations such as the Uml state diagrams. This work, based on a syntactic

approach, constitutes a first study concerning the generalization of the use of for-

mal methods offered by Polychrony. Other projects (e.g. TOPCASED [18] or

OPENEMBEDD) will pursue this study.

The remainder is organized as follows. Sections 2 and 3 first introduce re-

spectively the Signal language and the Generic Modeling Environment. Section 4

describes Signal-Meta, the metamodel of Signal specified in Gme. Section 5 illus-

trates how to use this metamodel through the description of an example. Section 6

presents the component added to Gme to transform the graphical specifications into

a Signal code. The adopted approach is discussed in Section 7 and finally, conclu-

sions and future works are given in Section 8.

2 The synchronous language SIGNAL and POLYCHRONY

Among other synchronous languages, the Polychrony workbench implements an

original model of time as partially ordered synchronization and scheduling rela-

tions, to provide the ability to model high-level abstractions of systems paced by

multiple clocks: locally synchronous and globally asynchronous systems. It pro-

vides a flexible way to model heterogeneous and complex distributed embedded

systems at a high level of abstraction, while reasoning within a simple and formally

defined mathematical model.

In Polychrony, design proceeds in a compositional and refinement-based man-

ner by first considering a weakly timed data-flow model of the system under con-

sideration and then provides expressive timing relations to gradually refine its syn-

chronization and scheduling structure to finally check correctness of the assembled

components using assumption/guarantee reasoning. Signal favors the progressive

design of correct by construction systems by means of well-defined model transfor-

mations, that preserve the intended semantics of early requirement specifications to

eventually provide a functionally correct deployment on the target architecture.

The Polychrony IDE, available from [9], offers several tools including the

Signal batch compiler that provides a set of functionalities, such as program trans-

formations, optimizations, formal verification, and code generation. Polychro-

ny includes the Sigali model checker [16], which enables both verification and

controller synthesis, and it also includes a graphical user interface for Signal.

The Signal language handles unbounded series of typed values (xt)t∈N, called

signals, denoted as x and implicitly indexed by discrete time. At a given instant, a

signal may be present, at which point it holds a value; or absent. The set of instants

2

Brunette et al.

where a signal x is present is called its clock. It is noted as x̂. Signals that have

the same clock are said to be synchronous. In Signal [13], a process is a system

of equations over signals that specifies relations between values and clocks of the

involved signals. Signal relies on 6 primitive constructs:

• An equation y := f(x) describes a relation (e.g. arithmetic, boolean) be-

tween a sequence of operands x and a sequence of results y by a function f.

• A delay equation x := y$n init v initially defines the signal x by the value

v and then by the previous value of the signal y. The signals x and y are assumed

to be synchronous.

• A sampling x := y when z defines x by y when z is true and both y and z

are present. x is present iff both y and z are present and z holds the value true.

• A merge x := y default z defines x by y when y is present and by z

otherwise. x is present iff either y or z is present.

• The synchronous composition (| P | Q |) of the processes P and Q consists

of simultaneously considering a solution of the equations in P and Q at any time.

• The equation P where x restricts the lexical scope of a signal x to a process

P.

These primitives are of sufficient expressive power to derive other constructs

for comfort and structuring: the clock synchronization operator (ˆ=) for example.

The equation x ˆ= y synchronizes the clocks of signals x and y. It corresponds

using Signal’s primitives to (|h := (x̂ = ŷ)|) where h.

Signal provides a process model in which any Signal process may be “en-

capsulated” (see an example in Fig. 6). Different categories of process models are

syntactically distinguished: these are actions, functions, nodes, and processes. This

process frame allows to abstract a process to an interface, so that the process can

be used afterwards as a black box through its interface. This interface describes pa-

rameters, input-output signals and clock and dependence relations between them.

A process model also enables the definition of sub-processes. Sub-processes that

are specified by an interface without any internal behavior are considered as exter-

nal (they may be separately compiled processes or physical components). On the

other hand, Signal allows to import external modules (e.g. C++ functions). Finally,

put together, all these features of the language favor modularity and re-usability.

3 GME

Gme is a configurable Uml-based toolkit that supports the creation of domain-

specific modeling and program synthesis environments [1]. It is developed by the

ISIS institute at Vanderbilt University, and is freely available at [11]. Metamodels

are proposed in the environment to describe modeling paradigms for specific do-

mains. Such a paradigm includes, for a given domain, the necessary basic concepts

in order to represent models from a syntactical viewpoint to a semantical one. It

also includes all relationships between those concepts, their organization, and all

rules governing the construction of models.

3

Brunette et al.

Note 1 In the rest of this paper, words beginning with a capital letter refer to

Gme concepts, and those in italics refer to Signal-Meta concepts. Mainly, be careful

with the notion of model.

To use Gme, a user first needs to describe a modeling paradigm by defining a

project using the MetaGME paradigm. This paradigm is distributed with Gme. All

modeling paradigm concepts must be specified as classes through usual Uml class

diagrams. To build these class diagrams, MetaGME offers some predefined Uml-

stereotypes [14], among which we use only the following in our metamodel: First

Class Object (FCO), Model, Set, Atom, Reference, and Connection. FCO consti-

tutes the basic stereotype in the sense that all the other stereotypes inherit from it.

It is basically used to represent abstract concepts (represented by classes). Atoms

are elementary objects in the sense that they cannot include any sub-part, while the

Model is used for classes that may be composed of various FCOs. In a different

way, a class with the Set stereotype can contain a sub-set of FCOs registered in the

same Model. A Reference is a typed pointer (as in C++), which refers to another

FCO. The type of the pointed FCO is indicated on the metamodel by an arrow (in

Fig. 1, the SignalRef reference points to a Signal).

Figure 1. Signal-Meta’s Identifier class diagram

There are different kinds of relations that can be expressed between classes,

which use these stereotypes. First, the Containment relation is characterized on the

class diagram by a link ending with a diamond on the container side. Such a link

is used in Fig. 1 for example between the Input atom and the InterfaceDefinition

Model. Inheritance relations can be represented as in Uml. All the other types of

relationship are specified by classes that use the Connection stereotype.

In Fig. 1, some FCOs use a stereotype suffixed by ”Proxy”, such as Module

that uses ”ModelProxy”. Such stereotypes are references inside the metamodel

4

Brunette et al.

to a FCO declared in another paradigm sheet. To complete these class diagrams,

attributes can be added to classes. These attributes are typed: BooleanAttribute,

EnumAttribute that corresponds to a finite list of choices, and FieldAttribute that is

a typed text field (string, integer or double).

In these class diagrams, Gme provides a means to express the visibility of FCOs

within a model through the notion of Aspect (i.e. one can decide which parts of

the descriptions are visible depending on their associated aspects). Moreover, it

is possible to restrict the use of certain FCOs (add/remove in/from a Model) to a

specific Aspect, even if these FCOs are visible in other Aspects.

Finally, OCL Constraints can be added to class diagrams in order to check some

“parametric” properties on a model designed with this paradigm (e.g. the type

of connections linked to an FCO according to the value of a FCO attribute). A

parametric property depends on values given during the edition of a model. OCL

constraints are checked when the events on which constraints are associated with

are emitted. There are different kinds of events corresponding to the main action

during the edition of a model, such as create, connect, and change an attribute.

The whole above concepts constitute the basic building blocks that are used to

define modeling paradigms in Gme. Such a modeling paradigm is always associated

with a paradigm file that is produced automatically. Gme uses this file to configure

its environment for the creation of models using the newly defined paradigm. This

is achieved by the MetaGME Interpreter, which is a plug-in accessible via the

Gme Graphical User Interface (GUI). This tool first checks the correctness of the

metamodel, then generates the paradigm file, and finally registers it into Gme.

Similarly to the MetaGME Interpreter, other components can be developed and

plugged into the Gme environment. The role of such a component consists of inter-

acting with the graphical designs. To achieve the connection between the compo-

nent and Gme, an executable module is provided with the Gme distribution, which

enables the generation of the component skeleton. It can be generated in C/C++

or Java. In C++, the skeleton is written using the low-level COM language or the

Builder Object Network (BON) API [14]. Gme distinguishes three families of

components that can be plugged to its environment: Interpreter, Addon, and Plu-

gIn. The main difference between the two former components is that the Addon is

executed as soon as a project is opened, and it works throughout the graphical edi-

tion of models, while the Interpreter has only a punctual execution on user demand.

Finally, the PlugIn differs from the above two families of components in that it is

paradigm-independent. This means that a PlugIn could apply generic operations on

models independently of their modeling paradigm.

4 SIGNAL metamodel

The Signal metamodel, called Signal-Meta, describes all the syntactic elements

defined in Signal v4 [4]. Signal-Meta is composed of several paradigm sheets that

define all the relations between the different kinds of signals, Signal operators, and

Signal process models. They define as Atom each Signal operator presented in

Section 2 and each other one derived from them described in [4]. They also define

5

Brunette et al.

as Model each Signal container (e.g. process model, sub-process, module), and as

Connection each kind of relation between operators and/or identifiers. Section 4

gives more details about the representation of Signal-Meta concepts. Moreover, to

facilitate the edition of a model, we specify different Aspects presented in Section 4.

The corresponding division separates mainly the data-flow part and the control part

of Signal specifications. To complete this metamodel, OCL constraints defined in

Signal-Meta bring some interactivity during the edition of a model. The main goal

was to keep as much expressiveness as possible in Signal-Meta than in Signal, and

to facilitate the edition of models with, for example, n-ary operators. More details

on Signal-Meta can be found in [3].

Signal-Meta concepts

Among all paradigm sheets, the Identifiers’ one represented in Fig. 1 defines Atoms

for the different kinds of signals (Input, Output, and Local), and constants (Con-

stantValue and Parameter). All these Atoms have several attributes including their

types, which is an enumeration of all intrinsic types of Signal. The DeclaredType

attribute is dedicated to a type imported from a Signal library or to a type already

declared in Gme. The declaration of a new type is done via the TypeDeclaration

Model. There are different kinds of types, such as enumeration type, structure type

or process model type, which are chosen in the TypeKind attribute. The way to

declare a new type is different according to the kind of the type: for example, a

structure type is specified by adding Local Atoms in the TypeDeclaration Model

and by ordering them, whereas all values of an enumerated type have to be speci-

fied in the EnumValues attribute.

To use in a Model some signal (resp. some constant or index of an iteration)

declared in an upper-level Model, one can use a SignalRef (resp. a ConstantRef)

with the same name. Another way for the different Model levels to communi-

cate is to use Input/Output/Parameter Atoms. These kinds of Atoms are declared

as ports in Gme. This means that they are visible in the Model where they are

added and in the upper-level Model, so that one can connect them to upper Atoms.

Input/Output/Parameter Atoms can be added in all Models that inherit from the

InterfaceDefinition abstract Model.

Input Output Local Parameter ConstantValue

Delay Extraction Merging Add ClockSynchronized

Figure 2. Some of Signal-Meta concepts and their icons

The second line of Fig. 2 shows the graphical forms of some Signal operator

FCOs during the edition of a model. These forms are images given in an FCO at-

tribute in the metamodel. Delay corresponds to the delay operator, Extraction to

the sampling operator, Merging to the merge operator, Add to the addition opera-

6

Brunette et al.

tor, and ClockSynchronized to the clock synchronization operator (all arithmetic,

comparison and clock relation operators are represented as for the Add Atom with

their corresponding symbol). To facilitate the specification of a model, we add an

Atom for boolean expressions and another one for arithmetic expressions in which

respectively the boolean expression and the arithmetic expression can be expressed

as a textual formula in an attribute.

Figure 3. Signal-Meta’s ’Expression Connection’ paradigm sheet

The main Models of Signal-Meta are ModelDeclaration, SubProcess, and Mo-

dule. A ModelDeclaration corresponds to a Signal process model, which can

be either an action, a function, a node, or a process. This choice is done via a

ModelDeclaration attribute. A ModelDeclaration consists of a container in which

are declared Input/Output/Local signals, static Parameters, ModelDeclaration and

TypeDeclaration Models, and in which one can add FCOs corresponding to Si-

gnal operators to express relations between signals. Finally, the Module Model is

a library of ModelDeclaration, TypeDeclaration, and ConstantValue FCOs. An-

other interesting point is the way to represent Signal process model instantiations.

Gme provides a means to express instance objects, thus it would be possible to cre-

ate instances of ModelDeclaration Models. A Gme instance of a Model is a deep

copy of this Model in which no FCO can be added or removed, but in which at-

tribute values can be modified. To guarantee the exact correspondence between

the instance and the corresponding ModelDeclaration, we add a Reference, called

ModelInstance, in Signal-Meta. Thus, ModelDeclaration objects are referenced

without creating a deep copy of the Model and in a way that guarantees the exact

correspondence between the instance and the declaration.

7

Brunette et al.

Concerning relations, Fig. 3 corresponds to one of these paradigm sheets and

represents all relations between Signal-Meta concepts, except clock relations that

are described in another paradigm sheet. Among them, we can highlight Definition

whose destination is a Signal or a SignalRef (gathered in the SignalOrRef abstract

concept - see Fig. 1), and which allows to specify the definition of a signal. For

a given signal, such a Connection can be used only once. Signal offers a means,

called partial definition, to avoid the syntactic single assignment rule for the def-

inition of a signal, even if semantically, this rule applies. Similarly, Signal-Meta

offers the PartialDefinition Connection to be able to define, in different Models, the

different parts of the signal definition.

To simplify the specification of a model, we make several Signal operators be-

come n-ary operators in Signal-Meta. This is done in different ways according to

the operator. For operators of type OrderedInputExpr (e.g. Merging), we use Or-

deredInputs Connections that have a Priority attribute whose value allows to order

the incoming Connections. Operators of type InputExpression (e.g. arithmetic) are

divided into two categories: associative and commutative operators, and the other

ones (DissymetricExpr) for which the first element needs to be identified (e.g. the

substraction operator). The first category uses only ExpressionInputs Connections,

while the second one uses FirstOperand to identify the first element.

Aspects, OCL constraints, and extension

Signal-Meta organizes its concepts in four Aspects: Interface, Dataflow, ClockAnd-

Dependence, and Library. The Interface Aspect is dedicated to represent input/out-

put signals of a ModelDeclaration and its static parameters. Moreover, a Specifi-

cations Model can be added to describe clock and dependence relations between

these signals. Signals and parameters are ordered according to their position in this

Aspect. The Dataflow Aspect is dedicated to design all computations of the process

and its data flow, whereas the ClockAndDependence Aspect contains all clock and

dependence relations between signals, instantiations, and sub-processes. Thus, the

latter contains mainly clock constraint and relation operators (e.g. ClockSynchro-

nized, ClockUnion), the Dependence Atom, SignalOrRef s, and all Connections to

link them. The Dataflow Aspect can contain all other Signal operators.

This separation of concerns, also recommended by Jackson in [12], makes the

models more readable. Indeed, Connections in the Dataflow Aspect represent data

flows, while they represent only relations in the Clock Relation. However, this sepa-

ration between the data-flow and the control parts is not so obvious in Signal. Actu-

ally, Signal primitives implicitly express clock relations between their input/output

signals, for example the delay and arithmetic operators synchronize automatically

their inputs and their outputs. Thus, operators in the Dataflow Aspect also express

the control part of the process.

Finally, a Library Aspect is dedicated for the concept of Module. Indeed a Mod-

ule does not express the data-flow or the control of a process. It only corresponds

to a library of constant, type, and process model declarations.

8

Brunette et al.

To be able to give some specific information during the edition of a model, we

specify a number of OCL constraints to Signal-Meta. They are mainly used to

check the coherence of the values of FCO attributes. For example, one constraint

checks that the values of the Priority attribute for all OrderedInputs Connections

with the same destination FCO are different. This kind of constraints is checked

on user demand or when the Model containing them is closed. Other constraints

are checked immediately: for example, a constraint checks that, in a ModelDecla-

ration, the destination of a Definition Connection cannot be linked to an Input of

this ModelDeclaration. To complete the constraints we defined, other constraints

are automatically generated by the MetaGME Interpreter to check the cardinality

affected to each relation. The precise list of OCL constraints is given in [3].

To facilitate the specification of models, we have defined all processes consid-

ered intrinsic by Signal in a Gme library. In fact, this library contains three Modules

and one ModelDeclaration to represent all usual mathematical functions (e.g. co-

sine, sine), specific functions to manage complex number and to read (resp. write

to) the standard input (resp. output). To represent these functions, we have only

defined their interface, which is enough to create ModelInstance FCO that refers to

them, and to connect their input/output signals and parameters.

5 Example

Here, we apply the metamodel presented in the previous Section to the design of a

classical watchdog example. The goal of this watchdog process is to control that

some action process is executed within some delay. At each time, the action

process emits an order signal when it begins its execution, and a finish event

when it finishes it. If the job is not finished in time, the watchdog must emit an

alarm signal to indicate at what time an error occurs. Moreover, if a new order

occurs when the previous one is not finished, the time counting restarts from zero.

A finish signal out of delay, or not related to an order, will be ignored.

(a) Interface (b) Dataflow (c) Clocks

Figure 4. The Watchdog example

The Watchdog process can be specified in Gme as shown in Fig. 4. FCOs

used in these figures are listed in Fig. 2. Fig. 4(a) represents the Interface Aspect

in which are described the input/output signals and the static parameters of the

9

Brunette et al.

process. Thus, one has to drag and drop an Input Atom for the order and finish

signals, and an Output Atom for the alarm. In order to count the time, another

input signal called tick, which must be provided at regular interval, is added to

the Interface Aspect to represent each tick of a clock. Finally, the delay to process

an order is expressed as a number of ticks by a Parameter Atom. The types of

these signals/parameters are specified in the attributes of the corresponding Atom.

In the Dataflow Aspect (Fig. 4(b)), three local signals are declared: hour, cnt,

and zcnt. The hour signal represents the internal clock to count the time. The

cnt signal works as a countdown before emitting an alarm: when cnt is 0, the

alarm is emitted with the value of hour. The value of cnt is fixed, by order of

priority, to: (i) delay when an order is emitted, (ii) defValue when finish is

emitted, (iii) the previous value of cnt contained by zcnt decremented by one,

or finally to (iv) defValue. This order is fixed using the Priority attribute of all

incoming Connections on the Merging Atom. In Fig. 4(b), dashed arrows connect

their source FCO as first operand of the destination FCO, plain links connect a

boolean expression to an Extraction Atom, plain arrows whose destination is a

Signal Atom correspond to a Definition of this signal, and finally other plain arrows

are Connection specific for each operators (cf. Fig. 3).

In the Clock Aspect (Fig. 4(c)), hour and tick are synchronized using the

ClockSynchronized Atom. This leads hour to be incremented at each tick.

Moreover, cnt has to be present each time one of the input signals is present.

This is expressed with the ClockUnion Atom whose result is affected to cnt.

6 Model Interpretation

Taking advantage of the ease of editing a model in Gme, we make Gme become a

front-end for Polychrony, the current development platform for Signal, through

the use of Signal-Meta. Then, we need to transform the graphical specifications

using Signal-Meta to the corresponding Signal programs. Therefore, we have im-

plemented a Gme Interpreter, which acts similarly for Signal-Meta models as the

MetaGME Interpreter for MetaGME metamodels. Figure 5 represents the different

steps during the “interpretation”, which can be summarized by (i) creating the tree

structure of the Signal programs corresponding to the graphical representation, (ii)

generating the Signal equation for each level of this intermediary representation,

(iii) and finally writing the Signal program into a file. This is pretty simple, be-

cause there is a correspondence between graphical elements and the Signal syntax.

Here, we detail each of these three main steps.

Step 1: Tree generation. Each FCO selected in the Gme GUI is associated with

a tree (the intermediate representation in Fig. 5) whose root is the selected FCO.

Each node of these trees corresponds to a Signal process model, and each leaf to

a symbol (e.g. signal, constant) in the generated program. The tree is built by re-

cursive instantiations of each node into BON objects [14] according to their type in

the metamodel. The root FCO is first instantiated. Then, all its contained Models

and FCOs, which correspond to symbols (e.g. Input, Output), are instantiated. The

10

Brunette et al.

representation
intermediate

GME Gui

.sig

.xml
...

Interpreter

interactive
feedback
visualizing

update
model
automatic

...

1: tree generation 3: write in files2: Check&Build

Figure 5. From Gme to Signal files.

same process is applied recursively on each sub-Model. For example, the instantia-

tion of a Module Model results in the instantiation of its contained elements among

which ModelDeclaration, TypeDeclaration, and ConstantValue FCOs. While Con-

stantValues are only Atoms, and thus leafs of the tree, ModelDeclarations and

TypeDeclarations contain subparts. In the same manner, each of these container

elements recursively instantiates its own symbols and Signal process models.

Step 2: Check&build. This step consists in building the Signal equations for each

node of the tree created at the previous step. Each Model (ModelDeclaration, Sub-

Process, etc.) has to build the equations corresponding to each element it contains.

To produce these equations, we need to analyze all concepts and all relations

(i.e. Connections) between them. This analysis consists in visiting each node of a

directed graph whose arcs are Connections. To analyze the graph, we need to select

start/end points, which allows, as much as possible, to avoid visiting the same path

twice. We call end-statements these start/end points. Basically, it corresponds to

all named elements (e.g. signal, declaration of model, model instance). Actually,

the analysis consists first in producing the Signal code corresponding to the end-

statement from which the analysis starts; then if there are specific Connections

(for example Definition) whose source is the starting FCO, the analysis follows

them in the backward direction and tries recursively to produce the Signal code

corresponding to the FCO(s) which is(are) the source of this(these) connection(s).

The analysis is stopped when the source of a Connection is an end-statement or

when an error, such as cycle or FCO without a needed Connection, is detected.

More precisely, inside a Model, an equation is produced:

• for each Connection of type Definition, PartialDefinition, and ConstraintInputs

whose destination is either a Local or an Output Atom (or SignalRef Reference

which points to such an Atom). As shown in Fig. 4(b), taking the example

of the hour local signal, there is a Definition Connection whose destination

is hour and whose source is the Add Atom. Then, the analysis follows the

two Connections whose destination is the Add Atom. The first one leads to the

One ConstantValue, which is an end-statement, thus the analysis stops. The

second one leads to a Delay Atom, thus the analysis needs to continue follow-

ing the Connection linked to the Delay Atom. This leads finally to an end-

statement, which is the hour local signal itself. So the produced equation is

hour := (One + (hour$(1) init (0))).

11

Brunette et al.

• for each Atom representing a clock constraint or a dependence relation. For ex-

ample, in Fig. 4(c), the ClockSynchronized Atom is the destination of two Con-

straintInputs Connections: one from the tick signal and one from the hour

signal. As result, the equation tick ˆ= hour is produced.

• for each ModelInstance Reference, which refers to a ModelDeclaration that in-

dicates the model to instantiate. To produce an equation of a Signal process in-

stantiation, an intermediate signal is generated for each Input/Output/Parameter

FCO of the referred Model. For each Connection to these FCOs, an equation is

created using the intermediate signal as the Connection destinations.

• for each TypeDeclaration Model. According to the kind of type declaration, the

analysis is different: for enumeration types, we use the EnumValues attribute

in which there is one value per line; for structure types, all Local Atoms are

listed; for model types, all Input/Ouput/Parameter Atoms are listed and the cor-

responding interface is generated; finally, for external types, the content of the

DeclaredType attribute is used.

Input/output signals and parameters are ordered in the interface of a Signal mo-

del according to the position of their corresponding Atoms in the Interface Aspect.

In the same step before the equation generation, some corrections could be ap-

plied to the graphical Model, for example, when a Reference points to an FCO that

is not declared in the same scope as the Reference. In this situation, the properties

of the corresponding graphical components are systematically updated.

As soon as an error is encountered during this second step, a message is dis-

played in the Gme console, indicating FCOs concerned by the error as HTML links.

Whenever the user clicks on a link, the corresponding graphical object is automati-

cally displayed. This is very convenient to make rapid corrections.

process Watchdog =

{ integer delay; }

(? integer order; event finish, tick; ! integer alarm;)

(| alarm := (hour when (cnt = Zero))

| hour := (One + (hour$(1) init (0)))

| cnt ˆ= (order ˆ+ tick ˆ+ finish)

| cnt := ((delay when ˆorder) default (defValue when finish)

default ((zcnt - One) when (zcnt >= Zero)) default defValue)

| zcnt := (cnt$(1) init (-1))

| tick ˆ= hour

|)

where

constant integer One = (1), defValue = (-1), Zero = (0);

integer hour, cnt, zcnt;

end; % process Watchdog

Figure 6. Code generated by the Interpreter on the watchdog example

Step 3: Dump in files. The third and last step consists in visiting one more time

each node of the tree and writing the corresponding equations into destination files

at the relevant place in the Signal model. The declarations of signals, constants,

and labels are built and added at the same time. The code of Fig. 6 corresponds to

the application of our interpreter on the watchdog example described in Fig. 4.

12

Brunette et al.

As a global remark, we have to mention that the interpretation process can only

be applied to higher-level Models. We impose this restriction in order to be sure that

the selected Models do not use signals declared at an upper level in the hierarchy

of a Model. So, the interpreter only generates a file for selected Models, which are

immediate children of the Root Folder (i.e. the root of the current project).

Finally, we can notice that the second and the third steps can be specialized.

The interpreter generates files using the Signal syntax. However, it is possible to

specialize the interpreter to construct equations using, for example, XML syntax.

7 Discussion

The modeling paradigm introduced in this paper constitutes the first work for gen-

eralizing the use of formal methods proposed by Polychrony. This approach is

developed using metamodels to achieve a relative independence from the modeling

platform. The higher their abstraction expression level is, the more adaptable to var-

ious operational environments they will be. Indeed, Model Driven Software Devel-

opment is based on a number of common standards such as XMI, OCL and UML,

that can be mapped onto different environments. Thus, we have chosen Gme to

develop the metamodel, because it is indeed a good solution to create a metamodel

quickly, and it offers automatically a customized modeling environment.

The metamodel combined with the Interpreter makes from Signal-Meta a new

front-end for Polychrony. Actually, Signal-Meta and its Interpreter check only

structural information of the graphical specification, such as cyclic definitions or

the well-formedness of a Model. Here, we consider a Model well-formed when

the required attributes of all FCOs it contained are defined and when all required

Connections are linked to these FCOs. Obviously, such a Model is only partially

correct. To check the complete correctness of the Model, we have to apply the clock

calculus and the type checking on the generated program. This task is devoted to the

Signal compiler: it would be too costly to use OCL constraints to express the clock

calculus. Indeed, the clock calculus has to detect clock specification problems, and

localize them. However, in Gme, the check of an OCL constraint returns only true

or false. Thus, to be able to localize the failure, we have to check specific FCO

properties (i.e. inside a Model) one at a time. The clock calculus requires a global

computation. One of our future goals is to obtain a graphical and fully interactive

edition of a model under Gme. Currently, the interaction is limited to structural

error detections by the OCL constraints. We should extend the environment with

other external components to be able to check deeper semantic errors, such as clock

problems, and to display them graphically and dynamically during the edition of a

model.

Anyway, to really generalize the use of formal methods, our metamodel must be

accessible in more popular frameworks, such as Eclipse. The ATLAS Group from

INRIA [2] has realized a bridge between Gme and the Eclipse Modeling Framework

(EMF) [8]. Some transformations [5] have been developed between MetaGME

metamodels and EMF metamodels. However, these transformations keep only con-

cepts and relations between them, they do not cover all features offered by Gme: for

13

Brunette et al.

example, all informations concerning Aspects disappear. With this restriction, all

metamodels realized with Gme, and particularly for our interest Signal-Meta, can

be transformed to metamodels under EMF. However, it is important to note that the

current Interpreter uses the BON API and so is dedicated to Gme. Thus, it must be

specifically developed for Eclipse.

This metamodel can be considered as a first effort toward the development of a

more general-purpose Uml profile for modeling real-time and embedded systems,

called MARTE [17]. Moreover, Signal-Meta constitutes a kernel to create environ-

ments for multi-clock systems. Signal-Meta has already been extended for different

purpose. A first extension has been done to model multi-clock mode automata [7].

In this work, the automaton describes the control of the systems, and in each state

of the automaton, Signal equations are built in the Signal-Meta way.

Another extension, called Mimad [6], concerns the design of avionics systems

based on the Integrated Modular Avionics (IMA) architecture develop around the

APEX-ARINC 653 standard. Initially, some predefined services have been imple-

mented in a Polychrony library [10]. All these services and all levels of the IMA

Architecture extend Signal-Meta to build Mimad. Each level of the IMA Architec-

ture is represented and inherits from Signal-Meta FCOs. This inheritance allows to

reuse easily features of the Interpreter. Signal-Meta is mainly used in Mimad to rep-

resent specific user-designed functions and the data flows between the input/output

signals of IMA levels. For these both extensions, the Interpreter was also extended

to produce the corresponding Signal program.

8 Conclusions

In this paper, we have presented Signal-Meta, the metamodel of the Signal lan-

guage developed in Gme and its Interpreter to transform the graphical specifications

into Signal programs. Both tools make from Gme a new front-end for the Poly-

chrony workbench. Moreover, Signal-Meta has already been used as foundations

to build more specialized multi-clocked environment such as for mode automata

and for avionics system design.

As discussed in Section 7, Signal-Meta and its interpreter check only structural

information. There is no type checking or clock constraint verification. To com-

plete the edition of model using Signal-Meta and to overcome these limitations,

one of the possible way is to interface directly Polychrony as a Gme Addon. Thus,

the internal representation of the Signal compiler could be produced automatically

during the modeling, and then give access to possible clock or type problems.

References

[1] Agrawal, A., G. Karsai and A. Ledeczi, An end-to-end domain-driven software

development framework, in: OOPSLA ’03: Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, New York, NY, USA, 2003, pp. 8–15.

14

Brunette et al.

[2] ATLAS Group (INRIA & Lina, Université de Nantes), ATL, ATLAS Transformation

Language, Reference site, http://www.sciences.univ-nantes.fr/lina/atl/.

[3] Besnard, L., C. Brunette, T. Gautier and J.-P. Talpin, Modeling multi-clocked data-

flow programs using the Generic Modeling Environment, Technical Report RR-5775,

INRIA (2005).

[4] Besnard, L., T. Gautier and P. Le Guernic, SIGNAL V4-INRIA version: Reference

Manual, http://www.irisa.fr/espresso/Polychrony/doc/document/V4 def.pdf.

[5] Bézivin, J., C. Brunette, R. Chevrel, F. Jouault and I. Kurtev, Bridging the Generic

Modeling Environment and the Eclipse Modeling Framework, in: Proc. of the 4th

workshop in Best Practices for Model Driven Software Development, OOPSLA, 2005.

[6] Brunette, C., R. Delamare, A. Gamatié, T. Gautier and J.-P. Talpin, A Modeling

Paradigm for Integrated Modular Avionic Design, Technical Report RR-5715, INRIA

(2005).

[7] Brunette, C. and J.-P. Talpin, Compositional modeling and transformation of multi-

clocked mode automata, Technical Report RR-5728, INRIA (2005).

[8] Eclipse Modeling Framework, Reference site, http://www.eclipse.org/emf/.

[9] ESPRESSO-IRISA, Polychrony website, http://www.irisa.fr/espresso/Polychrony.

[10] Gamatié, A. and T. Gautier, Synchronous Modeling of Modular Avionics Architectures

using the Signal Language, Technical Report RR-4678, INRIA (2002).

[11] Institute for Software Integrated Systems (ISIS). Vanderbilt University, The Generic

Modeling Environment (GME), http://www.isis.vanderbilt.edu/Projects/gme/.

[12] Jackson, E. K. and J. Sztipanovits, Using separation of concerns for embedded systems

design, in: EMSOFT ’05: Proceedings of the 5th ACM international conference on

Embedded software (2005), pp. 25–34.

[13] Le Guernic, P., J.-P. Talpin and J.-C. Le Lann, Polychrony for system design, Journal

of Circuits, Systems, and Computers - Special Issue: Application Specific Hardware

Design 12 (2003), pp. 261–303.

[14] Ledeczi, A., M. Maroti and P. Volgyesi, The Generic Modeling Environment, in:

Proceedings of the IEEE Workshop on Intelligent Signal Processing (WISP’01), 2001.

[15] Maraninchi, F. and Y. Rémond, Mode-automata: a new domain-specific construct for

the development of safe critical systems, Sci. Comput. Program. 46 (2003), pp. 219–

254.

[16] Marchand, H., P. Bournai, M. Le Borgne and P. Le Guernic, Synthesis of Discrete-

Event Controllers based on the Signal Environment, in: Discrete Event Dynamic

System: Theory and Applications, 4 10, 2000, pp. 325–346.

[17] OMG, UML Profile for modeling and analysis of real-time and embedded systems

(MARTE), OMG document realtime/05-02-06.

[18] TOPCASED website, http://www.topcased.org.

15

http://www.sciences.univ-nantes.fr/lina/atl/
http://www.irisa.fr/espresso/Polychrony/doc/document/V4_def.pdf
http://www.eclipse.org/emf/
http://www.irisa.fr/espresso/Polychrony
http://www.isis.vanderbilt.edu/Projects/gme/
http://www.topcased.org

	Introduction
	The synchronous language SIGNAL and POLYCHRONY
	GME
	SIGNAL metamodel
	Example
	Model Interpretation
	Discussion
	Conclusions
	References

