
HAL Id: inria-00541578
https://hal.inria.fr/inria-00541578

Submitted on 30 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The GIVE-2 Nancy Generation Systems NA and NM
Alexandre Denis, Marilisa Amoia, Luciana Benotti, Laura Perez-Beltrachini,

Claire Gardent, Tarik Osswlad

To cite this version:
Alexandre Denis, Marilisa Amoia, Luciana Benotti, Laura Perez-Beltrachini, Claire Gardent, et al..
The GIVE-2 Nancy Generation Systems NA and NM. [Research Report] 2010. �inria-00541578�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50035476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00541578
https://hal.archives-ouvertes.fr

The GIVE-2 Nancy Generation Systems NA and NM

Alexandre Denis, Marilisa Amoia, Luciana Benotti, Laura Perez-Beltrachini,

Claire Gardent, Tarik Osswald

INRIA Grand-Est, LORIA-Nancy

54603 Villers les Nancy Cedex, France

{denis,amoia,gardent}@loria.fr, {luciana.benotti,perez.laura,tarik.osswald}@gmail.com

Abstract

This paper presents the two instruction
generation systems submitted by the team
TALARIS at INRIA-Nancy to the GIVE-
2 challenge 2010. The first system (NM)
aims to provide high-level instructions by
giving freedom to the user and relies on
an extension of the Dale and Reiter’s in-
cremental algorithm to generate the refer-
ring expressions. The second system (NA)
uses a more constrained directive naviga-
tional strategy and relies on Reference Do-
main Theory (Denis, 2010) to generate
a wide range of referring expressions in-
cluding pronouns, ellipsis and alternative
phrases. The results show that despite NA
is more successful than NM, NM is consid-
ered a bit more enjoyable by the subjective
assessment.

1 Introduction

The last few years have witnessed a considerable
growth of systems providing autonomous software
agents and agent-based dialogue applications, such
as pedestrian navigation assistance (Baus et al.,
2002), tutorial systems (Callaway et al., 2006), etc.
Accordingly, the need of services facilitating the
interaction with such applications has increased.

In this context the role of instruction giving sys-
tems for real time task solving, i.e. systems which
aid human users to achieve some task-oriented goal
by means of natural language generation (NLG) is
crucial to allow universal access to these services.

Recently, the Generating Instructions in Virtual
Environments GIVE challenge (Byron et al., 2007),
a shared NLG task, has raised extensive attention
in the research community providing an infrastruc-
ture to evaluate instruction giving systems over the
internet thus permitting task-based human evalua-
tion at a much lower cost than standard lab-based
experiment, thereby still providing results which
show high correlation with those gathered in a clas-
sical lab-setup (Koller et al., 2009). The systems
participating in the first edition of the challenge,
GIVE-1 (Byron et al., 2009), had to deal with

discrete worlds and mostly generated aggregations
of step-by-step instructions using various strate-
gies such as landmark-based navigation (Striegnitz
and Majda, 2009), level-based discourse planning
(Dionne et al., 2009) and dynamic level adaptation
(Rookhuiszen and Theune, 2009).

The challenge of this year, GIVE-2, has two in-
novative aspects. First, it implements continuous
navigation, i.e. permits continuous movements in
the virtual environment. Second, the challenge fo-
cuses on evaluating some new aspects of instruction
giving systems, such as for instance the emotional
impact of the instruction giving strategy on users.

This paper describes the two instruction giv-
ing systems submitted by the team TALARIS at
INRIA-Nancy to the GIVE-2 Challenge 2010. The
first system (NM) provides a context aware exten-
sion of Dale and Haddock’s (1991) incremental al-
gorithm for the generation of referring expressions.
The properties used in the descriptions include the
set of static absolute properties defined in the do-
main such as color, shape, and a set of dynamic
properties defined during the human-machine in-
teraction, such as the relative position of user and
target object in the virtual world.

Further, by applying the same referring strat-
egy to both objects and locations, the system pro-
duces high level path descriptions thereby gener-
ating more user-friendly navigational instructions
such as “Search the red room with the coach”. Fi-
nally, the descriptions of objects generated by the
system are overspecified, in that they also include
a description of the function of the object in the
virtual world. This extension improves the align-
ment between user and system (common ground),
for instance “To open the door, push the green but-
ton behind you”.

The second system (NA) is based on a more
directive navigational strategy only providing ex-
pected directions, while relying on Reference Do-
main Theory (Denis, 2010) to produce a wider va-
riety of referring expressions, including demonstra-
tive pronouns, ellipsis and alternative phrases, for
instance “Push a blue button”, “Not this one! Look
for another one!”.

This paper is structured as follows. In Section

2 and 3, we present the architecture of the NM
and NA systems respectively. Section 4 describes
the general messaging strategy used by both sys-
tems. In Section 5, we discuss the results our sys-
tem achieved in the GIVE-2 challenge 2010. Sec-
tion 6 concludes with some final remarks.

2 The NM System

In this section we describe the NM system. The in-
struction giving strategy implemented in this sys-
tem aims at providing context aware referring ex-
pression generation and user-friendly instructions
enhancing user learning about the virtual domain.
In order to meet these desiderata, the same refer-
ring mechanism is used for both objects and loca-
tions. Further, the descriptions of objects are over-
specified in that they include a reference to their
function.

2.1 Instruction Giving Strategy

The instruction giving strategy behind the NM sys-
tem is summarized in Figure 3.

1: plan ← simplify(originalPlan)
2: while (plan 6= ∅) do

3: currentGoal ← PLAN.popNextAction();
4: goalLocation ← currentGoal.getLocation();
5: if (playerRoom = goalLocation) then

6: describe(currentGoal)
7: else

8: describe(goalLocation)
9: end if

10: end while

Figure 1: The Instruction Giving Framework

The original game plan provided as a service
by the GIVE-2 challenge infrastructure is first ab-
stracted to a list (plan) of high level “macroac-
tions” representing the local goals the user have to
accomplish during the game, i.e. a push or take
action. A macroaction (see Figure 5) contains a
reference to the type of action to be performed, to
the object which should be manipulated, to the
location (i.e. the room in which the object can
be found) and to the function of the object in the
virtual world (e.g. open door d2).

macroaction(type:push,
obj:b3,
function:open(door(d2)),
location:room2)

Figure 2: An example of macroaction describing a
“push-button” action. The goal of this action is to
open a door.

System-user interaction is triggered by the posi-
tion of the player. When the player is in the room
in which the next scheduled action can be per-
formed (playerRoom = goalLocation) the system

generates instructions describing how to accom-
plish the action (describe(currentGoal)). Other-
wise, the system outputs navigational instructions
describing the room in which the next action can
be performed (describe(goalLocation)). The funda-
mental step in generating such instructions consists
in providing a referring expression describing the
referent object.

The following subsection describes how the gen-
eration of referring expressions is realized within
the system.

2.2 Generating Referring Expressions

The generation of referring expressions imple-
mented in the system is based on a context aware
extension of (Dale and Haddock, 1991) incremen-
tal algorithm. Our algorithm thus makes use of
the notion of dynamic context and takes into ac-
count time dependent properties of the context, i.e.
the positions of user and virtual agents and their
states, as they are crucial for content determina-
tion.

In a dynamic environment in fact, not only the
set of relevant individuals (the distractors) but also
the set of properties which count as distinguishing,
might change over time. To capture these changes,
the set of individuals of a dynamic context is de-
fined in terms of visual context, i.e. in terms of the
subset of individuals of the domain that are visible
to the user/player at a given time.

Further, the set of distinguishing properties used
to compute a description for a target referent in-
cludes the set of absolute or static properties, i.e.
properties which do not change during the inter-
action, such as the color or the shape of objects
but also their (absolute) position with respect to
particular objects that may be called “landmarks”
and the set of dynamic properties, i.e. properties
which might change during interaction, such as the
positions of objects relative to other objects and to
the instruction follower. For instance, the position
of a button on the wall with respect to the instruc-
tion follower (on the left/right, in front of) is a
relative position and thus a dynamic property.

1: if (object.hasType=room) then

2: generateDefDescr(object)
3: else

4: generateDefDescr(object)
5: object.addFunction()
6: end if

Figure 3: Generating Descriptions of Rooms and
Objects

As, given the set of properties taken into ac-
count, a distinguishing description for a given ref-
erent might not exist or might not be found, in
some cases the context aware incremental strategy

generates underspecified reference. When this hap-
pens, the system outputs an indefinite description
of the referent with a property including its relative
position with respect to the player.

Summarizing, the referring expression generated
by the context aware incremental strategy can be:

• a distinguishing description of the object, if a
unique description of the object exists: “The
blue button”.

• a distinguishing description containing abso-
lute positions, i.e. positions with respect to
landmark objects: “The green button on the
left of the picture”.

• a distinguishing description including relative
positions: “The third button on your left”.

• a non-distinguishing description including rel-
ative positions: “A red button behind you”.

As shown in (Foster et al., 2009), first describ-
ing the goal of an action to the instruction follower
an then giving the instruction helps improving per-
formance of an instruction giving system. Build-
ing on this idea, the system presented here gener-
ates overspecificied descriptions containing infor-
mation about the effect of actions to enhance user
learning. Thus, after a description for a target ob-
ject has been generated, an effect property is au-
tomatically associated (through the definition of
object function in the correspondent macroaction)
to an individual on the basis of the specification
of the object manipulating actions in the virtual
world setting (object.addFunction()). To amplify
the learning effect, this property is highlighted in
the surface realization; in fact it is not localized in
the definite noun phrase but realized as an appos-
itive infinitive clause. So for instance, the strategy
outputs referring expressions of the following type:
“To move the picture, push the red button on your
left”.

2.3 Navigational Instructions

Contrary to GIVE-1, in the GIVE-2 challenge sys-
tems are required to cope with continuous move-
ments (rather than discrete steps as in GIVE-1).
Thus, high level navigational instructions can be
generated. As described in 2.1, the abstract plan
(plan) we build up from the one provided by the
GIVE-2 infrastructure permits us to associate each
task-relevant action to the location in which it can
be performed.

Thus within this framework, the NM system pro-
vides navigational instructions that correspond to
room descriptions such as “The red room with the
safe”. The choice of generating this kind of descrip-
tions is motivated by the following two assump-
tions. First, letting the user free to choose his own

way to the target location enhances the entertain-
ment value of the game experience. And second,
highlighting in the description the properties of a
room makes easier for the user to remember them,
thus enhancing his awareness of the game space
and his learning.

1: nextRoom ← currentGoal.getLocation();
2: if hasDEFDescription(nextRoom) then

3: verbalise(DEFDescription(nextRoom))
4: else

5: if isAdjacent(nextRoom, playerRoom) then

6: verbalise(relativePosition(nextRoom, player))
7: else

8: R ← list of rooms defining the path between
current room and goal room

9: if (roomi ∈ R & hasDEFDescription(roomi))
then

10: describe(roomi)
11: else

12: describe(R.popNextRoomOnPath())
13: end if

14: end if

15: end if

Figure 4: Strategy for describing rooms.

Figure 4 sketches the algorithm for the gener-
ation of room descriptions. The system makes a
first attempt to generate a distinguishing descrip-
tion for the target room by applying the incremen-
tal algorithm to the whole game domain. If a dis-
tinguishing description for the room can be found,
it is outputted by the system.

(1) “Search the green room with the table”

If the room to be described has no distinguishing
description, the system tests whether it is adjacent
to the player room. If this is the case, a description
is outputted including the relative position of the
target room with respect to the player.

(2) “Go to the next room on your right”

Otherwise, the same procedure is recursively ap-
plied to the list of rooms along the path between
player and goal location.

Further, during the game the system records
the rooms visited by the player so that “return”-
statement such as (3) can be also generated.

(3) “Return to the room with the couch”

2.4 An example interaction

We now illustrate how the system interacts with
the user by focusing on some example scenario. In
Scenario 1, the next scheduled action in the plan is
a “push-button” action to be performed on button
b3.

The player is in the same room of the target but-
ton (room2) thus, the system outputs a description
of the action to be performed and of the referent

Scenario1:

Local Goal: push:button(b3)
Goal Location: room2

PlayerRoom: room2

Sys: [Describe local goal]
“To open the door, push the red
button on your right”

User: [Turns right and push to the red
button]

Sys: [Acknowledges success]
“Great. This was the right but-
ton!”

object b3 which is visible to the user e.g. “Push
the red button on your right” and further explains
what is the goal of the action e.g. “To open the
door”.

Suppose the user follows the instruction, finds
and pushes the right button. The game scenario
is now as in Scenario 2. The system has acknowl-
edged the success of the user action and updated
the local goal to a push-button action on button
b4 which is in room4.

Scenario2:

Local Goal: push:button(b4)
Goal Location: room4

PlayerRoom: room2

Sys: [Describes location of local goal]
“Search the green room with the
plant”

As target button and user are in different rooms,
the system generates an instruction for guiding the
user navigation and thus describes the room con-
taining the referent to the player e.g. “Search the
green room with the plant”. This is possible be-
cause in the given game scenario, the room has a
unique distinguishing description.

Scenario 3:

User: [Searches the green room]

In Scenario 3 the user is still searching for the
target room. When the user has reached the green
room (e.g. Scenario 4) the systems generates the
description of the action to be performed in that

room and a description of the target object b4 that
in this case is not visible e.g. “To move the picture,
push the button behind you”.

Scenario 4:

User: [Has found the green room]
Sys: [Acknowledges success]

“Great!”
Sys: [Describes local goal]

“To move the picture, push the
blue button behind you”

The green room room4 is now marked as visited
by the system which next time will use a “return”-
statement to refer to it e.g. “Return to the green
room with the plant”.

3 NA System

In this section we describe the NA system. This
system differs from NM both on the move instruc-
tion level, by assuming a directive strategy, and on
the push instruction level, by favoring focus over
description.

3.1 Instruction giving

Like the NM system, the NA system does not
directly rely on the plan returned by the plan-
ner because of its too fine-grained granularity and
builds an higher level plan. Whereas the NM sys-
tem adopts a very coarse granularity, by describing
rooms instead of directions – when possible (e.g.
“Search the green room with the plant”), the NA
system systematically favors directions. The gen-
eral idea to build the high-level plan (or instruction
plan) is to iterate through the plan returned by the
planner (or action plan) and gather move actions.
For instance, when a move action takes place in
the same room than a push action, the move ac-
tion and the push action are gathered into a single
push instruction. Or when two move actions take
place in the same room, they are gathered into a
single move instruction. The instructions are simi-
lar to the macroactions of the NM system with two
differences. First, they do not specify the function
of the instruction, such as opening a door for a
button, and second they maintain the sequence of
smaller actions they are gathering.

instr (push(b3),
actions:(move(r37,r42), push(b3)))

Figure 5: A push instruction gathering a move and
a push action

Following the plan consists in providing the in-

structions at the right time, and monitoring the
success or failure of actions. The main loop thus
consists of two parts:

• pop a new expected instruction from the in-
struction plan when there is no current one

• evaluate the success or failure of the expected
action and verbalize it

For each instruction, two functions have then to
be specified: how to verbalize the instruction ? and
how to monitor the success or failure of the instruc-
tion ? We detail these two functions for both move
and push instructions.

3.2 Move instructions

3.2.1 Verbalizing move instructions

The verbalization of a move instruction consists
basically in providing the direction to the goal re-
gion. If there is a door located at the goal region,
the verbalization is “Go through the doorway + di-
rection”, and if there is not, the verbalization is
simply “Go + direction”. The direction is com-
puted by taking the angle from the player position
to the goal region, and we only consider four direc-
tions “in front of you”, “to your right”, “to your
left” and “behind you”.

However, there could be cases in which the goal
region of the high level move instruction is not the
most direct region. For instance, the room in figure
6 being shaped like an U, the player has to move to
region r3, but because the moves to r2 and r3 are
in the same room, they are aggregated in a single
move instruction. But if we would directly utter
the direction to the goal region r3, given the player
orientation we would utter “Go to your left”. In-
stead, we need to consider not the goal region of
the move instruction but the different regions com-
posing the expected move. The trick is to take the
region of the last low-level move action composing
the move instruction which is theoretically visible
(modulo any orientation) from his current position.
The computation takes into account visibility by
testing if an imaginary ray from the player posi-
tion to the center of a tested region intersects a
wall or not. Thus, in this case, because a ray from
the player to r3 intersects a wall, it is not chosen
for verbalizing while r2 is picked and the produced
utterance is eventually “Go behind you”.

Figure 6: Example of U-turn

3.2.2 Monitoring move execution

The evaluation of the move instructions takes care
of the lower action level. It simply tests if the
player stands in a room for which there exists in
the lower action level a region in the same room.
In other words, a region is not on the way if it is
located in a room where the player should not be.
If this is the case, the failure of the move instruc-
tion is then raised (see replanning section 3.4). If
the player reaches the goal region of the move in-
struction, then the success is raised and the current
expectation is erased.

3.3 Push instructions

3.3.1 Verbalizing push instructions

Given the structure of the instruction plan, a push
instruction can only take place in the same room
than where the button is located. The push in-
struction is actually provided in two steps: a ma-
nipulate instruction that makes explicit the push
expectation “Push a blue button”, and a designa-
tion instruction that focuses on identifying the ar-
gument itself “Not this one! Look for the other
one!”. The verbalization of the manipulate in-
struction does not make use of the focus, it only
describes the object. On the other hand the ver-
balization of the designation instruction first up-
dates the focus with the visible objects and then
produces a referring expression.

This two steps referring process makes it easier
to work with our reference setup. We tried ap-
plying Reference Domain Theory for the reference
to buttons (Salmon-Alt and Romary, 2000; Denis,
2010). The main idea of this theory is that the ref-
erence process can be defined incrementally, each
referring expression relying on the previous refer-
ring expressions. Thus, after uttering a push ex-
pectation, a domain (or group) of objects is made
salient, and shorter referring expressions can be
uttered. For example, after uttering “Push a blue
button”, the system can forget about other but-
tons and focus only the blue buttons. Expres-
sions with one-anaphora are then possible, for in-
stance “Yeah! This one!”. Spatial relations are
only used when there is no property distinguishing
the referent in the designation phase of the refer-
ence process. These spatial properties are com-
puted, not from the player point of view, but to
discriminate the referent in the domain, that is as
opposed to other similar objects. For instance, we
could produce expressions such as “Yeah! The blue
button on the right!”. Vertical and horizontal or-
derings are produced, but only three positions for
each of them are produced left/middle/right and
top/middle/bottom. We also found it important
to have negative designation instructions such as
“Not this one” when there are focused buttons in
the current domain that are not the expected but-

tons. Thanks to the referring model, we just have
to generate “Not” followed by the RE designating
the unwanted focus. More details about the use of
Reference Domain Theory in the GIVE challenge
can be found in (Denis, 2010).

3.3.2 Monitoring push execution

The evaluation of the success of a push expecta-
tion is straightforward: if the expected button is
pushed it is successful, and the push expectation is
erased such that the main loop can pick the next
instruction, if a wrong button is pushed or if the re-
gion the player is standing in is not on the way (see
section 3.2.2) then the designation process fails.

3.4 Replanning

It is often the case that the expected instructions
are not executed. A simple way to handle wrong
actions would be to relaunch the planning process,
and restart the whole loop on a new instruction
plan. However, we need to take into account that
the player may move all the time and as such could
trigger several times the planning process, for in-
stance by moving in several wrong regions, making
then the system quite clumsy. To avoid this behav-
ior, we simply consider a wait expectation which
is dynamically raised in the case of move or push
expectation failure. As other expectations, the two
functions, verbalize and evaluate have to be spec-
ified. A wait expectation is simply verbalized by
“no no wait”, and its success is reached when the
player position is not changing. Only when the
wait expectation is met, the planning process is
triggered again, thus avoiding multiple replanning
triggers.

3.5 Acknowledging

Acknowledging the behavior of the player is ex-
tremely important. Several kinds of acknowledg-
ments are considered throughout the instruction
giving process. Each time an action expectation
is satisfied an acknowledgement is uttered such
as “great!”, or “perfect!”, that is when the player
reaches an expected region or pushes the expected
button. We also generate acknowledgements in the
case of referring even if the identification expec-
tation is not represented explicitly as an action.
When the player sees the expected button, we add
“yeah!” to the generated referring expression. This
acknowledgement does not correspond to the suc-
cess itself of the action, but just warns the player
that what he is doing is making him closer to the
success.

3.6 Alarm warning

If the player steps on an alarm the game is lost.
It is therefore quite important to warn the player
about alarms. The NM system just provides a
warning at the beginning of the game by explaining

that there are red tiles on the floor and that step-
ping on them entails losing the game. But we as-
sume in the NA system that this was not sufficient,
and thus add an alarm monitor. If at any time, the
player is close to an alarm, the system produces an
utterance “Warning! There is an alarm around!”.
In order to avoid looping these messages when the
player pass by alarms, a timer forbids uttering sev-
eral alarm warnings. But if the timer goes off, new
alarm warnings could be potentially produced.

4 Messaging

Message management in a real-time system is a
critical task that has to take into account two fac-
tors: the moment when an instruction is uttered
and the time the instruction stays on screen. Both
systems NM and NA rely on the same messag-
ing system in which we distinguish two kinds of
messages, the mandatory messages and the can-
cellable messages. Mandatory messages are so im-
portant for the interaction that if they are not
received the interaction can break down. For in-
stance, the manipulate instructions (e.g. “Push a
blue button”) are crucial for the rest of the refer-
ring process. In the case they are not received,
the player does not know which kind of button he
has to press. Cancellable messages are messages
which could be replaced in the continuous verbal-
ization. For instance, the designation instructions
(e.g. “Yeah! This one!”) or the direction instruc-
tions (e.g. “Move forward”) are continuously pro-
vided, each instruction overriding the previous one.
We cannot force the cancellable messages to be dis-
played a given amount of time on the screen be-
cause of the fast update of the environment. Both
types of messages are then necessary:

• if we would have only mandatory messages, we
would risk to utter instructions at the wrong
moment because of the delay they would stay
on screen.

• and if we would have only cancellable mes-
sages, we would risk to miss critical informa-
tion because they can be replaced too fast by
next instructions.

The system then maintains a message queue in
an independent thread called the message man-
ager. Each message, either mandatory or can-
cellable, is associated to the duration it has or
can stay on screen. The manager continuously
takes the first message in the queue, displays it
and waits for the given duration, then it displays
the next message and so on. Before a new message
is added to the queue, the message manager re-
moves all pending cancellable messages while keep-
ing mandatory messages. It then adds the mes-
sage, and if the current displayed instruction is
cancellable it stops the waiting.

5 Discussion of the results

In this section we analyze the evaluation data col-
lected by the GIVE-2 Challenge (Koller et al.,
2010) on our two systems. We discuss the ob-
jective metrics proposed in the challenge as well
as other objective metrics we have calculated our-
selves. We perform an error analysis of the lost
and canceled interactions, analyzing the reason for
the low task success achieved by our systems in
comparison with the task success achieved by the
systems that competed in GIVE-1 (Byron et al.,
2009). Finally, we interpret the observed subjec-
tive metrics.

5.1 Objective metrics

Across worlds, the NA system achieved an average
of 47% task success while the NM system achieved
an average of 30%. This task success rate was more
stable across the different evaluation worlds for the
NA system than for the NM system (see Figures 7
and 8).

Figure 7: Success per world for the NA system

Figure 8: Success per world for the NM system

In particular, the NM system achieved only a
21% task success in world 3. We consider that this
result is due to the fact that the navigation strat-
egy of the NM system attempt to produce a dis-
tinguishing description for the target room using
static properties of the game world (as explained in
Section 2). This strategy was much more effective
in world 1 because such descriptions exist for most

rooms. In worlds 2 and 3, most rooms are indis-
tinguishable using this strategy (see (Koller et al.,
2010) for a 2D representation of the worlds). As
a result the NM system switches to the strategy
which includes the relative position of the target
room with respect to the player (e.g. “Go to the
next room on your right”) as explained in Section 2.
However, the implementation of this strategy is
buggy as discussed in Section 5.2. These obser-
vations correlate with observed subjective metrics
discussed in Section 5.3.

As reported in (Koller et al., 2010), the distance
traveled until task completion and the number of
executed actions are similar for both systems, how-
ever the average time until task completion is con-
siderably smaller in the NA system. We think that
this can be explained by three reasons. First, the
NM system gave more information about the task
goals than the NA system, increasing the number
of words per instruction (e.g. the NM system gen-
erates “To open the door, push the blue button on
your right” when the NA system generates “Push
the blue button on your right”). This is confirmed
by the words per instruction metric of the Chal-
lenge. Second, the NM system gave more feedback
about the task progress than the NA system (e.g.
“Great! You have to find other 2 buttons to open
the safe.”), increasing the number of instructions
per game. This is confirmed by the instructions
objective metric (see (Koller et al., 2010)) and the
Q3 subjective metric (see Section 5.3). Third, the
NM system gave coarser grained instructions for
navigation which did not specify exactly which ac-
tion to do next (e.g. “Search the red room”). This
correlates with the number of times that the user
asked for help: the user asked for helped more than
twice as often in the NM system than in the NA
system. In sum, we think that all these factors
added up to result in the longer completion time
observed in the NM system. NA instructions are
shorter and cognitively lighter (e.g. “Yeah! This
one!”) allowing the player not only to read them
fast but also to react fast.

5.1.1 Our objective metrics

In addition to the objective metrics collected
by (Koller et al., 2010), we calculated additional
measures related to the referring process. These
measures are calculated on all games (success, can-
celed, lost). We only consider the first time a but-
ton is referred to, such that we avoid any effect due
to memory.

• Success rate of the first reference. A reference
is successful if, given a push expectation, the
next pushed button is the expected button. In
other words, it is a failure if a wrong button
is pushed or if, because of replanning, a new
push expectation is raised.

• Average duration of the first reference only if
it is successful (in seconds).

• Average number of instructions of the first ref-
erence only if it successful.

success rate duration instructions
world-1

NA 88 % 10.6s 0.8
NM 84 % 12.1s 1.9

world-2
NA 70 % 12.2s 2.5
NM 61 % 11.9s 5.5

world-3
NA 91 % 8.5s 0.9
NM 79 % 8.4s 2.1

Table 1: Our objective metrics. Success rate of
first reference, average duration and number of in-
structions.

On all worlds, NA obtains a better success rate
than NM while uttering a fewer number of instruc-
tions. However, on world 2 and 3, NM is slightly
faster than NA. The good overall success rate of
NA may come from the negation e.g. “Not this
one!” which prevents the player to push wrong
buttons, and the higher number of instructions of
NM is probably related to the direction-related in-
structions e.g. “Push the red button on your right”
that change more often than the NA demonstrative
strategy when the player is turning. On the other
hand, the direction-related instructions improves
slightly the duration. We observed that the NM
referring strategy is much faster in the rooms con-
taining similar objects. For instance, in the world
2, the parlor room is filled with blue buttons. The
NA strategy takes an average of 14s to refer to the
buttons of this room while NM takes only 10.1s.
This big difference is caused by the NA strategy
that forces the player to check visually each but-
ton until he can find the right one (“Yeah! this
one!”) while the NM strategy provides a direct
direction to it.

Some situations are problematic for both sys-
tems. The lowest success rate is found in world 2,
especially in the hall which contains a grid of but-
tons. For the buttons bhall composing the grid,
the success rate drops to 51% for NA and 43% for
NM. It is interesting to note that the two strate-
gies have actually two kinds of deficiencies. The
NA system is failing because of the presupposition
raised by the indefinite “Push a blue button” that
any blue button could work. On the other hand,
the NM system is failing because it produces very
long descriptions like “Push the blue button above
the green button and on the left of the green button”
that are immediately replaced by new descriptions.
Those two errors are discussed in details in the fol-
lowing section.

5.2 Error analysis

As argued in (Koller et al., 2010), it is surpris-
ing that the best performing system of the GIVE-
2 Challenge achieves only the 47% of task suc-
cess. This result is much lower than the task suc-
cess achieved by the systems that participated in
GIVE-1 (Byron et al., 2009). Two potential rea-
sons for such low task success may be that either
the systems are not good enough or the task itself
is not engaging and then the users cancel or lose
due to their lack of interest. The GIVE-2 task is in-
deed not engaging as made evident by the result of
the emotional affect measures reported in (Koller
et al., 2010). However, we have observed in the
game logs that most cases in which a user cancels
or loses the one that is to blame is not the user
(who gets bored) but a contradicting or confusing
behavior from the part of the system.

We first analyzed the lost games. In these cases,
the performance of both systems could be greatly
improved by a more elaborated alarm warning
mechanism. The NM system has no warning sys-
tem, and the NA alarm warning is quite simplistic,
although it’s effect is already observable (see Fig-
ures 7 and 8).

Analyzing the reasons for cancellation (and
hence lowering its percentage) is more complex.
There is only one reason why users lost, they step
on an alarm, but there are many reasons why users
cancel. Below we list the most frequent causes of
cancellation that we observed in the logs of our
systems.

Based on our observations in the logs we con-
clude that the navigation and the generation of re-
ferring expressions is much more difficult in GIVE-
2 setup that in GIVE-1. This is due to the multi-
plication of positions and orientations of the player
in the continuous world offered by GIVE-2. The
amount of relative positions and the fact that the
user can (and does) move very fast make instruc-
tion giving and monitoring a much more challeng-
ing task, putting timing in a crucial role and mak-
ing the interleaving of instructions and the preser-
vation of coherence essential.

5.2.1 NA system

We observed the following bugs for the NA system:

• The system gets mute.

• There is a faulty calculation of left/right. In
order to discriminate similar buttons, the re-
ferring process in the NA system makes use
of the spatial ordering by projecting the but-
tons coordinates onto the user screen. How-
ever, this projection is confusing when two
buttons are almost aligned on the X or Y axis,
but different on the Z axis (that is when one

is close while the other is further). The re-
sult are clumsy expressions “the button on the
right” immediately followed by “the button on
the left”. It would be necessary to consider
close/far properties to avoid this problem.

We also observed the following situations that
are not bugs per se but are related to the choice of
the strategy itself:

• Alarm warnings may be useful but they also
pop up at any moment in the NA system. As
an unexpected result, they could appear right
in the middle of the referring process, breaking
then the anaphoric reference. For instance,
“Push a blue button”, “Warning! There is
an alarm around!”, “Yeah! This one!”. One
way to deal with this problem would be to
really model reference to every object includ-
ing alarms instead of hard-coding some of
the instructions. The result would then be
“Yeah! This yellow button!” instead of the
one-anaphora (see (Denis, 2010)).

• One of the most problematic feature of the re-
ferring process of the NA system is the use of
indefinite as a separated instruction. The first
step of the reference process does not make use
of the focus, and thus allows to produce indef-
inite expressions such as “Push a blue button”.
The main problem is the presupposition that
any blue button can satisfy the expectation.
This is not problematic in most cases given
that the next designation instructions remove
this presupposition by making use of the fo-
cus. However, we observed many problems
when the player acts before the designation
instruction has been uttered, that is by push-
ing any blue button. This indeed can happen
because the first push instruction is a manda-
tory message and as such stays on the screen
for few seconds. The solution to this problem
would be to collapse the first push instruc-
tion and the next designation one, for instance
by uttering in a single utterance “Push a blue
button. Yeah! This one!”. This would then
prevent any action based on a wrong presup-
position.

• Relying massively on the focus is sometimes
not the good strategy. This is the case when
the room has a particular shape: there is a
part of the room filled with blue buttons, while
the expected referent is in another part of the
room not directly visible. If after receiving
“Push a blue button”, the player stands in the
part of the room with many blue buttons, he
may spin around receiving continuously “Not
these ones! Look for another one!”. Indeed,

the instruction is correct. It is hard to fig-
ure why the player does not explore the room
looking for another blue button. We think
that it may be caused by context divergence:
while the system is in the context of the whole
room, the player is in the context of the part
of the room filled with blue buttons. He may
then assume wrongly that the system makes
a mistake somewhere, especially if the system
demonstrated a faulty behavior previously. To
solve this, we may switch to another granular-
ity if we observe too much time between in-
struction uttering and execution, for instance
by adopting the same strategy than the NM
system or by raising a move expectation be-
fore the push expectation.

5.2.2 NM system

As for the NM system, we observed the following
bugs:

• The system gets mute.

• The system says “Go to the left” and there is
a wall that blocks this direction.

• The system says “Go to the 9th room on your
right” and there is no such room. The calcu-
lation of the the relative position of the tar-
get room with respect to the player is bugged.
This is particularly problematic in world 3,
where the number of rooms and their positions
make the navigation very difficult for the user
given the system strategy.

These remarks apply to the strategy itself:

• The grid setup of world 2 is confusing and
causes many cancellations or wrong buttons
pushing. Definite referring expressions are
generated frequently but only shown for such
a short time that it is impossible to read them,
e.g. “Push the blue button above the green but-
ton and on the left of the green button” gets
immediately replaced by “Push a blue button”
when there are any visible blue buttons and
only one of them is the intended referent.

• We observed contradicting directions when
the room has a non-rectangular shape, e.g.
“Go on the right behind you” [Player turns
180 degrees] “Go to the left behind you”. This
can be avoided by taking into account a lower
granularity of the goal regions, like in the NA
system (cf section 3.2.1).

• In world 3, the system is replanning every time
the user enters a wrong room. The conse-
quence is that almost the only message ac-
tually displayed to a player moving too fast
is “Wait a sec, I’m checking the map”. This

problem can be avoided like in NA by raising a
wait expectation before replanning (cf section
3.4).

• The directions switched too quickly as the user
was moving. The NM strategy relies too much
in the relative position of the player to let him
move around freely. A possible solution to this
problem is to enjoin the player to stop moving,
for instance by raising a wait expectation.

5.3 Impact on the subjective metrics

In this section we analyze how the strategies of the
two systems impact on the subjective metrics col-
lected during the challenge (Koller et al., 2010).
Figure 9 shows the subjective metrics for our sys-
tems (notice that a higher number means a better
performance, no matter whether the question is
positive or negative). In general, the observed sub-
jective metrics correlate with the objective metrics,
that is, NA system does better in general than NM
system, across worlds.

We took three of these subjective metrics,
namely Q0, Q5 and Q6 and we compared NM and
NA behavior taking into account the world. Q0
metric evaluates the overall instruction quality of
each system. We consider that Q5 metric evalu-
ates the quality of the reference strategy and Q6
the quality of the navigation strategy. Figure 10
shows Q0 metric for each system and each world.
By comparing Figures, 8, 7 and 10 we observe that
the subjective metric of overall evaluation is cor-
related with the task success, and then heavily de-
pendent on the world of interaction.

Figure 10: Subjective overall evaluation per world
and per system

This made us wonder whether there is a subjec-
tive metric in which NM system does considerably
better than NA system for a given world configu-
ration, and we found that this is the case for Q5
and world 1. Figure 11 shows Q5 metric for each
system and each world.

This result nicely illustrates that the NM naviga-
tion strategy is well suited for worlds with a small

Figure 11: Subjective Direction clarity (Q5) mea-
sure per world and per system

number of rooms which are distinguishable by def-
inite descriptions, resulting in instructions such as
“Return to the room with the lamp”. In worlds with
a larger number of rooms, like the worlds 2 and
3, the NM strategy is indeed confusing as proved
by Q4 and Q5. The freedom given to the player
makes him complain about the little help he re-
ceived from NM as shown by Q9. In such worlds,
the NA strategy being more directive leads to a
better subjective assessment on those metrics.

On the level of reference (Q6), the NA strat-
egy, that refers to objects by relying on ellipsis
and focus, gives better results than the NM de-
scriptive strategy, and this is stable across worlds.
This is coherent with the objective metrics in Ta-
ble 1 where NA is more successful and relies on
a smaller number of instructions. However, even
if players evaluated positively the feedbacks given
by NM (Q3), they complain about the amount of
unnecessary information as proved by Q7, maybe
because knowing the function of the objects pro-
vided by NM is not a crucial information for the
execution of the task. This unnecessary informa-
tion may also be at hand in question Q8 where the
players consider to have received too much infor-
mation at once.

Interestingly, we observed that although NA and
NM share the same messaging system the scores
related with timing are different. On the one
hand, they receive almost the same score about the
“too late” assessment (in Q10). But on the other
hand, NA performs better than NM about the “too
early” assessment (in Q11). This difference may
be explained by the NM strategy that refers to ob-
jects that are not yet known to the player such as
“Search the red room with the safe” or “To open
the door, push the green button behind you”.

Like all the participating systems, NA and NM
do not have a very good score at the emotional
level (questions Q16 to Q22). This may be caused
by the task itself which is very repetitive. However,

Subjective Metric NA NM

Q0: Overall evaluation of the system 36 18
Q1: The system used words and phrases that were easy to understand 62 54
Q2: I had to re-read instructions to understand what I needed to do 40 8
Q3: The system gave me useful feedback about my progress 9 11
Q4: I was confused about what to do next 29 9
Q5: I was confused about which direction to go in 21 8
Q6: I had no difficulty with identifying the objects the system described for me 18 13
Q7: The system gave me a lot of unnecessary information 15 10
Q8: The system gave me too much information all at once 31 8
Q9: The system immediately offered help when I was in trouble 32 4
Q10: The system sent instructions too late 38 39
Q11: The system’s instructions were delivered too early 39 12
Q12: The system’s instructions were visible long enough for me to read them 6 -14
Q13: The system’s instructions were clearly worded 32 23
Q14: The system’s instructions sounded robotic -4 -2
Q15: The system’s instructions were repetitive -31 -28
Q16: I really wanted to find that trophy -11 -8
Q17: I lost track of time while solving the overall task -16 -18
Q18: I enjoyed solving the overall task -8 -4
Q19: Interacting with the system was really annoying 8 -2
Q20: I would recommend this game to a friend -30 -25
Q21: The system was very friendly 30 20
Q22: I felt I could trust the system’s instructions 37 24

Figure 9: Average subjective metrics for both systems across worlds

as shown by Q18, the NM system that gives more
navigational freedom to the player is considered
more enjoyable than the NA system. We assume
that the very directive navigational strategy of NA
is much less entertaining than letting the player
make his own choices like NM, even if giving him
more freedom leads to more confusion as shown by
Q4 and Q5.

6 Conclusion

We presented the evaluation of two instruction
giving systems in the GIVE-2 challenge 2010.
The first strategy (NM) aimed at providing high-
level instructions, describing rooms for navigation
(“Search the room with a lamp”) and providing
goal description (“To open the door, ...”). The
second strategy (NA) used lower level instruc-
tions, such as a directive navigation strategy (“Go
through the doorway to your left”) and a referring
strategy mostly based on ellipsis and focus (“Not
these ones! Look for the other one”). The results
show that the NA strategy is more successful than
the NM strategy. The high-level instructions strat-
egy of NM proves to be confusing and cognitively
overwhelming. On the other hand, players favor
the kind of feedbacks provided by NM strategy and
found it more enjoyable and less robotic than the
NA strategy.

The data collected in the GIVE-2 experiment

contributes to the identification of weak points and
strengths of our systems’ strategies and implemen-
tations. But also it provides a detailed view of
different situations in which one strategy performs
better (or worse) than the other. In the future we
will focus on investigating how to integrate or com-
bine the different strategies into a system which
takes advantage of the strengths and can dynam-
ically adapt different strategies to different situa-
tions. For instance, one possible way to combine
both strategies is to start from the NM strategy, at
a high level of description and giving more freedom
to the instruction follower, and in case of execution
problems to switch dynamically to a lower level.
However, the concrete details of this combination
have yet to be worked out. An important thing
to consider is the goal of an instruction generation
system. Do we want to make it as faster as pos-
sible? enjoyable? or to have some learning effect?
or all of them?

References

Jörg Baus, Antonio Krüger, and Wolfgang
Wahlster. 2002. A resource-adaptive mobile
navigation system. In IUI ’02: Proceedings of
the 7th international conference on Intelligent
user interfaces, pages 15–22, New York, NY,
USA. ACM.

Donna K. Byron, Alexander Koller, Jon Oberlan-
der, Laura Stoia, and Kristina Striegnitz. 2007.
Generating instructions in virtual environments
(GIVE): A challenge and an evaluation testbed
for NLG. In Proceedings of the Workshop on
Shared Tasks and Comparative Evaluation in
Natural Language Generation, Washington, DC.

Donna Byron, Alexander Koller, Kristina Strieg-
nitz, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2009. Report on
the First NLG Challenge on Generating Instruc-
tions in Virtual Environments (GIVE). In Pro-
ceedings of the 12th European Workshop on Nat-
ural Language Generation (ENLG 2009), pages
165–173, Athens, Greece, March. Association for
Computational Linguistics.

C. Callaway, M. Dzikovska, C. Matheson,
J. Moore, and C. Zinn. 2006. Using dialogue
to learn math in the LeActiveMath project.
In Proceedings of the ECAI 2006 Workshop on
Language-Enabled Educational Technology.

Robert Dale and Nicholas J. Haddock. 1991. Gen-
erating referring expressions involving relations.
In Proceedings of the 5th Conference of the Eu-
ropean Chapter of the ACL, EACL-91.

Alexandre Denis. 2010. Generating Referring Ex-
pressions with Reference Domain Theory. In
Proceedings of the 6th International Natural
Language Generation Conference - INLG 2010,
Dublin Ireland.

Daniel Dionne, Salvador de la Puente, Carlos León,
Pablo Gervás, and Raquel Hervás. 2009. A
model for human readable instruction genera-
tion using level-based discourse planning and dy-
namic inference of attributes. In Proceedings of
the 12th European Workshop on Natural Lan-
guage Generation (ENLG 2009), pages 66–73,
Athens, Greece, March. Association for Compu-
tational Linguistics.

Mary Ellen Foster, Manuel Giuliani, Amy Isard,
Colin Matheson, Jon Oberlander, and Alois
Knoll. 2009. Evaluating description and ref-
erence strategies in a cooperative human-robot
dialogue system. In Proceedings of the Twenty-
first International Joint Conference on Artificial
Intelligence (IJCAI-09), Pasadena, California.

Alexander Koller, Kristina Striegnitz, Donna By-
ron, Justine Cassell, Robert Dale, Sara Dalzel-
Job, Johanna Moore, and Jon Oberlander. 2009.
Validating the web-based evaluation of NLG sys-
tems. In Proceedings of ACL-IJCNLP 2009
(Short Papers), Singapore.

Alexander Koller, Kristina Striegnitz, Andrew
Gargett, Donna Byron, Justine Cassell, Robert
Dale, Johanna Moore, and Jon Oberlander.
2010. Report on the second NLG challenge

on generating instructions in virtual environ-
ments (GIVE-2). In Proceedings of the Interna-
tional Natural Language Generation Conference
(INLG), Dublin.

Roan Boer Rookhuiszen and Mariët Theune. 2009.
Generating instructions in a 3d game environ-
ment: Efficiency or entertainment? In In-
telligent Technologies for Interactive Entertain-
ment, volume 9 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 32–43.
Springer Berlin Heidelberg.

Susanne Salmon-Alt and Laurent Romary. 2000.
Generating referring expressions in multimodal
contexts. In Workshop on Coherence in Gener-
ated Multimedia - INLG 2000, Mitzpe Ramon,
Israel.

Kristina Striegnitz and Filip Majda. 2009. Land-
marks in navigation instructions for a virtual
environment. In Proceedings of the Workshop
on the First NLG Challenge on Generating In-
structions in Virtual Environments (GIVE-1),
Athens, Greece.

