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Maturationally-Constrained Competence-Based
Intrinsically Motivated Learning

Adrien Baranes and Pierre-Yves Oudeyer
INRIA, France

Abstract—This paper studies the coupling of intrinsic motiva-
tion and physiological maturational constraints, and argues that
both mechanisms may have complex bidirectional interactions
allowing to actively control the growth of complexity in motor
development. First, we introduce the self-adaptive goal generation
algorithm (SAGG), instantiating an intrinsically motivated goal
exploration mechanism for motor learning of inverse models.
Then, we introduce a functional model of maturational con-
straints inspired by the myelination process in humans, and show
how it can be coupled with the SAGG algorithm, forming a new
system called McSAGG. We then present experiments to evaluate
qualitative properties of these systems when applied to learning
a reaching skill with an arm with initially unknown kinematics.

I. INTRODUCTION

In spite of many innate capabilities, human infants are born
with a serious lack of knowledge, know-how, and mastery of
their own body. Using their aptitude to learn, they increase
their capabilities by exploring the world where they evolve
and by interacting with other humans, during their entire life
span. Intrinsic motivation mechanisms have been shown to be
fundamental in their self-exploration behavior [1], [2]. Based
on self-determination theories [3], they typically deal with
ways to define what is interesting.

Various works focused on ways to implement such systems
to make a robot learn the relationships existing between parts
of its body, or between its body and the outside world (see
[4], [5] for an overview). Most of them can be defined
as knowledge based models according to the terminology
introduced in [6]. They study the evolution of knowledge about
the world, and typically deal with a notion of interest related to
comparisons between a predicted flow of sensorimotor values,
based on an internal forward model, with the actual flow of
values. Efficient when a robot is learning forward models, like
consequences of its actions for given contexts, these systems
have not been designed for the learning of inverse models of
highly-redundant systems. Actually, they do not consider the
notion of goal, or task, and only try to improve the quality
of forward models with no consideration about how they can
be reused for control (this applies for instance to IAC [5]
and RIAC [7]). Therefore, they might typically spend large
amounts of time exploring variants of actions or sequences of
actions that produce the same effect, at the disadvantage of
exploring other actions that might produce different outcomes
and thus be useful to achieve more tasks. (e.g. learning 10
ways to push a ball forwards, instead of learning to push a
ball in 10 different directions).

A way to address this issue is to introduce goals explicitly
and drive exploration at the level of these goals, which the
system then tries to reach with a lower-level goal-reaching
architecture typically based on coupled inverse and forward
models, which may include a lower-level goal-directed active
exploration mechanism. Such an architecture can be called

a competence-based intrinsic motivation mechanism, as
outlined in [6]; indeed, here they propose a definition of
interesting events as related to comparisons between self-
generated goals, which are particular configurations in the
sensorimotor space, and the extent to which they are reached
in practice, based on an internal inverse model that may be
learnt.

Also conceptualized as active learning heuristics [8], these
two kinds of approaches to intrinsic motivation typically have
to initially explore the largest part of the whole sensorimotor
space, before discriminating which subspaces are the most
interesting. This raises the problem of (meta-)exploration in
open-ended worlds where typical developmental robots evolve.
Actually, in this kind of unprepared spaces where limits are
typically unknown, exploring the whole sensorimotor space for
extracting ”interesting” subspaces is already often impossible
in the life-span of an organism.

Biological constraints on the learning process in infants
may be a potential solution for this open-ended exploration
problem. Actually, the progressive biological maturation of
infants’ brain, motor and sensor capabilities, introduces numer-
ous important constraints on the learning process [9]. Indeed,
at birth, all the sensorimotor apparatus is neither precise
enough, nor fast enough, to allow infants to perform complex
tasks. The low visual acuity of infants [10], their incapacity to
efficiently control distal muscles, and to detect high-frequency
sounds, are examples of constraints reducing the complexity
and limiting the access to the high-dimensional and open-
ended space where they evolve [11].

Some first attempts have been proposed for creating learning
systems using these concepts individually. For e.g., [4], [5],
[7], [12]–[17], propose different frames for intrinsic motiva-
tions systems, typically based on the evolution of the learning
process over time. Developmental constraints have also been
studied, e.g., Lungarella and Berthouze [18], show experiments
about the evolution of locomotion capacities for a walking
robot, by releasing progressively degrees of freedoms, and
resolving learning problems due to redundancies. As a link
between intrinsic motivations, and maturational constraints,
Lee et al. [19] introduced the Lift-Constraint, Act, Saturate
(LCAS) algorithm, which deals with discrete developmental
stages of visual acuity, whose maturation level increases,
depending on a notion of saturation linked to the estimation
of novelty.

In this paper, we introduce a new exploration algorithm,
called Maturationally-constrained Self-Adaptive Goal Gen-
eration (McSAGG), also based on the notion of maturation,
but focused on linking intrinsic motivations in the compe-
tence based framework with the release of different kinds
of maturational constraints. Here, we emphasize the idea
that intrinsic motivations do not only have to be seen as



answering the problem of ”what to learn”, but can also be
considered as providing biological measures, able to make the
learning system progressively evolve by itself, by controlling
its constraints and its own capabilities.

In the following section, we introduce the Self-Adaptive
Goal-Generation SAGG algorithm as a new instantiation
of the competence based intrinsic motivation framework [6].
Then, we couple this algorithm with a model of the myelina-
tion process appearing in the brain, and responsible of different
maturational constraints. Finally, we present qualitative results
of our architecture with a simulated robot that explores and
learn to control its initially unknown arm.

II. COMPETENCE BASED INTRINSIC MOTIVATIONS: THE
SELF-ADAPTIVE GOAL GENERATION ALGORITHM

A. Global Architecture
Let us consider the definition of competence based models

outlined in [6], and extract from it two different levels for
active learning defined at different time scales (Fig. 1):

1) The higher level of active learning (higher time scale)
considers the active self-generation and self-selection of
goals, depending on a feedback defined using the level
of achievement of previously generated goals.

2) The lower level of active learning (lower time scale)
considers the goal-directed active choice and active
exploration of lower-level actions to be taken to reach
the goals selected at the higher level, and depending
on local measures about the evolution of the quality of
learnt inverse and/or forward models.

Fig. 1. Global Architecture of the SAGG algorithm. The structure is
composed of two parts defining two levels of active learning: a higher which
considers the active self-generation and self-selection of goals, and a lower,
which considers the goal-directed active choice and active exploration of
lower-level actions, to reach the goals selected at the higher level.

B. Model Formalization
Let us consider a robotic system whose configurations are

described in both a configuration space S, and an opera-
tional/task space S�. For given configurations (s1, s�1) ∈ S×S�,
a sequence of actions a = {a1, a2, ..., an} allows a transition
toward the new states (s2, s�2) ∈ S×S� such that (s1, s�1, a) ⇒
(s2, s�2). For instance, in the case of a robotic manipulator,
S represents its joint space, and S�, the operational space
corresponding to the cartesian position of its end-effector.

In the frame of SAGG, we are interested in the reaching of
goals, from starting states. Also, we formalize starting states
as configurations (s0, s�0) ∈ S × S� and goals, as a desired
s�g ∈ S�. All states are here considered as potential starting
states, therefore, once a goal has been generated, the lower

level of active learning always try to reach it by starting from
the current state (sc, s�c) of the system.

When a given goal is set, the low-level process of goal-
directed active exploration and learning to reach this goal from
the starting state can be seen as exploration and learning of a
motor primitive parameterized by both this goal and param-
eters of already learnt internal forward and inverse models.
Also, according to the self-generation and self-selection of
goals at the higher level, we deduce that the whole process
(higher and lower time scales) developed in SAGG can be
defined as an autonomous system that explores and learns
fields of motor primitives.

We can easily make an analogy of this formalization with
the Semi-Markov Option framework introduced by Sutton [20].
In the case of SAGG, when considering an option (I,π,β), we
can firstly define the initiation set I : (S, S�) → [0; 1], where
I is true everywhere, because, as presented before, every state
can be considered as a starting state. Also, goals are related
to the terminal condition β, and the policy π encodes the skill
learnt through the process induced by the lower-level of active
learning and shall be indiced by the goal sg� , i.e. πs

g
� . More

formally, as induced by the use of semi-markov options, we
define policies and termination conditions as dependent on all
events between the initiation of the option, and the current
instant. This means that the policy π, and β are depending on
the history htτ = {st, s�t, at, st+1, s�t+1, at+1..., sτ , s�τ} where
t is the initiation time of the option, and τ , the time of the latest
event. Denoting the set of all histories by Ω, the policy and
termination condition become defined by π : Ω ×A → [0; 1]
and β : Ω → [0; 1].

Moreover, because we have to consider cases where goals
are not reachable, we need to define a timeout k which allows
to stop a goal reaching attempt once a maximal number of
actions has been executed. We thus need to consider htτ , to
stop π, (i.e. the low-level active learning process), if τ > k.

Eventually, using the framework of options, we can define
the process of goal self-generation, as the self-generation and
self-selection of options, a goal reaching attempt correspond-
ing to the learning of a particular option. Therefore, the global
SAGG process can be also described as exploring and learning
fields of options.
C. Measure of Competence

A reaching attempt in direction of a goal is defined as
terminated according to two conditions:

1) A timeout related to a maximal number of actions
allowed has been exceeded.

2) The goal has effectively been reached.
We then introduce a measure of competence as a measure of
the similarity between the state reached when the goal reaching
attempt has terminated and the actual goal of this reaching
attempt. Before describing the mathematical formulation of
competence, let us define what a reached goal is: deciding a
goal s�g as reached lie on the comparison of this precise goal
state to the state resulting of a reaching attempt s�f , using a
function D defining a measure of distance. Also, D(s�g, s

�
f ) <

εD corresponds to a goal reached, with εD, a tolerance factor.
In the continuous world where we would like that SAGG

behaves, we consider a measure of competence as linked
with this criteria of distance: once a reaching attempt has
been terminated, we measure competence as the final ob-
tained distance D(s�g, s

�
f ), normalized by the original distance



D(s�c, s
�
g), between the starting state s�c, and the goal. We thus

use the following formalization of the competence, described
by γs�g :

γs�g = −
D(s�f , s

�
g)

D(s�c, s
�
g) + 1

(1)

Here, γs�g is equal to the opposite value of the ratio between
the obtained distance D(s�g, s

�
f ), compared to the original

distance D(s�c, s
�
f ) with an addition of 1 to avoid a division

by zero, such that a high level of competence be represented
by the value γs�g ≈ 0, and a negative value otherwise.

D. Lower Time Scale:
Active Goal Directed Exploration and Learning

The goal directed exploration and learning mechanism can
be carried out in numerous ways. Its main idea is to guide the
system toward the goal, by executing low-level actions, which
allow to progressively explore the world and create a model
that may be reused afterwards. Its conception has to respect
two imperatives :

1) A model (inverse and/or forward) has to be computed
during the exploration, and has to be available for a later
reuse, when considering other goals.

2) A learning feedback has to be added, such that the
exploration is active, and the selection of new actions
depends on local measures about the evolution of the
quality of the learnt model.

In the experiment introduced in the following, we will use a
method inspired by the SSA algorithm introduced by Schaal &
Atkeson [21]. This system is organized around two alternating
phases: reaching phases, which involve a local controller
to drive the system towards the goal, and local exploration
phases, which allows to learn the inverse model of the system
in the close vicinity of the current state, and are triggered when
the reliability of the local controller is too low. Other kinds of
techniques, such as natural actor-critic architectures in model
based reinforcement learning [22], could also be used.

E. Higher Time Scale:
Goal Self-Generation and Self-Selection

1) Definition of Local Competence: The active goal self-
generation and self-selection lie on a feedback linked with
the notion of competence introduced above, and study more
precisely the progress of local competences. We firstly define
this notion of local competences: let us consider different
measures of competence γs�i computed for reaching attempts
to different goals s�i ∈ S�, i > 1. For a subspace called a region
R ⊂ S�, we can compute a measure of competence γ�� that
we call a local measure such that:

γ�� =

��
(γs�j )

|R| |s�j ∈ R
�

(2)

with |R|, cardinal of R.
2) Evolution of Competences: Then, let us suppose that

each reaching attempt is indexed by the instant t when it
has been decided. For a chosen goal s�j ∈ R, selected at
instant t, we then obtain a measure of competence γs�j (t). It
is important to notice that γs�j (t) can evolve over time: let us
consider a reachable goal s�j , that needs an important number

of attempts to be reached, due to the complexity of the model
that has to be explored and learnt to allow its achievement.
Selecting a same goal s�j , n times, and observing the resulting
competences γ�

j(1), γ
�
j(2), ..., γ

�
j(n), would let us observe an

increase of γ�
j(t) over time.

In the following, we merge the notion of local measure of
competence, with the phenomenon of increase of competence
for precise goals, to determine a notion of interest in different
subspaces of S�.

3) Interest Value from Evolution of Local Competences:
Let us consider different regions Ri of S� such that Ri ⊂ S�.
Each Ri contains attempted goals {s�t1 , s

�
t2 , ..., s

�
tk}Ri , and

corresponding competences obtained {γs�t1 , γs�t2 , ..., γs�tk }Ri ,
indexed by their relative time order t1 < t2 < ... < tk|tn+1 =
tn +1 of experimentation inside this precise subspace Ri ( ti
are not the absolute time, but integer indices of relative order
in the given subspace being considered for goal selection).
The interest value, described by equation 3, represents the
derivative of the local competence value inside Ri, over a
time window of the ζ more recent goals attempted inside Ri:

interest(Ri) =




|Ri|− ζ

2�

j=|Ri|−ζ

γs�j



−




|Ri|�

j=|Ri|− ζ
2

γs�j





ζ
(3)

This equation shows the utilization of a derivative, to compute
the interest. This derivative represents the competence progress
of the system, computed inside each considered subspace:
an increasing competence inside Ri means that the expected
competence gain inside Ri is important. We deduce that, po-
tentially, selecting new goals in subspaces of high competence
progress could bring, on the one hand, a high information gain
for the learnt model, and on the other hand, could lead to the
reaching of not already reached goals.

4) Goal Self-Generation Using the Measure of Interest:
Using the previous description of interest, the goal self-
generation and self-selection mechanism has to carry out two
different processes:

1) Split of the space S� where goals are chosen, into sub-
spaces, according to heuristics that allows to distinguish
approximately maximally areas according to their levels
of interest;

2) Select the subspaces where future goals will be chosen;
Such a mechanism has been described in the Robust-Intelligent
Adaptive Curiosity (R-IAC) algorithm introduced in [7]. Here,
we use the same kind of methods like a recursive split of
the space, each split being triggered once a maximal number
of goals has been attempted inside. Each split is performed
such that is maximizes the difference of the interest measure
described above, in the two resulting subspaces, this allows to
easily separate areas of different interest, and thus, of different
reaching difficulty.

Finally, goals are chosen according to the following heuris-
tics which mixes three modes, and once at least two regions
exist after an initial random exploration of the whole space:

1. In A% percent (typically A = 70%) of goal selections,
the algorithm chooses a random goal inside a region chosen



proportionally to its interest value:

Pn =
|interestn − min(interesti)|

�|Rn|
i=1 |interesti − min(interesti)|

(4)

Where Pn is the probability of selection of the region Rn, and
interesti corresponds to the current interest of regions Ri.
2. In B% of cases (typically B = 20%), the algorithm selects
a random goal inside the whole space.
3. In C% (typically C = 10%), it performs a random
experiment inside the region where the mean competence level
is the lower.

III. DEVELOPMENTAL STAGES: THE MATURATIONALLY
CONSTRAINED SELF-ADAPTIVE GOAL GENERATION

A. Maturational Constraints: the Myelination Process
Maturational constraints play an important role in learning,

by partially determining a developmental pathway. Numerous
biological reasons are part of this process, like the brain matu-
ration, the weakness of infants’ muscles, or the development of
the physiological sensory system. In the following, we focus
on constraints induced by the brain maturation, especially, on
the process called myelination [23]. Related to the evolution
of a substance called myelin, and usually qualified by the term
white matter, the main impact of myelination is to help the
information transfer in the brain by increasing the speed at
which impulses propagate along axons (connections between
neurons). Here, we focus on the myelination process for sev-
eral reasons, this phenomenon being responsible for numerous
maturational constraints, effecting the motor development, but
also the visual or auditive acuity, by making the number
of degrees-of-freedom, and the resolution of sensori-motor
channels increase progressively with time.

Actually, infants’ brain does not come with an important
quantity of white matter, myelination being predominantly
a postnatal process, taking place in a large part during the
first years of life. Konczak [24] and Berthier [25] studied
mechanisms involved in reaching trials in human infants.
In their researches, they expose that goal-directed reaching
movements are ataxic in a first time, and become more precise
with time and training. Also, they show that for all infants,
the improving efficiency of control follows a proximo-distal
way, which means that infants use in priority their torso and
shoulder for reaching movements, and, progressively, their
elbow [25]. This evolution of control capabilities comes from
the increasing frequency of the muscular impulses, gradually,
in shoulders, and elbows. This phenomenon, directly related
to the myelination of the motor cortex, then allows muscles
to become stronger at the same time, by training, which
then increases their possibility to experiment wider sets of
positions. Myelin is also responsible for brain responses to
high visual and sound frequencies. Therefore, like introduced
in [10], children are not able to detect details in images, which
is also a reason, of imprecise reaching movements.

In the following, we consider constraints analogous to those
induced by the myelination process, in the competence based
intrinsic motivation framework introduced above, and present
the Maturationally Constrained Self-Adaptive Goal Generation
algorithm (McSAGG). To easily illustrate its functioning, we
study the system in the precise case of a reaching task using
a manipulator, where capabilities of the system are restrained
and evolve depending on the learning evolution.

B. Formalization of Constraints
It is important to notice the multi-level aspect of mat-

urational constraints: constraints existing on motor actions,
influencing the control, and by analogy in our approach, the ef-
ficiency of the low-level active selection of actions performed
to reach a goal; and constraints related to sensors, like the
capacity to discriminate objects, and so here, to declare a goal
as reached. The global idea is to control all of these constraints
using an evolving term ψ(t), called maturational clock,
whose increase, which influence the lifting of constraints,
depends on the global learning evolution, and is typically non-
linear.

C. Stage Transition: Maturational Evolution and Intrinsic
Motivations

Often considered as a process strictly happening in the
first years of life, myelin continues to be produced even
in adults while learning new complex activities [26]. Also,
in a developmental robotics frame, we set the maturational
clock ψ(t), which controls the evolution of each release of
constraint, as depending on the learning activity, and especially
on the progress in learning by itself. Here, the main idea is
to increase ψ(t) (lifting constraints), when the system is in
a phase of progression, considering its current learnt model.
This progression is shown by an increase of the global average
competence over time in S�, and is analogous to the notion of a
positive interest in the whole space S�. Therefore, considering
competence values estimated for the ζ last reaching attempts
{γs�n−ζ

, ..., γs�n}S� , ψ(t) evolves until reaching a threshold
ψmax such that:

ψ(t+ 1) =

�
ψ(t) + λ.interest(S�) if interest(S�) > 0
ψ(t) otherwise

where 0 < λ << 1. As the global interest of the whole space
is typically non-stationary, the maturational clock becomes
typically non-linear, and stops its progression when the global
average of competence decreases, due to the lifting of previous
constraints.

D. Constraints Implementation
In our model, we concentrate on three kinds of matura-

tional constraints, directly inspired by consequences of the
myelination process, and which are controlled by ψ(t). These
constraints are general and can be integrated in numerous kind
of robots.

The first considered constraint describes the limitation of
frequency of muscular impulses allowed for controlling limbs
which is responsible of the precision and complexity of control
[24]. Also corresponding to the frequency of feedback updat-
ing movements to achieve a trajectory, we define the constraint
f(t) as increasing with the evolution of the maturational clock:

f(t) =

�
− (pmax − pmin)

ψmax
.ψ(t) + pmax

�−1

(5)

Where pmax and pmin represents maximal and minimal pos-
sible time periods between control impulses.

The second studied constraint relies on the sensor abilities.
Here, we consider the capacity to discriminate objects as
evolving over time, which here corresponds to an evolving
value of εD, the tolerance factor allowing to decide of a goal



as reached. We thus set εD as evolving, and more precisely,
decreasing over the maturational clock, from εDmax to εDmin :

εD(t) = − (εDmax − εDmin)

ψmax
.ψ(t) + εDmax (6)

Finally, we set another constraint, analogous to the proximo-
distal law described above. Here, we consider the range
ri within which motor commands can be chosen for each
joint i of a robotic system, as increasing over maturational
time following a proximo-distal way over the structure of
the studied embodied system. This typically allows larger
movements to become available, and the potential access to
the reaching of new goals:

ri(t) = ψ(t).ki (7)

Where ki represents an intrinsic value determining the differ-
ence of evolution velocities between each joint. Here we fix:
k1 ≥ k2 ≥ ... ≥ kn, where k1 is the first proximal joint.

IV. EXPERIMENT AND RESULTS

A. Robotics Configuration for a Reaching Task

In the following, we consider a n-dimensions manipulator
controlled in position and speed (as many today’s robots),
updated at discrete time values, called time steps. The vector
θ ∈ Rn = S represents joint angles, and x ∈ Rm = S�, the
position of the manipulator’s end-effector in m dimensions, in
the euclidian space S� (see Fig. 2 where n = 3 and m = 2).
We introduce the McSAGG algorithm in the case of learning
how to reach all reachable points, in the environment S�, with
this arm’s end-effector. To do that, the robot has to learn its
inverse kinematics, which answers to the question of what
joint movement the robot can do to move in direction of a
goal position s�g fixed in S�. Also, in this precise experiment,
where we suppose S� euclidian, and do not consider obstacles,
the direction to a goal can always be described as following
a straight line between the current end-effector’s position and
the goal.

Learning the inverse kinematics is an online process that
arises each time a movement is executed by the manipulator:
by doing movements, the robot stores measures (θ,∆θ,∆x) in
its memory; these measures are then reused online to compute
the Jacobian J(θ) = ∆x/∆θ locally to move the end-effector
in a desired direction ∆xdesired.

1) Evaluation of Competence: To compute the measure
of competence, the function D uses the Euclidian distance
(see Fig. 2). Also computing local competence in subspaces
typically requires the reaching of numerous goals. Because
reaching a goal can necessitate several actions, and thus time,
obtaining competence measures can be long. To improve
this mechanism, we increase the number of goals artificially,
using the fixation of subgoals, allowing the estimation of
reaching competences, on the pathway to the generated goal.
Considering a current state x�

c in S�, and a self-generated goal
x�
g , we define the set of l subgoals {x�

1, x
�
2, ..., x

�
l} where

x�
i = (i/l) × (x�

g − x�
c), that have to be reached before

attempting to reach the terminal goal x�
g .

Fig. 2. Values used to compute the competence γs�g , considering a
manipulator of 3 degrees-of-freedom, in a 2 dimensions operational space.

B. Exploration and Reaching
In [21], Schaal & Atkeson propose a method called SSA

to deal with learning sparse data in high dimensional spaces.
Based on the observation that random exploration could be
very long, unsafe, or costly, they introduced an exploration
algorithm decomposing the problem of motor control, into two
separated control tasks: a first one, where it trains a nonlinear
regulator, by directing the controlled system to stay close to
some chosen setpoints. And a second one where setpoints are
shifted to reach a handcrafted goal. This typically allows the
system to create a narrow tube of known data, to guide it
toward the goal.

Here we propose a method, inspired by the SSA algorithm,
to guide the system to learn on the pathway toward the
selected goal position s�g . The system is organized around
two alternating phases: reaching phases, which involve a local
controller to drive the system from s�c towards the goal, and
local exploration phases, which allows to learn the inverse
model of the system in the close vicinity of the current state,
and are triggered when the reliability of the local controller
is too low. These mechanisms are stopped once the goal has
been reached or a timeout exceeded. Let us here describe the
precise functioning of those phases, in our experiment:

1) Reaching Phase: the reaching phase deals with creating
a pathway to the goal position xg . This phase consists of
determining, from the current position xc, an optimal move-
ment to guide the end-effector toward xg . For this purpose,
the system computes the needed end-effector’s displacement
∆xnext = v. xc−xg

�xc−xg� (where v is velocity bounded by
vmax), and performs the action ∆θnext = J+.∆xnext, with
J+, pseudo-inverse of the Jacobian estimated in the close
vicinity of θ and given the data collected by the robot so
far. After each effected action ∆xnext, we compute the error
ε = ��∆xnext −∆xnext�, and trigger the exploration phase in
cases of a too high value ε > εmax > 0.

2) Exploration Phase: this phase consists in performing
λ small random explorative actions ∆θi, around the current
position θ. This allows the learning system to learn the
relationship (θ,∆θ) ⇒ ∆x, in the close vicinity of θ, which
is needed to compute the inverse kinematics model around θ.

C. Qualitative Results
Let us set the constraint values in the case of a n=3 DOF

arm, put in an 2 dimensions environment bounded in intervals
xg ∈ [−1; 1] × [0; 1]. In this experiment, the considered
control problem consists of learning relationships between a
6-dimensional space (θ,∆θ) and resulting end-effector change
∆x, in 2 dimensions such that (θ,∆θ) ⇒ ∆x (thus the



Fig. 3. (a) Exploration of maturational constraints over values taken by the maturational clock ψ(t), for a manipulator of 3-dof. (b) evolution of the
maturational clock over time, for a given experiment. Vertical splits are added manually, to let appear what we call maturational stages, which are described
as periods between important changes of the evolution of ψ(t) (change of the second derivative of ψ(t)).

Fig. 4. Histograms of self-selected goals and illustration of reachable surfaces
(thin black contours) over maturational stages.

problem space is here 8-dimensional). We set the arm with
a global length of 50 units, and fix the proportion of each
limb as 3/5, 2/5, and 1/5 of this length and fix ψmax = 10.

Fig. 3 (a) shows the different constraints ri(t), εD and
f−1(t) over values that take the maturational clock ψ(t).

We can firstly observe increasing ranges ri(t), defined such
that r3(t) < r2(t) < r1(t), which respects the proximo-distal
constraint meaning that joints closer to the basis of the arm
have a controllable range which increase faster than further
joints. Fig. 3 (a) also shows the evolutions of εD(t), from 5
to 1 units over ψ(t), and f−1(t), representative of the time

period between the manipulator’s update control signals, from
3 to 1 time steps. The evolution of the frequency has been
decided as being not continuous, to let us observe the behavior
of the algorithm when a sudden change of complexity arises
for a constraint. We run an experiment over 15000 time steps,
which corresponds to the selection of about 7500 goals. During
the exploration, we observe the evolution of the maturational
clock ψ(t) over time (black curve in Fig. 3 (b)) which evolves
non-linearly, depending on the global progress of competence.
Letters from A to K are added from an external point of view,
they are described as periods between important changes of
the evolution of ψ(t) (evolution of the second derivative of
ψ(t)) and represent what we call maturational stages. We
describe two types of stages, stationary stages like A, C, E,
G, I, K, where the maturational clock evolves slowly, which
corresponds to time period (over time steps) where the global
competence progress is either stable or negative, and evolution
stages, like B, D, F, H, J, where the maturational clock is
evolving with a high velocity.

We can emphasize two important maturational stages : the
first one, A, which corresponds to a non-evolution of ψ(t);
this is due to the need of the mechanism to obtain a minimal
number of competence measures, before computing the global
progress to decide of a release of constraints. Also, the stable
stage E, which appears after that ψ(t) reaches the value 5 can
be explained by the sudden change of frequency f(t) from
1/3 to 1/2 update per time step, that is produced precisely at
ψ(t) = 5. This is an effective example which clearly shows
the adaptiveness of the McSAGG algorithm, which is able to
slow down the evolution of the maturational clock in cases of
an important change of complexity of the accessible body and
world, according to constraints.

We also store all data-points xi, visited by the end-effector
during learning and create histograms of positions of self-
generated goals over time windows. Fig. 4 is split in four
subfigures, each one representing the behavior of McSAGG
over a time window described over maturational stages. In
each subfigure, we display all data-points explored by the
end-effector in the considered time window, and create a
contour (thin black lines) around the surface that is reachable,
according to current limited ranges ri(t). We also superpose



histograms of goals selected over the time-window, red colors
being representative of a surface where a high number of
goals have been selected. The first global observation that we
can deduce from these results is that by focusing in majority
in areas which bring the maximum competence progress, the
McSAGG algorithm progressively direct its goal self-selection
in regions which are accessible by the end-effector: we can
globally observe in each subfigure a higher quantity of selected
goals inside and/or close to reachable regions (contoured
areas). Therefore, using a measure of interest related to the
competence progress allows the robot to learn to reach a
high number of positions with its end-effector, instead of
spending too much exploration time trying to explore non-
accessible areas. A more precise study deduced from these
results is the progressive focus of McSAGG on areas which
are newly accessible: we can effectively observe histograms
of goals selection progressively shifting on areas that were
not accessible for previous maturational stages, for instance,
comparing windows of chosen goals over the stage D (upper-
right subfigure) and E-H (lower-left subfigure), we observe the
change of position of the histogram, which, in E-H, is clearly
focusing on areas which were not accessible before (inside the
contoured area of the lower-left subfigure, but not the upper-
right).

Eventually, we can argue in a qualitative point of view that
the bidirectional coupling of maturational constraints and self-
adaptive goal generation allows the self-focalization of goals
inside maturationally restrained areas, which bring the maxi-
mal information needed for constraints to evolve, increasing
progressively the complexity of the accessible world, and so
on.

V. CONCLUSION

In this paper, we argued that intrinsic motivations and
maturational constraints mechanisms may have complex bidi-
rectional interactions allowing to actively control the growth of
complexity in motor development. We proposed an integrated
system of these two frameworks which allows a robot to
developmentally learn its inverse kinematics progressively and
efficiently, and presented qualitative results about the self-
adaptive behavior of the algorithm, when considering con-
strains which evolve with different velocities. An important
future direction will consist in a quantitative study of the learnt
models, in simulations, but also using real robotic setups,
as well as various sensorimotor embeddings to evaluate the
scalability of the algorithm.
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