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Abstract 

 

Model calibration remains a critical step in numerical modelling. After many attempts to automate this task 

in water-related domains, questions about the actual need for calibrating physics-based models are still open. 

This article proposes a framework for good model calibration practice for end-users of 1-D hydraulic 

simulation codes. This framework includes a formalisation of objects used in 1-D river hydraulics along 

with a generic conceptual description of the model calibration process. It was implemented within a 

knowledge-based system integrating a simulation code and expert knowledge about model calibration. A 

prototype calibration support system was then built up with a specific simulation code solving subcritical 

unsteady flow equations for fixed-bed rivers. The framework for model calibration is composed of three 

independent levels related respectively to the generic task, to the application domain, and to the simulation 

code itself. The first two knowledge levels can thus easily be reused to build calibration support systems for 

other application domains, like 2-D hydrodynamics or physics-based rainfall-runoff modelling. 
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Author-produced version, the definitive peer-reviewed and edited version of this article is published in
 Journal of hydroinformatics, vol. 7, n° 2, p. 91-10 and is available at www.iwapublishing.com



Introduction 

 

Good modelling practice has recently become a topical subject in water-related domains (Scholten et al., 

2000; Cunge, 2003). Indeed, numerical models have become essential tools in these domains, from research 

purposes to engineering applications. Throughout several generations of hydraulic modelling (see Abbott et 

al. (1991)), simulation codes have been evolving from basic numerical solvers to efficient and user-friendly 

hydroinformatic tools. But in spite of efficiency improvement, their use for advanced purposes still requires 

expertise. 

 

In particular, good achievement of calibration task depends on the skills of the modeller, as this task is based 

on heuristic rules. This article aims at defining a framework for a “good model calibration practice” – to 

quote Guinot and Gourbesville (2003) – in 1-D river hydraulics. This framework is planned to be the core of 

a knowledge-based system integrating numerical tools – simulation codes – and semantic expert knowledge 

about their operational use in a calibration context. Using this system, practitioners may thus be guided 

during model calibration by expert reasoning. 

 

The definition of a calibration framework requires first to consider what is called model calibration in the 

numerical modelling context. The first part of the article thus proposes preliminary thoughts on this task, 

including terminology issues but also observations on the role of calibration in a modelling study. A second 

part introduces knowledge involved in model calibration and presents tools used for its formalisation. The 

two following parts show our proposal of a framework for good practice, throughout two aspects. On the one 

hand, a conceptual description of concepts involved in model calibration gives a static view of objects used 

during this task in 1-D hydraulics and of relations between them. Such a conceptual description is called an 

ontology in the Artificial Intelligence domain. On the other hand, a dynamic view of the corresponding 

process is detailed within a generic conceptual description of the activity. Finally, an application of the 

developed knowledge-based system with a specific simulation code is outlined, and conclusions are drawn. 
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About Model Calibration 

 

Model Calibration in the Numerical Modelling Context 

 

Numerical modelling covers many different application domains, and thus various scientific communities 

using specific definitions, especially of generic terms like model. Therefore, we propose to use in this article 

a modelling terminology based on the attempt first made by the SCS Technical Committee on Model 

Credibility (Schlesinger et al., 1979) and extended by Refsgaard and Henriksen (2004). 

 

The corresponding graph in Figure 1 is composed of four elements linked by dashed arrows: 

• Reality is a generic physical system. 

• The behaviour of this system is analysed to get a conceptual model, which is constituted of 

governing equations. 

• Programming converts this conceptual model into a computer program: the simulation code. 

• This code is then applied to a particular system by model set-up to get a numerical model of this 

system. This numerical model can then simulate the behaviour of the system by predictive 

simulation. 

 

Outer arrows refer to the procedures which evaluate the credibility of the processes described by inner 

arrows. Model calibration is thus defined as the procedure which assesses that a model is properly set-up and 

that it simulates well the selected system. 

 

Examples in hydrodynamic modelling can easily be derived from these generic definitions. In the following, 

we consider that the physical system is a fixed-bed river reach, and the corresponding conceptual model is 

Saint-Venant equations. The simulation code may thus be one of the many available codes able to solve 

Figure 1: Elements for a modelling terminology, after Refsgaard and Henriksen. 
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these equations. The selected code may be used to produce a numerical model which is able to simulate open 

channel flow in this particular reach. All examples of this article are taken from subcritical unsteady flow 

modelling of a single river reach. 

 

Role of Calibration in the Modelling Activity 

 

The commonly used modelling activity is defined by a four-step framework: model set-up, model 

calibration, model validation, and finally exploitation (Cunge, 2003). A detailed generic framework has been 

developed by van Waveren et al. (1999) in order to define the current good modelling practice in water-

related domains. This framework presents calibration as an alternative to formal identification of parameters 

if this procedure is impossible because of the lack of sufficient gauged data. 

 

This remark led us to wonder about the actual definition of “model calibration”. Refsgaard and Henriksen 

(2004) propose the following one: “the procedure of adjustment of parameter values of a model to reproduce 

the response of reality within the range of accuracy specified in the performance criteria.” Modellers are 

often encouraged by decision makers to respect this performance criteria and they may unfortunately force 

parameter values in that way, leading to models with poor predictive capacities (for relevant examples in 

river hydraulics, see Abbott et al. (2001)). For this reason, Cunge (2003) discusses the four-step paradigm 

and proposes a new one for deterministic – or “physics-based”, as specified by Hall (2004) – models without 

calibration stage.  

 

In our approach, we consider that calibration, defined as the procedure assessing model set-up, is a necessary 

stage in the modelling process. Indeed, calibration does not come down to tune parameters, but it implies 

many different reasoning processes to properly deal with the available data and to get a – relatively – 

reliable model. We thus propose to provide practitioners with guidelines extracted from engineering 

experience in order to avoid unrealistic parameter adjustments. 
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End-users of hydraulic simulation codes currently perform parameter adjustment by one of the two main 

traditional ways: 

• Trial-and-error. This subjective method is based on visual comparison of computed and 

observed values, and manual adjustment of parameters. The major advantage of trial-and-error is its 

reliability, depending obviously on the level of expertise and on knowledge of the modeller about 

the site. 

• Automatic optimisation.  In order to overcome subjectivity problems, automatic calibration 

methods may be applied. They rely on three main elements: an objective function that measures the 

discrepancy between observations and numerical results, an optimisation algorithm that adjusts 

parameters to reduce the value of the function, and a convergence criterion that tests its current 

value. This very kind of calibration has been widely used in hydraulics over the last thirty years (see 

for example Wormleaton and Karmegam (1984), Khatibi et al. (1997), Anastasiadou-Partheniou and 

Samuels (1998)). The major drawback of optimisation stands in the equifinality problem – as 

defined by Beven (1993) – which predicts that the same result might be achieved by different 

parameter sets. Thus, local minima of the objective function might not be identified by the algorithm 

and lead to unrealistic parameter values and consequently to models with poor predictive capacities. 

 

Guidelines to provide to practitioners belong to a wider knowledge about model calibration. This 

knowledge, constituting the symbolic part of our framework, was formalised to be integrated into a 

knowledge-based system. 

 

 

Methods for Knowledge Formalisation 

 

Knowledge Involved 
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In a generic approach, knowledge about model calibration may be classified into three types, following Chau 

et al. (2002): 

• Descriptive knowledge is about entities necessary in the model calibration process. These entities 

may be representations of real objects – e.g., a discharge hydrograph or a simulation code – but also 

concepts, like data or parameter. 

• Procedural knowledge deals with activities performed during the model calibration process. These 

activities may include generic procedures – e.g., model calibration – or more specific ones, like 

initializing roughness parameter values. 

• Reasoning knowledge is about the way of using descriptive and procedural knowledge to carry out 

model calibration. This third type of knowledge is expressed by production rules as defined in 

Artificial Intelligence: 

IF conditions THEN actions 

 

Descriptive knowledge was formalised by building ontologies gathering and linking all the concepts 

involved in model calibration. A workflow for model calibration formalises the second kind of knowledge. 

After a preliminary graphic representation of descriptive and operative knowledge, all three kinds of 

knowledge were transcribed using a knowledge description language. Tools used for these steps are 

presented below. 

 

Graphic Representation 

 

We used the Unified Modelling Language (UML) and its associated object-oriented graphical formalism 

(OMG, 2003) to represent descriptive and procedural knowledge. This formalism has become a standard in 

computer science and is widely used for describing software artefacts. It served us as a tool to specify our 

prototype calibration support system. 
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Concerning descriptive knowledge, UML class diagrams served us to formalise objects involved in the 

model calibration task. These diagrams allow to represent descriptive concepts – as classes in the object-

oriented sense – linked together thanks to two kinds of relationships. Associations – shown as lines with 

optional arrows for simple relations, or with hollow diamond for a subpart relation called aggregation – 

formalise semantic relationship between two or more classes. Generalisation is a taxonomic relationship 

between a more generic element and a more specific element. This second kind of relations is shown as a 

solid-line path with a large hollow triangle at the end of the path where it meets the more general element. 

 

Concerning procedural knowledge, we used UML activity diagrams to formalise subtasks of the model 

calibration task. Within this kind of diagrams, an action-state – representing here a subtask – is shown as a 

shape with straight top and bottom and with convex arcs on the two sides. These actions operate on objects, 

which are instances of classes predefined in UML class diagrams. Flow between actions and objects are 

shown by dashed arrows. Decisions are represented by diamonds with guard conditions. Concurrent 

transitions between action states (synchronisations or splitting) are represented by short heavy bars. 

 

Use of a Knowledge Description Language 

 

Knowledge description languages allow to formalise knowledge in a both readable and operational way. The 

YAKL language, developed at INRIA (Moisan, 2002), particularly suited our problem, since it has been 

developed for the formalisation of knowledge about the skilled use and planning of codes – called program 

supervision (Moisan, 2003). It had been previously applied to image processing programs (Thonnat et al., 

1999) and was slightly adapted for simulation codes (Vidal et al., 2003). 

 

The YAKL language supports both object and rule-oriented descriptions. It allows to get a textual translation 

of UML class and activity diagrams for both descriptive and procedural knowledge. Moreover, reasoning 

knowledge can also be easily taken into account thanks to rule-oriented descriptions. Knowledge is 

represented in the YAKL syntax in an explicit, human readable form, which makes this language easy to use. 
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An inference engine, developed in INRIA together with the YAKL language, serves us to put this formalised 

knowledge into practice. The result is an interactive knowledge-based system which adds a layer of expert-

user knowledge on top of the simulation code itself. 

 

 

1-D River Model Calibration Concepts 

 

The static side of our framework has been formalised throughout an ontology of model calibration domain. 

It gathers descriptive knowledge used during this task, and extracted from both our experience and 

interviews of experts. 

 

Generic Concepts in Operational Validation 

 

The first step in building an ontology is to define generic concepts that could be reused and specialised in 

several domains. The goal of operational validation is “to assure that the model compares well to perceived 

reality” (Knepell and Arangno, 1993). In other words, operational validation consists in comparing model 

results to reality and modifying the model if needed. What has to be noticed in this indirect definition is that 

it covers both calibration and validation stages of the current modelling paradigm. Thus, it could be easily 

related to the model proving stage detailed by Seed et al. (1993). Therefore, we decided to build up a generic 

formalisation of concepts from operational validation, which could be used in the particular case of model 

calibration. The resulting UML class diagram is presented in Figure 2. 

 

 

Figure 2: Formalisation of concepts for operational validation – UML class diagram. 
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The first formalisation step is the description of the physical part of the problem. The physical system to be 

modelled is linked with events affecting it. Following Amdisen (1994), we distinguish two types of data3: 

static data are linked to the system itself and are supposed to be invariant. On the contrary, dynamic data 

characterise events, by ways of measurement or computation. 

 

For the modelling part of the problem, we define a numerical model as an aggregation of static data from the 

system, parameters and a simulation code. Simulation code and numerical model definitions are here in 

accordance with concepts from Figure 1. Static data provide estimates for parameter values. A numerical 

model uses dynamic data corresponding to some events as input data. Dynamic data produced by the 

simulation are called output data. These output data are then compared to reference data selected from the 

dynamic data set, to assess if the numerical model simulates correctly the behaviour of the system. 

 

For instance, in river hydraulics, events may be floods affecting a given river reach. In our approach, static 

data include river reach topography and physical description. Thus, we do not take into account movable bed 

rivers and we assume that river topography is not to be adjusted during the calibration process. Dynamic 

data are constituted by hydraulic measurements or computational results related to a particular flood. A 

numerical model of the given reach is composed of static data detailed above, parameters – among them 

roughness parameters – and a simulation code solving flood propagation equations. 

 

 

Data Specialisation for 1-D River Hydraulics 

 

We then specialised generic concepts of static data and dynamic data in order to manipulate data specific to 

1-D river hydraulics. Moreover, we focused on subcritical unsteady flow modelling. 

 

                                                           
3 Khatibi (2002) defines five types of data for different modelling problems, but the two classifications match well by 
taking into account differences in contexts: forecasting in one case and calibration in the other one. 
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We first specialised dynamic data on the basis of their function in the calibration process, into input data, 

reference data and simulation output data. 

 

Then, we define input data – objects given to the model in order to run the simulation – as an aggregation of 

an upstream boundary condition, a downstream boundary condition, optionally a lateral boundary condition 

and a initial condition. An upstream boundary condition consists – in the case of subcritical unsteady flow 

modelling of a single river reach – of an input discharge hydrograph set at the upstream end of the river 

system modelled. 

 

Simulation output data are computed results of the simulation run, whereas reference data are field data to 

compare these results with. For example, water-surface profiles may be part of the simulation output data, 

whereas floodmarks are attributes of reference data. Various natures of reference data may be used, some 

subjective, like witnesses, and some complex, like remote sensing data. At first, we restricted our analysis to 

the ones based on standard hydraulic measurements: floodmarks, water levels, and gaugings. Moreover, we 

did not take into account any imprecision or uncertainty on these values. 

 

Formalisation of Concepts in 1-D River Hydraulics 

 

All 1-D river hydraulics data described in the previous section have been linked together in order to get a 

hierarchy of bidimensional graphs which can be easily manipulated in an object-oriented approach. The 

resulting hierarchy is shown in Figure 3. 

 

The most generic concept of graphical object is first divided into curves and points subtypes. Points are then 

divided into dynamic and static points, depending if they are linked or not with a flood event. Ground points 

– and bottom points – inherit from static points. Water levels, gauging points, and discharges are dynamic 

Figure 3: Simplified formalisation of concepts in 1-D hydraulics – UML class diagram. 
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points measured – or computed – at a given time (GivenTimePoint in Figure 3). Floodmarks are dynamic 

points representing a maximum reached during a given duration (MaximumPoint). 

 

Curves are in the same way divided into dynamic and static curves. Cross-sections are considered to be 

static curves. Rating curves, stage hydrographs and discharge hydrographs are dynamic curves measured in 

a cross-section (GivenSectionCurve in Figure 3) whereas water-surface profiles and discharge spatial 

evolutions are dynamic curves measured along a reach (GivenReachCurve). Moreover, these two curves are 

measured or computed at a given time (GivenTimeCurve). Finally, envelop water-surface profiles are 

composed of maximum water levels (EnvelopCurve). 

 

 

Proposed Workflow for Model Calibration 

 

The dynamic side of our framework has been formalised throughout a workflow for model calibration as a 

generic task. This workflow was then used to define subtasks specialised for 1-D hydraulics. 

 

Generic Workflow 

 

Generic procedural knowledge about model calibration was formalised graphically in Figure 4. The 

formalism used in this figure refers to the one described above in the presentation of UML activity diagrams. 

 

 

This representation of generic procedural knowledge – constituting a paradigm for model calibration – was 

established on the basis of the formalisation of procedural knowledge used by experts to achieve this task. It 

is worth noting that this workflow contains implicitly the “sensitivity analysis” task. As a matter of fact, 

Figure 4: Procedural knowledge for model calibration – UML activity diagram. 
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performing manually a sensitivity analysis only requires to initialise parameters, to run a simulation and to 

start again, by applying appropriate reasoning rules. 

 

We decomposed the model calibration task into six main generic subtasks. This kind of knowledge has been 

extracted from the few guidelines available (Cunge et al., 1980; Hill, 1998). The model calibration task aims 

at producing a well-calibrated model from an uncalibrated model and available data. Data allocation and 

parameter definition are executed in parallel within a global preprocessing task. Data allocation extracts two 

sets of data from the available data : inputs needed to run the simulation and references needed for the 

comparison with results from the simulation. Parameter determination aims at defining and initialising the 

model parameters. The model with initialised parameters is then used together with input data to produce 

outputs. These outputs are then compared with reference data. If no satisfactory agreement is found, model 

parameters are re-initialised or re-defined. Once an agreement has been reached – and if there is still 

available data – another couple of inputs/references is built up in order to draw other comparisons. Finally, 

the resulting model is evaluated considering the objectives of the calibration, and more generally of the 

modelling. 

 

Each subtask of model calibration is described more precisely below. For each subtask, the functions that 

have been automated and implemented within the knowledge-based system are described. Examples of the 

formalisation of reasoning knowledge with the form of production rules written in the YAKL language are 

also provided in the following paragraphs. 

 

Description of Subtasks and Implemented Knowledge 

 

Data Allocation 

 

The first question one has to answer when calibrating a model is: “Which data will be used, and how?” The 

modeller has to choose among available data which of them will be used in the calibration process, 
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depending on the objective of the study. For example, a model intended to simulate flood propagation 

should be calibrated with measurements from past flood events, and not from low flow stage periods. The 

first step in data allocation is thus to select past events, and related dynamic data. These events should be as 

representative as possible of the variety of situations that the model should be able to reproduce. Another 

key point discussed by Khatibi (2001) is the minimum number of independent events to be used in order to 

get a satisfactory confidence in the calibrated model. 

 

For each event, two sets should be constituted: input data, given to the code to run simulations, and reference 

data, used for comparison with simulation output data. There is sometimes no real choice for the number of 

field data is often very scarce. But this choice should always be made in agreement with the actual aim of 

the future calibrated model and with its “performance criteria”. During this task, the modeller may be 

encouraged to get hold of particular field data which prove to be indispensable to assess that the criteria will 

be reached or not. 

 

An example of reasoning knowledge used during this subtask is provided by the following rule: if a 

hydrograph was measured during the selected event  in the upstream section of the modelled reach, it will be 

used as an upstream boundary condition for the simulation run. 

 

This task should be repeated as many times as there are events from which the modeller can extract two 

coherent sets of data, in order to make use of field measurements in an optimal way. 

 

Parameter Definition 

 

The second important step in preprocessing is the definition of parameters. It aims at choosing which 

parameters will be tuned during the calibration process. In our approach, two kinds of physically-based 

parameters may be identified: localised parameters – e.g., discharge coefficient of a given hydraulic 

structure – and spatially and/or temporally distributed parameters – e.g., roughness coefficients. Whereas 
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localised parameters only require to be considered tunable or not, the definition of distributed parameters 

includes their number and position in the reach. 

 

In river hydraulics, the modeller has to determine how many different roughness parameters the model 

should include to represent at best physical distribution of roughness in the modelled reach. In this way, 

Wasantha Lal (1995) identified and used homogeneous groups of roughness parameters during an inverse 

calibration of the Upper Niagara River model. Identification of homogeneous zones can be performed thanks 

to field study about vegetation and bed material. If a description of the river – for example by the means of 

site photographs – is not available, a preliminary distribution of roughness parameters may be extracted 

from topographical characteristics, for instance by using channel slope homogeneous regions for channel 

roughness. 

 

In most currently used 1-D simulation codes, spatial distribution of roughness parameters is partially 

imposed. Indeed, although longitudinal distribution is almost free, lateral distribution in a cross-section is 

often limited to two or three instances, for main channel and overbanks or floodplain. 

 

In our knowledge modelling, we take into account one discharge coefficient per hydraulic structure 

considered and distributed roughness coefficients. These coefficients are defined as two Manning's n values 

– one for main channel roughness and one for floodplain roughness – for a river length inside a reach. 

Homogeneous zones are defined in an interactive way. If no homogeneous zone is known a priori, default 

river length is reach length. For the time being, advanced features like composite roughness or 

stage/discharge-dependent Manning's n have not been taken into account. 

 

Parameter Initialisation 

 

Once parameters have been defined, they have to be assigned values in order to run a simulation. In our 

knowledge-based system, with each parameter value, a variation range coming under physical concerns – 

especially for roughness coefficients – is provided. It is intended to prevent the user from using numerical 
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values of roughness parameters which would be inconsistent with physical roughness values. Indeed, 

Manning's n has often been considered as a freely tunable coefficient at the detriment of its physical 

meaning (Yen, 1999), especially when mathematical optimisation methods are used. 

 

Value assignment thus remains a critical point in model calibration, especially when roughness parameters 

are concerned, and it is performed at the moment thanks to the modeller experience (Cunge, 2004). In order 

to capitalise this experience, British Environment Agency is currently running a targeted R&D program to 

advise practitioners on the selection of roughness coefficients through online guides and pictures (Samuels 

et al., 2002). 

 

Three methods are presented by Chow (1973) for assigning values to roughness parameters: 

• Analysis of influence factors. This method – described later in detail by Arcement and Schneider 

(1984) – is based on Cowan's formula (Cowan, 1956) which expresses Manning's n as a sum of 

values depending on factors affecting roughness: 

( ) mnnnnnn b 4321 ++++=  

where: nb: base value for a straight, uniform channel in natural materials, 

n1: correction factor for irregularities, 

n2: value for variations in shape and size of the channel cross section, 

n3: value for obstructions, 

n4: value for vegetation and flow conditions, 

m: correction factor for meandering of the channel. 

• Study of descriptive tables. River typologies can be found in literature (see for example Chow 

(1973)) alongside with corresponding range and mean value of Manning's n coefficient. 

• Visual comparison with reference cross-sections. Number of sources provide photographic 

evidence of rivers and their associated estimated or measured roughness coefficient (Fasken, 1963; 

Barnes, 1967; Hicks and Mason, 1998; Nolan et al., 1998). 
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We implemented the first two methods in the knowledge base, and an example of a rule in YAKL syntax is 

shown in Figure 5. Initialisation is done on the basis of reach descriptions and may be interactive if needed. 

Both implemented methods provide a range for Manning's n roughness coefficient and a mean value which 

will be considered as the default value for the simulation. The point is that adjustment of this parameter 

during calibration will be restricted within this range in order to preserve physical coherence. 

 

 

Simulation Run 

 

In this subtask, our framework links symbolic and numerical features, by the means of a simulation code, 

which can compute hydraulic results from input data, as described in previous sections. 

 

Formalising this task requires to encapsulate the knowledge about code execution: script, input files needed, 

relations between input and output files, conditions of execution, and especially failure detection and repair 

(see Figure 6 for an example of a rule on assessment of the initial condition). 

Rule  { 
name CalculateChannelBaseValueForFirmSoil 
 If RoughnessParameter.LengthAffected.ChannelDescription.BedMaterial 
   ==  “firm soil” 
Then LowerBaseValue  :=  0.025 
  UpperBaseValue := 0.032  } 

Figure 5 : Example of a ParameterInitialization rule in YAKL syntax (The “.” notation 
is for using attributes from a class, as in standard object-oriented languages.): 
initialization of minimum and maximum channel base value component – after 
Cowan's method – of Manning's n if channel bed material is firm soil. 

Rule  { 
name ComputeNewInitialCondition 
 If InputData.InitialCondition  ≠  nil 
  InputData.InitialCondition.RoughnessParameters 
   ≠  NumericalModel.Parameters.RoughnessParameters 
Then AssessData   NumericalModel   ComputeNewInitialCondition  } 

Figure 6 : Example of a SimulationRun rule in YAKL syntax: symbolic judgement is 
assessed to the numerical model to compute a new initial condition if both an initial 
condition exists and it has been computed with the same roughness parameters as the 
ones defined in the model. 
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Output Comparison 

 

Simulation run produces outputs to be compared with reference data. Within automatic calibration methods, 

a single measure of discrepancy between computed results and observed data is provided by a goodness-of-

fit criterion. This criterion is often derived from least-squares criterion and used as an objective function to 

be minimised by the algorithm. Many studies have been carried out to find the best objective function for a 

given application, since this method was first applied by Becker and Yeh (1972). For a review of objective 

functions, one may refer to Morris and Anastasiadou-Partheniou (1994) and Lavedrine and Anastasiadou-

Partheniou (1995). Two limitations of this method may be underscored in the context of equifinality 

discussed above: 

• This task usually involves only a single comparison between two curves. For example, the same 

value of the objective function may come from differences in the shapes of compared hydrographs 

but also from a simple time lag between them. To the authors' knowledge, multi-objective 

comparison currently used for analysis of hydrological models has not yet been applied to river 

models. 

• Many automatic calibration methods provide criteria derived from the coefficient of efficiency 

(Nash and Sutcliffe, 1970) discussed by Hall (2001). This kind of criteria could hardly be applied to 

the comparison of an envelop water surface profile with floodmarks: it may certainly lead to accept 

unrealistic profiles if floodmarks are not spread in a homogeneous way over the reach, which is 

often the case in reality. 

 

To overcome these difficulties, we decided to mimic the expert analysis and we used symbolic descriptions 

of curves, and symbolic comparisons between a curve and a set of points. To this aim, curves and points are 

related to a normalised square, and curves are segmented. 

 

Curve description relies on the instantiation of symbolic descriptors (examples are proposed in braces): 
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• Each segment is described by two words or groups or words: one characterizing its width (short) and 

one characterizing its slope (low decrease). 

• Peaks are described by their position on the curve (forward), width (narrow), height (small) and 

shape (sharp). 

• Slope breaks are described by their position on the curve (centered) and trend (lower decrease). 

 

For each curve type, a table displays all available symbolic descriptors for segment width and slope, peak 

position, width, height and shape, and slope break position and trend. Symbolic descriptors may thus differ 

from a curve type to another. Moreover, each of these symbolic values is related to a set of four numerical 

values which defines a trapezoidal fuzzy number. Thus, a lower decrease will not correspond to the same 

numerical value when considering a discharge hydrograph or a water surface profile. With this approach, 

comparing curves amounts to compare their symbolic descriptors. 

 

To compare a curve with a set of points, we implemented two kinds of symbolic descriptors (examples are 

proposed in braces): 

• vertical position of each point against the curve (above), and distance between them (very close). 

• average vertical position of the set of points against the curve (most above), and average distance 

between them (globally rather close). 

These descriptors and their associated numerical values obviously depend on the curve type. We are 

currently working on an automated determination of symbolic curves description and symbolic comparison 

on the basis of numeric curves. 

 

If the agreement between simulation output data and reference data is not satisfactory, the modeller using 

standard trial-and-error method has to re-initialise parameter values or even re-define model parameters. We 

automated these heuristic choices (see an example in Figure 4) by criteria transmitting judgements to the 

suited subtask: parameter initialisation or parameter determination. 
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The modeller has to reproduce this task for all other data from reference set. Moreover, these comparisons 

should be made for all available events. We also formalised this feedback loops by transmission of 

judgements to the data allocation subtask. 

 

Result Evaluation 

 

Result evaluation subtask consists in assessing whether or not the calibrated numerical model satisfies the 

performance criteria defined by the objective of the study. Indeed, the calibrated model should be provided 

with an critical analysis of its weak and strong points, in the way proposed by Cunge (2003) for the 

validation stage of his modified paradigm. 

 

In our knowledge-based system, the model is assessed with symbolic judgements to characterise its 

capacities. If the response of reality reproduced by the model is not within the range of accuracy of the 

performance criteria, the modeller should reconsider the model itself and build up a new model with 

different hypotheses. This building task is out of the calibration context and thus has not been implemented 

in the knowledge-based system. 

 

 

Prototype Including a Specific Simulation Code: MAGE 

 

A knowledge base was written in the YAKL language on the basis of descriptive and procedural knowledge 

described in the previous sections. Considering reasoning knowledge, only basic rules were implemented at 

first in order to test the system. We paid particular attention in distinguishing the three following levels of 

knowledge: 

• At the numerical modelling level, knowledge covers generic notions as the ones shown in Figure 2 

and Figure 4. 
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• The domain level includes knowledge specific to a particular application domain and attached 

notions. Considering the 1-D river hydraulics domain, this level includes entities presented in 

Figure 3, and activities like “calibration with given floods”. 

• At the simulation code level, we specialised the SimulationRun task in order to supervise a specific 

code called MAGE. This code, developed at CEMAGREF, has been used to simulate hydraulic 

behaviours of various wetlands (see for example Giraud et al. (1997)). It solves the one-dimensional 

Saint-Venant equations for unsteady flow in looped channel network. 

 

The distinction between these three levels will allow us to reuse components of the present knowledge base 

for calibration of models based on other 1-D river codes, but also on codes from other domains, for example 

hydrological models. 

 

Specific descriptive knowledge consists in formalisation of inputs and outputs. MAGE solver uses and 

produces text files with specific formats and contents which have been formalised by the way of argument 

types. For example, MAGE upstream boundary condition file contains the following information: a discharge 

hydrograph and a node of the river network to apply it (Figure 7). 

 

Concerning procedural knowledge, generic activities like SimulationRun were specialised by the means of 

interoperability programs. Theses programs provide the files necessary to run the MAGE code with suited 

format. The code itself was encapsulated in a specific structure and specific reasoning knowledge about its 

use was described by criteria (sets of rules) attached to this operator shown in Figure 8. 

 

 

Argument Type  { 
 name MageHydFile 
 comment  "Upstream hydrograph file" 
 Attributes 
  DischargeHydrograph  name  Dh 
  Node  name  UpstreamNode  } 

Figure 7 : Upstream hydrograph for MAGE, formalised 
as a program argument type in YAKL syntax. 
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The prototype calibration support system, including both the MAGE simulation code and expert knowledge 

about model calibration, makes thus the process of calibrating models more reliable and reproducible. This 

prototype was used for the calibration of a model of the downstream part of Hogneau river, a small river 

situated near the border between France and Belgium. The model was calibrated against data from a rather 

large flood which occurred in winter 2002. Details of the model calibration are presented elsewhere (Vidal et 

al., 2004). 

 

 

Conclusions 

 

This article provides the bases of a framework for good calibration practice in 1-D river hydraulics. This 

framework was implemented within a knowledge-based system integrating both numerical – a simulation 

code – and symbolic – expert knowledge about model calibration – features. 

 

This framework is composed of three independent knowledge levels. The first level, the core of our 

knowledge-based system, includes an generic ontology and a paradigm for model calibration. The second 

level corresponds to the 1-D river hydraulics domain. It includes concepts of the domain and reasoning 

Simulation Code  {
 name Mage 
 Input Data 
  MageHydFile  name  Hyd 
   comment  "Input hydrograph file" 
  MageRugFile  name  Rug 
   comment  "Roughness parameters file" 
  … 
 Output Data 
  MageBinFile  name  Bin 
   comment  "Binary results file" 
  MageErrFile  name  Err 
   comment  "Errors listing file" 
 Assessment Criteria 
  Rule  {  name  DetectTimeStepError 
   If  assess_data  Err  TimeStepTooLow 
   Then assess_operator IncreaseTimeStep  repair  } 
  … 
 Call 
  Syntax  ./Mage5.exe < input.get_filename()  endsyntax  } Figure 8: MAGE code description in YAKL syntax. 
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knowledge about 1-D river model calibration, both of them currently set up for fixed-bed river models. The 

third level contains knowledge about the use of the MAGE code which served us to build an operational 

prototype of the knowledge-based system.  

 

The prototype knowledge-based system is thus a decision support tool for calibration of models built with 

MAGE simulation code. Applications of the resulting hydroinformatic system are currently performed on 

real-life calibration cases, on several French rivers (Hogneau river, Ardèche river and Lèze river). These 

quite different cases – in terms of river types, but also of available data – will allow us to extend the 

reasoning knowledge implemented at the moment. To this aim, the system will be confronted to hydraulic 

experts – among them authors of corresponding calibrations – in order to validate implemented hydraulic 

reasoning. 

 

The developed framework could easily be reused for other 1-D hydraulics simulation codes, but also for 

other application domains – like hydrology – where calibration of numerical models is required. Further 

work will thus direct towards application of this framework for physics-based rainfall-runoff models. 
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Figure 3: Elements for a modelling terminology, after Refsgaard and Henriksen. 

Figure 4: Formalisation of concepts for operational validation – UML class diagram. 
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Figure 3: Simplified formalisation of concepts in 1-D hydraulics – UML class diagram. 
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Figure 4: Procedural knowledge for model calibration – UML activity diagram. 
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