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A BERNOULLI PROBLEM WITH NON CONSTANT GRADIENT BOUNDARY CONSTRAINT

CHIARA BIANCHINI

ABSTRACT. We present in this paper a result about existence and convexity of solutions to a free boundary problem
of Bernoulli type, with non constant gradient boundary constraint depending on the outer unit normal. In particular
we prove that, in the convex case, the existence of a subsolution guarantees the existence of a classical solution, which
is proved to be convex.

1. INTRODUCTION

Consider an annular condenser with a constant potential difference equal to one, such that one of the two
plates is given and the other one has to be determined in such a way that the intensity of the electrostatic field
is constant on it. If Ω \ K represents the condenser, whose plates are Ω and K (with K ⊆ Ω), and u is the
electrostatic potential, it holds ∆u = 0 in Ω \ K and |Du| = constant on either ∂Ω or ∂K, depending on which
of them represents the unknown plate.

This gives rise to the classical Bernoulli problems (interior and exterior), where the involved differential oper-
ator is the Laplacian ∆, which expresses the linearity of the electrical conduction law. However, some physical
situations can be better modeled by general power flow laws, then yielding to the p-Laplacian as governing
operator. Moreover, one can consider the possibility to have a non constant prescribed intensity of the electric
field on the free boundary. In particular, as the intensity of the electrostatic field

−→
E on an equipotential surface

is related to its outer unit normal vector, through the curvature of that surface, one can assume |
−→
E | to depend

on the outer unit normal vector ν(x) of the unknown boundary. In view of these considerations, we deal here
with the following problem.

Given a domain in Ω ⊆ R
N, a real number p > 1 and a smooth function g : SN−1 → R such that

(1.1) c 6 g(v) 6 C for every v ∈ SN−1,

for some C > c > 0, find a function u and a domain K, contained in Ω, such that

(1.2)






∆pu(x) = 0 in Ω \ K,

u = 0 on ∂Ω,

u = 1, on ∂K,

|Du(x)| = g(ν(x)), on ∂K,

where ν(x) = νK(x) is the outer unit normal to ∂K at x ∈ ∂K.
Here an later ∆p is the p-Laplace operator for p > 1, that is

∆pu = div(|Du|p−2Du) .

If u is a solution to (1.2) we will tacitly continue u by 1 in K throughout the paper, so that a solution u to (1.2)
is defined, and continuous, in the whole Ω.

The boundary condition |Du| = τ has to be understood in a classical way:

lim
y→x

y∈Ω\K

|Du(y)| = |Du(x)|.

Moreover, in the convex case, that is when Ω is a convex set, we are allowed to consider classical solutions
(justified by [18], since K inherits the convexity of Ω, as shown later).

Notice that, given K in (1.2), the function u is uniquely determined since it represents the capacitary potential
of Ω \ K; on the other hand, given the function u the free boundary ∂K is determined as ∂K = ∂{x ∈ R

N :

u(x) > 1}. Hence, we will speak of a solution to (1.2) referring indifferently to the sets K or to the corresponding
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2 C. BIANCHINI

potential function u (or to both) and we will indicate the class of solutions as F (Ω,g), where Ω is the given
domain and g is the gradient boundary datum.

The original interior Bernoulli problem corresponds to the case p = 2, that is the Laplace operator, with
constant gradient boundary constraint g(ν(x)) ≡ τ. In general, given a domain Ω ⊆ R

N, and τ > 0, the
classical interior Bernoulli problem consists in finding a domain K, with K ⊆ Ω and a function u such that

(1.3)






∆pu(x) = 0 in Ω \ K,

u = 0 on ∂Ω,

u = 1, on ∂K,

|Du| = τ, on ∂K.

Easy examples show that Problem (1.3), and hence Problem (1.2), need not have a solution for every given
domain Ω and for every positive constant τ. Many authors consider the classical problem, both from the side
of the existence and geometric properties of the solution. In particular we recall the pioneering work of Beurling
[6] and several other contributions as [1, 3, 12, 11, 17]. The treatment of the nonlinear case is more recent and
mainly due to Henrot and Shahgholian (see for instance [14, 15]; see also [5, 8, 13, 20] and references therein).
The uniqueness problem has been solved later in [9] for p = 2 and [8] for p > 1. Here we summarize some of
the known results.

(1.4)

Let Ω ⊆ R
N be a convex C1 bounded domain. There exists a positive constant Λp = Λp(Ω),

named Bernoulli constant, such that Problem (1.3) has a solution if and only if τ > Λp; in such
a case there is at least one which is C2,α and convex. In particular for τ = Λp the solution is
unique.

In this paper we consider Problem (1.2) in the convex case, that is when the given domain is a convex set, and
we prove that the convexity is inherited by the unknown domain without making additional assumptions on
the function g. More precisely, let us indicate by F−(Ω,g(ν)) the class of the so called subsolution to Problem
(1.2); essentially, v and K are subsolutions if v solves






∆pv > 0 in Ω \ K

v = 0 on ∂Ω

v = 1, |Dv(x)| 6 g(ν(x)) on ∂K ;

(see Section 2.4 for more details).
Our main theorem is the following.

Theorem 1.1. Let Ω ⊆ R
N be a convex C1 domain, and g : SN−1 → R be a continuous function such that (1.1) holds.

If F−(Ω,g(ν)) is non empty, then there exists a C1 convex domain K with K ⊆ Ω such that the p-capacitary potential
u of Ω \ K is a classical solution to the interior Bernoulli problem (1.2).

The idea of a non constant boundary gradient condition has been developed in the literature by many au-
thors, who considered the case of a space variable dependent constraint, a : Ω → (0,+∞). We refer to [3, 4, 21]
for a functional approach, and to [1, 2, 16] for the subsolution method. In particular, an analogous result to
Theorem 1.1 has been proved in [16] where the authors considered a Bernoulli problem with non constant gra-
dient boundary datum a(x). For a given convex domain Ω ⊆ R

N, and a positive function a : Ω → (0,∞), such
that

c 6 a(x) 6 C, for every x ∈ Ω,

for some C > c > 0, with

(1.5)
1

a
convex in Ω,

they consider the problem

(1.6)






∆pu(x) = 0 in Ω \ K,

u = 0 on ∂Ω,

u = 1, on ∂K,

|Du(x)| = a(x) on ∂K.
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and they proved that, if a subsolution to the problem exists, then there exists a classical solution and moreover
the convexity of the given domain transfers to the free boundary.

Notice that in Problem (1.6) the function a is required to be given in the whole Ω, while in (1.2) the function
g is defined only on the unit sphere SN−1. Moreover, while in Problem (1.6) the convexity property (1.5) is
required for the boundary constraint a, in Problem (1.2) no additional assumptions on g are needed.

2. PRELIMINARIES

2.1. Notations. In the N-dimensional Euclidean space, N > 2, we denote by | · | the Euclidean norm; for
K ⊆ R

N, we denote by K its closure and by ∂K its boundary, while conv(K) is its convex hull. H m indicates
the m-dimensional Hausdorff measure. We denote by B(x0, r) the ball in R

N of center x0 and radius r > 0:
B(x0, r) = {x ∈ R

N : |x − x0| < r}; in particular B denotes the unit ball B(0, 1) and we set ωN = H N(B). Let us
define

SN−1 = ∂B = {x ∈ R
N : |x| = 1};

hence H N−1(SN−1) = NωN.
We set

Λm = {λ = (λ1, ..., λm) | λi > 0,

m∑

i=1

λi = 1}.

Given an open set Ω ⊆ R
N, and a function u of class C2(Ω), Du = (ux1

, . . . ,uxN
) and D2u = (uxixj

)N
i,j=1

denote its gradient and its Hessian matrix respectively.

2.2. Quasi-concave and Q2
− functions. An upper semicontinuous function u : R

N → R ∪ {±∞} is said quasi-
concave if it has convex superlevel sets, or, equivalently, if

u ((1 − λ)x0 + λx1) > min{u(x0), u(x1)},

for every λ ∈ [0, 1], and every x0, x1 ∈ R
N. If u is defined only in a proper subset Ω of R

n, we extend u as −∞

in R
n \ Ω and we say that u is quasi-concave in Ω if such an extension is quasi-concave in R

N. Obviously, if u

is concave then it is quasi-concave.
By definition a quasi-concave function determines a family of monotone decreasing convex sets; on the other

hand, a continuous family of monotone decreasing convex sets, whose boundaries completely cover the first
element, can be seen as the family of super-level sets of a quasi-concave function.

We use a local strengthened version of quasi-concavity, which was introduced and studied in [19]: let u be
a function defined in an open set Ω ⊂ R

n; we say that u is a Q2
− function at a point x ∈ Ω (and we write

u ∈ Q2
−(x)) if:

1. u is of class C2 in a neighborhood of x;
2. its gradient does not vanish at x;
3. the principal curvatures of {y ∈ R

n | u(y) = u(x)} with respect to the normal −
Du(x)

|Du(x)|
are positive at x.

In other words, a C2 function u is Q2
− at a regular point x̄ if its level set {x : u(x) = u(x̄)} is a regular

convex surface (oriented according to −Du), whose Gauss curvature does not vanish in a neighborhood of x̄.
By u ∈ Q2

−(Ω) we mean u ∈ Q2
−(x) for every x ∈ Ω.

2.3. Quasi concave envelope. If u is an upper semicontinuous function, we denote by u∗ its quasi-concave
envelope. Roughly speaking, u∗ is the function whose superlevel sets are the closed convex hulls of the corre-
sponding superlevel sets of u. It turns out that u∗ is also upper semicontinuos.

Let us indicate by Ω(t) the superlevel set of u of value t, i.e.

Ω(t) = {x ∈ R
N | u(x) > t},

and let Ω∗(t) = conv(Ω(t)). Then u∗ is the function defined by its superlevel sets in the following way:

Ω∗(t) = {x ∈ R
N | u∗(x) > t} for every t ∈ R ,

that is
u∗(x) = sup{t ∈ R | x ∈ Ω∗(t)}.
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Equivalently, as shown in [10],

u∗(x) = max

{

min{u(x1), ...,u(xN+1)} : xi ∈ Ω \ K,∃λ ∈ ΛN+1, x =

N+1∑

i=1

λixi

}

.

Notice that u∗ is the smallest upper semicontinuous quasi-concave function greater than u, hence in partic-
ular u∗ > u. Moreover, if u satisfies ∆pu = 0 in a convex ring Ω \ K (that is Ω,K convex with K ⊆ Ω), then it
holds ∆pu∗ > 0 in Ω \ K in the viscosity sense (see for instance [10]).

2.4. Subsolutions. In his pioneering work [6], Beurling introduced the notion of sub-solution for the classical
Problem (1.3). This concept was further developed by Acker [1] and then generalized by Henrot and Shahgho-
lian [15, 16] to the case p > 1, both for constant and for non constant gradient boundary constraint.

Following the same idea, let us introduce the class of sub-solutions to the generalized Bernoulli Problem
(1.2). Let Ω be a subset of R

N; F−(Ω,g) is the class of functions v that are Lipschitz continuous on Ω and such
that

(2.1)






∆pv > 0 in {v < 1} ∩ Ω

v = 0 on ∂Ω

|Dv(x)| 6 g(ν(x)) on ∂{v < 1} ∩ Ω .

If v ∈ F−(Ω,g) we call it a subsolution.
As in the definition of solutions, we say that a set K is a subsolution, and we possibly write K ∈ F−(Ω, τ) or

(v,K) ∈ F−(Ω, τ), if K = {x ∈ Ω : v(x) > 1} for some v ∈ F−(Ω, τ).
In the standard case g ≡ τ, for some positive constant τ, it is known that the class of subsolutions and that of

solutions are equivalent, indeed in [15] is proved that, if Ω is a C1 convex domain, and F−(Ω, τ) is not empty,
then there exists a classical solution to (1.3). In particular it is proved that

K̃(Ω, τ) =
⋃

C∈F−(Ω,τ)

C, ũ = sup
v∈F−(Ω,τ)

v,

solve Problem (1.3) and hence, recalling (1.4), it follows as a trivial consequence:

Λp(Ω) = inf{τ : F (Ω, τ) 6= ∅} = inf{τ : F
−(Ω, τ) 6= ∅}.

Regarding the proof of Theorem 1.1, it is clear that an analogous relation between subsolutions and solutions
hold true also in the non constant case, that is:

K̃(Ω, g) =
⋃

C∈F−(Ω,g)

C, ũ = sup
v∈F−(Ω,g)

v,

solve Problem (1.2) and they are said maximal solution to (1.2).

3. PROOF OF THE MAIN RESULT

In order to give a proof of Theorem 1.1, some preliminary steps are needed; they are collected in the following
propositions and lemmas.

Proposition 3.1. Let Ω be a regular C1 convex subset of R
N; let u0, u1 ∈ F−(Ω, g) with K0 = {u0 = 1} and

K1 = {u1 = 1}. Define K = K0∪K1, K∗ = convK. Then v ∈ F−(Ω,g), where v is the p-capacitary potential of Ω\K∗.
Moreover

|Dv(x)| 6 g(νΩ(t)(yx)),

for every x ∈ Ω \ K∗ and yx ∈ ∂K∗ such that νK∗(yx) = −Dv(x)/|Dv(x)| = νΩ(t)(x), being Ω(t) the superlevel set of
v of level t = v(x).

Proof. Let u∗ be the quasi-concave envelope of u = max{u0,u1}; it satisfies in the viscosity sense





∆pu∗ > 0 in Ω \ K∗

u∗ = 0 on ∂Ω

u∗ = 1 on ∂K∗,
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and hence, by the viscosity comparison principle,

(3.1) |Dv| 6 |Du∗| on ∂K∗.

Consider y ∈ ∂K∗; then either y ∈ ∂K∗ ∩ ∂K or y ∈ ∂K∗ \ ∂K.
Assume y ∈ ∂K∗ ∩ ∂K, so that νK(y) = νK∗(y). Then either y ∈ ∂K0, or y ∈ ∂K1 and hence |Du∗(y)| 6

|Du0(y)| or |Du1(y)|; however in both the cases

|Dv(y)| 6 |Dui(y)| 6 g
(
νK(y)

)
= g

(
νK∗(y)

)
,

as u0, u1 ∈ F−(Ω,g).
Now assume y ∈ ∂K∗ \ ∂K. By Proposition 3.1 in [10] there exist x1, ..., xN ∈ ∂(K0 ∪ K1) such that x1, ..., xl ∈

∂K0, xl+1, ..., xN ∈ ∂K1 (with 0 6 l 6 N) and λ ∈ ΛN such that

νK0
(xi) = νK(xi) parallel to νK1

(xj) = νK(xj) parallel to νK∗(y),

for i = 1, ..., l, j = l, ...,N and y =
∑N

i=1 λixi. Moreover thanks to Proposition 2.2 in [7] it holds

|Du∗(y)| =

(
N∑

k=1

λk

|Duik
(xk)|

)−1

6

(
N∑

k=1

λk

g(νKik
(xk))

)−1

=

(
N∑

k=1

λk

g(ν(x))

)
= g(ν(x)),

where ik ∈ {0, 1}. Hence, by (3.1), v ∈ F−(Ω, g).
Notice that, as Ω, K∗ are convex, the function v is quasi-concave, in particular, thanks Lewis’s result [18],

v ∈ Q2
−(Ω \ K∗). For every x ∈ Ω \ K∗, let νΩ(t)(x) be the outer unit normal vector to the superlevel set

{v(y) > v(x)}; hence by Lemma 4.1 in [8], it holds

|Dv(x)| 6 g(νK∗(yx)),

where yx ∈ ∂K∗ is such that νK∗(yx) = νΩ(t)(x). �

For the sake of completeness we rewrite here two lemmas in [16] which are particularly useful in the proof
of Theorem 1.1.

Lemma 3.2 ([16]). Let DR = {x1 < 1} \ BR, where BR = B(xR,R) and xR = (−R, 0, . . . , 0). Assume l > 0 and let uR

solve 




∆pu = 0 in DR

u = l on {x1 = 1}

u = 0 on ∂BR.

Then for any ε > 0 there exists R sufficiently large such that |DuR| 6 l + ε on ∂BR.

Lemma 3.3 ([16]). Let u be the p-capacitary potential of the convex ring Ω\K, with |Du| 6 C uniformly in Ω\K. Then
any converging blow-up sequence

urj
(x) =

1

rj

(
1 − u(rjx)

)
,

at any boundary points gives a linear function u0 = αx+
1 , after suitable rotation and translation, where α = |Du(O)|

and O indicates the origin.

Following the idea of the proof of Theorem 1.2 in [16], now we present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us consider u = sup{v : v ∈ F−(Ω,g)}, and let un be a maximizing sequence. Notice
that, thanks to Proposition 3.1, we can assume {un} to be an increasing sequence of the p-capacitary potentials
of convex rings Ω \ Kn, with |Dun(x)| 6 g(νKn

(x)) on ∂Kn for every n. Let K be the increasing limit of Kn;
hence K is convex and, as uniform limit of p-harmonic functions, u is the p-capacitary potential of Ω \ K, with
|Du(x)| 6 g(νK(x)) on ∂K.

We need to show that in fact |Du(x)| = g(νK(x)) and we will prove it by contradiction, constructing a
function w ∈ F−(Ω,g) such that w > u with w > u at some point. Let us remind that ν(x) indicates the outer
unit normal vector to ∂K at x.

Let us assume by contradiction that there exists a point y ∈ ∂K such that

α = |Du(y)| < g(ν(y))
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and assume y to be the origin O with outer unit normal ν parallel to the first axis. Let δ be such that

(3.2) α + 3δ < g(ν).

By Lemma 3.3 the sequence

urj
=

1

rj

(
1 − u(rjx)

)
,

converges to u0(x) = αx+
1 , hence for every η > 0,

(3.3) u(x) > 1 − αx+
1 − ηrj,

if rj is small enough, for x = (x1, ..., xN) ∈ B(O, rj).
Consider

wR(x) = wR,ε(x) =

(
α +

δ

2

)(
uR − ε

α + δ/2 − ε

)+

,

where uR is as in Lemma 3.2 and l = α + δ/2. Then there exist ε0,R0 > 0 such that for ε 6 ε0 and R > R0,

(3.4) |DwR| 6 α + 2δ, on ∂{uR 6 ε} = {wR = 0}.

Moreover there exist δ1, δ2 > 0 such that

wR > αx+
1 + δ2 on ∂B(O, 1) ∩ {x1 > −δ1},

in particular we can fix δ1 small enough such that {uR = ε} ∩ ∂B(0, 1) ⊆ {x1 > −2δ1}, and choose

0 < δ2 = 2 inf{uR(x) − αx1
+ : x ∈ ∂B(O, 1) ∩ {x1 > −δ1}}.

Let w̃(x) = 1 − rjwR(x/rj); notice that, as uR is quasi-convex, then w̃ is quasi-concave. Moreover for rj suffi-
ciently small, recalling (3.3) it holds

w̃ < 1 − αx+
1 − δ2rj < u on ∂B(O, rj).

Define

w(x) =

{
max{u(x), w̃(x)} in B(O, rj),

u(x) in R
N \ B(O, rj),

and W = {w̃ = 1} = rj{wR = 1}; observe that on ∂B(O, rj), w = w̃. By (3.2) and (3.4), for every x ∈ W it holds

|Dw̃(x)| 6 α + 2δ < g(ν) − δ.

Notice that {uR = 0} = ∂B(xR,R) and for every x ∈ ∂{uR = 0} it holds

lim
R→∞

νBR
(x) = ν = (1, 0, ..., 0).

Moreover limε→0{uR = ε} = {uR = 0} as limit in the Hausdorff metric of convex sets. Hence, by continuity, for
sufficiently large R and sufficiently small ε, we have

|g(ν) − g(νW(z))| 6 δ,

for every z ∈ W ∩ B(O, rj), and hence,

|Dw̃(x)| < g(ν) − δ 6 g(νW(x)),

for every x ∈ W ∩ B(o, rJ).
Then w ∈ F−(Ω, g) and, since w > u at some points, we get a contradiction with the maximality of u.

Therefore |Du| = g(ν) on ∂K. �
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4. FINAL REMARKS

Remark 4.1. In the non constant case no characterization of functions g for which F−(Ω,g) is not empty are
known. However in some trivial case the existence or non-existence of a solution can be easily deduced by the
characterization of the existence for the standard problem in (1.4). Indeed if g satisfies

min
ν∈SN−1

g(ν) > Λp(Ω), then F (Ω,Λp(Ω)) ⊆ F
−(Ω,g),

and hence F−(Ω,g) 6= ∅; on the other hand, if

M = max
ν∈SN−1

g(ν) < Λp(Ω), then F
−(Ω,g) ⊆ F

−(Ω,M) = ∅,

and hence problem (1.2) has no solutions.

Remark 4.2 (Concavity property of Bernoulli Problems (1.2)). As in the classical case, geometric properties for
the maximal solutions to (1.2) can be proved. Indeed, following the argument in [8], it is possible to define
a combination of the Bernoulli Problems (1.2) in the Minkowski sense and to prove that Problem (1.2) has a
concave behaviour with respect to this combination. More precisely: fix λ ∈ [0, 1]; let Ω0,Ω1 be two given
convex domains and g0,g1 : SN−1 → R

+ two continuous functions (which both stay far away from zero). We
define Ωλ as the Minkowski combination of Ω0,Ω1, that is

Ωλ = (1 − λ)Ω0 + λΩ1 = {z = (1 − λ)x0 + λx1 | x0 ∈ Ω0, x1 ∈ Ω1},

and gλ as the harmonic mean of g0 and g1, that is
1

gλ(ν)
=

(1 − λ)

g0(ν)
+

λ

g1(ν)
.

Consider Problem (1.2) for Ω0,g0 and Ω1,g1, respectively; we define their combined problem of ratio λ the
Bernoulli problem of the type (1.2), with given set Ωλ and gradient boundary constraint gλ(ν). Following
the proof of Proposition 7.1 in [8] we can prove that if F−(Ωi,gi), i = 0, 1, are non empty sets, then so
is F−(Ωλ, gλ). More precisely let (K̃(Ωi,gi),ui) be the maximal solutions, for i = 0, 1 and let uλ be the
Minkowski combination of u0 and u1 of ratio λ, that is

{uλ > t} = (1 − λ){u0 > t} + λ{u1 > t};

(see for instance [8] for more detailed definitions and properties). The function uλ belongs to F−(Ωλ,gλ) and
hence, by Theorem 1.1, Problem (1.2) for Ωλ and gλ admits a solution (K̃(Ωλ,gλ), ũλ) which satisfies

(1 − λ)K̃(Ω0,g0(ν)) + λK̃(Ω1, g1(ν)) ⊆ K̃(Ωλ,gλ).

Remark 4.3 (A flop in the unbounded case). It could be natural to try to extend Theorem 1.1 to the unbounded
case with an approximation method considering a sequence of given domains ΩR = Ω ∩ B(O,R) as R grows.
As the sequence {ΩR} is monotone increasing by comparison principle K̃(ΩR,g) also increases and hence it
converges to a convex set. Unfortunately, this approach fails in the limit process as it turns out that in fact
K̃(ΩR,g) converges to the given set Ω which means that the limit of maximal solutions degenerates.

More precisely assume for simplicity Ω = R
N, so that ΩR = BR = B(O, R) (or, analogously Ω = H− the

half space {xN 6 0} and take ΩR = BR = B(xR, R), where xR = (0, ..., 0,−R)). If R is sufficiently large, then the
Bernoulli constant of BR, Λp(BR) = CN/R (see [8] for example) is smaller than c0 and hence

Br ⊆ K̃(BR, c0) ⊆ K̃(BR,g(ν)),

where Br = B(O, r) is the unique solution to Problem (1.2) corresponding to Ω = BR and g(ν) ≡ Λp(BR).
Hence for sufficiently large R, F−(BR,g) is not empty and Theorem 1.1 gives a sequence of quasi-concave

p-capacitary potentials {uR} which solve Problem (1.2) in ΩR \ KR, where KR = Br. By easy computations
one can check that r = R/cN, for some constant cN depending on the dimension and hence, the sequence of
interior domains {KR}R>0 is not bounded for R which tends to infinity. This implies that the limit of the maximal
solutions (KR, uR) is not the solution to the limit problem.
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