
HAL Id: inria-00543890
https://hal.inria.fr/inria-00543890

Preprint submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for Combining Algebraic and Logical
Abstract Interpretations

Patrick Cousot, Radhia Cousot, Laurent Mauborgne

To cite this version:
Patrick Cousot, Radhia Cousot, Laurent Mauborgne. A Framework for Combining Algebraic and
Logical Abstract Interpretations. 2010. �inria-00543890�

https://hal.inria.fr/inria-00543890
https://hal.archives-ouvertes.fr

A Framework for Combining Algebraic and
Logical Abstract Interpretations

Patrick Cousot
ENS, INRIA & NYU

.c.tu @ .u t n dpn ye @o c,s eu uof os r so sc

Radhia Cousot
CNRS, ENS & MSR Redmond

ih sc nud o t fa e r@ .soa .r

Laurent Mauborgne
IMDEA
b dr atu e .n rm .iu nr e om goa g ela @

July 16, 2010

Abstract

We introduce a reduced product combining algebraic and logical abstractions
to design program correctness verifiers and static analyzers by abstract interpreta-
tion.

1 Introduction
Recent progress in SMT solvers and theorem provers as used in program verification
(where the inductive argument necessary for the proof is either provided by the end-
user or by refinement of the specification) [2] has been recently exploited for static
analysis by abstract interpretation [6, 7] (where the inductive argument necessary for
the proof is computed directly (e.g. by elimination) or iteratively with convergence
acceleration by widening/narrowing) using logical abstract domains [17]. Because of
efficiency restrictions of SMT solvers and theorem provers, the analyzers hardly scale
up beyond small programs. Moreover, because of effectiveness restrictions of SMT
solvers and theorem provers, the program semantics which is used for the soundness
proof is a mathematical semantics which significantly differs from the implementation
semantics of the programming language. For example the theory of integer arithmetics
is considered instead of modular arithmetics on 32 or 64 bits, or the theories of reals or
rationals are considered instead of floats. It follows that the static analysis is unsound

1

for the machine semantics. Of course, modular arithmetics could be encoded with in-
teger arithmetics and floats with rationals, but then SMT solvers and theorem provers
would become highly inefficient. Static analyzers such as Astrée [1, 10] which are
based on algebraic abstractions of the machine semantics do not have such efficiency
and soundness limitations. It is therefore interesting not only to use SMT solvers and
theorem provers in logical abstract domains but also to combine algebraic and logi-
cal abstract interpretations to get the best of both worlds i.e. scalability, expressivity,
natural interface with the end-user using logical formulæ, and soundness with respect
to the machine semantics. The proposed combination is based on the reduced prod-
uct [7] which is commonly used in algebraic abstract interpreters (e.g. in Astrée [11])
while logical abstract interpreters combine (disjoint, convex, stably-infinite) theories
by Nelson-Oppen procedure [23]. The key new idea is to show that Nelson-Oppen
procedure computes a reduced product in an observational semantics, so that algebraic
and logical abstract interpretations can naturally be combined in a classical way using
a reduced product on this observational semantics. The main practical benefit is that
reductions can be performed within the logical abstract domains, within the algebraic
abstract domains, and also between the logical and the algebraic abstract domains, in-
cluding the case of abstractions evolving during the analysis.

2 Syntax and semantics of programs

2.1 Sorts
We assume that we are given a set s of sorts s ∈ s corresponding to the notion of types
in programming languages (e.g. s , {bool, char, int, . . .}) [31]. The unsorted case
would have only one sort.

2.2 Signatures
A sorted signature is a tuple Σ = 〈s, x, f , p, #〉 such that the sets s of sorts, x of
variables, f of function symbols, and p of predicate symbols are mutually disjoints,
the symbols have fixed arities f =

⋃
n>0 fn, p ,

⋃
n>0 pn, and sorts defined by # such

that

x, y, z, . . . ∈ x variables x of sort #(x) ∈ s

a, b, c, . . . ∈ f0 constants c of sort #(c) ∈ s

f, g, h, . . . ∈ fn function symbols f of arity n > 1 and sort #(f) ∈ sn→s

p, q, r, . . . ∈ pn predicate symbols p of arity n > 0 and sort #(p) ∈ sn→{bool} .

As in first-order logics with equality, there is a distinguished predicate = (t1, t2) for all
sorts which we write t1 = t2. A subsignature is Σ′ such that Σ′ ⊆̇ Σ, componentwise.

2.3 Syntax
The syntax of sorted first-order logic formulæ is as follows.

2

t ∈ T(Σ) terms
t ::= x #(t) = #(x)
| c #(t) = #(c)
| f(t1, . . . , tn) #(t) = s where

#(f) = s1 × . . . × sn→ s, n > 1 with #(ti) = si for all i = 1, . . . , n.

a ∈ A(Σ) atomic formulæ
a ::= ff | p(t1, . . . , tn) | ¬a #(a) = bool where

#(p) = s1 × . . . × sn→bool, n > 1 with #(ti) = si for all i = 1, . . . , n.
Clauses are quantifier-free formulæ in simple conjunctive normal form.

ϕ, ψ, . . . ∈ C(Σ) clauses
ϕ ::= a | ϕ ∧ ϕ #(ϕ) = bool .

First-order logic formulæ may be quantified.

Ψ,Φ, . . . ∈ F(Σ) quantified first-order formulæ
Ψ ::= a | ¬Ψ | Ψ ∧ Ψ | ∃ x : Ψ .

Finally programs of the programming language on a given signature Σ are built out
of basic expressions and imperative commands.

e, . . . ∈ E(Σ) , T(Σ) ∪A(Σ) program expressions
C, . . . ∈ L(Σ) commands

C ::= x := e assignment, #(x) = #(e)
| ϕ test, #(ϕ) = bool .

Tests appear in conditionals and loops which syntax, as well as that of programs, are
irrelevant. First-order logic formulæ may also appear in programs but only as specifi-
cations (e.g. for loop invariants).

2.4 Interpretations
An interpretation I for a signature Σ = 〈s, x, f , p, #〉 is a pair 〈IV, Iγ〉 such that
IV =

⋃
s∈s I s

V
, I s
V

is a non-empty set of values of sort s ∈ s, ∀c ∈ f0 : Iγ(c) ∈ I s
V

where
#(c) = s, ∀n > 1 : ∀f ∈ fn : Iγ(f) ∈ I s1

V
× . . . × I sn

V
→ I s

V
where #(f) = s1 × . . . × sn→ s

and ∀n > 0 : ∀p ∈ pn : Iγ(p) ∈ s1 × . . . × sn→B
1 where #(p) = s1 × . . . × sn→bool.

Let I(Σ) be the class of all such interpretations I. In a given interpretation I ∈ I(Σ), an
environment 2 is a function from variables to values with same sort

η ∈ RΣ
I , x→ IV : x ∈ x 7→ I#(x)

V
sorted environments .

An interpretation I and an environment η ∈ RΣ
I satisfy a formula Ψ, written I |=η Ψ, in

the following way:
1B , {false, true} are the Boolean values, s1 × . . . × sn , ∅, and ∅→B ' B.
2Environments are also called variable assignments, valuations, etc. For programming languages, envi-

ronments may also contain the program counter, stack, etc.

3

I |=η a , JaKIη I |=η Ψ ∧ Ψ′ , (I |=η Ψ) ∧ (I |=η Ψ′)
I |=η ¬Ψ , ¬(I |=η Ψ) I |=η ∃ x : Ψ , ∃ v ∈ IV : I |=η[x←v] Ψ 3

where the value JaKIη ∈ B of an atomic formula a ∈ A(Σ) in environment η ∈ RΣ
I is

JffKIη , false
Jp(t1, . . . , tn)KIη , Iγ(p)(Jt1KIη, . . . , JtnKIη), n > 1

J¬aKIη , ¬JaKIη, where ¬true = false, ¬false = true

and the value JtKIη ∈ I s
V

of the term t ∈ T(Σ) such that #(t) = s in environment η ∈ RΣ
I

is

JxKIη , η(x)
JcKIη , Iγ(c)

Jf(t1, . . . , tn)KIη , Iγ(f)(Jt1KIη, . . . , JtnKIη) .

In addition, in first-order logics with equality the interpretation of equality is always

I |=η t1 = t2 , Jt1KIη =I Jt2KIη

where =I is the unique reflexive, symmetric, antisymmetric, and transitive relation on
IV encoded by its characteristic function.

2.5 Multi-interpreted program semantics
A multi-interpreted semantics assigns meanings to a program P in the context of a set
of interpretations I ∈ ℘(I(Σ)) for the program signature Σ = 〈s, x, f , p, #〉.

Example 1. Integers can have a mathematical interpretation or a modular interpreta-
tion on machines. ut

Then a program property in PΣ
I

provides for each interpretation in I , a set of environ-
ments for variables x satisfying that property in that interpretation.

R
Σ
I
,

{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣ
I

}
multi-interpreted environments

P
Σ
I
, ℘(RΣ

I
) multi-interpreted properties.

The multi-interpreted semantics of a program P in the context of multi-interpretations
I is assumed to be defined in fixpoint form

CΣ
I
JPK ∈ P

Σ
I

concrete semantics
FΣ
I
JPK ∈ P

Σ
I

1
→PΣ

I
concrete transformer

CΣ
I
JPK , lfp⊆ FΣ

I
JPK least fixpoint semantics

3η[x← v] is the assignment of v to x in η where #(x) = #(v), η[x← v](x) , v, and η[x← v](y) , η(y)
when x , y.

4

The transformer FΣ
I
JPK is assumed to be increasing. Since 〈PΣ

I
, ⊆, ∅, RΣ

I
, ∪, ∩〉 is a

complete lattice, lfp⊆ FΣ
I
JPK does exist by [28]. The transformer FΣ

I
JPK is defined by

structural induction on the program P in terms of the complete lattice operations and
the following local transformers for the assignment postcondition

fI Jx := eKP ,
{
〈I, η[x← JeKIη]〉

∣∣∣ I ∈ I ∧ 〈I, η〉 ∈ P
}

the assignment precondition

bI Jx := eKP ,
{
〈I, η〉

∣∣∣ I ∈ I ∧ 〈I, η[x← JeKIη]〉 ∈ P
}

and tests

pI JϕKP ,
{
〈I, η〉 ∈ P

∣∣∣ I ∈ I ∧ JϕKIη = true
}
.

Let = ∈ I(Σ) be the program standard interpretation e.g. as defined explicitly by a
standard or implicitly by a compiler, linker, loader, operating system and network of
machines. The standard concrete semantics is I = {=} in which case the local trans-
formers correspond to Floyd/Hoare/Dijkstra predicate transformers, up to the isomor-
phism ι=(P) , {〈=, η〉 | η ∈ P} with inverse ι−1

=
(Q) , {η | 〈=, η〉 ∈ Q}.

The reason why we consider multi-interpretations, and not just a single interpre-
tation as it is classical, is that it is the natural setting for the logical abstract domains
which are valid up to a theory (Sect. 2.11), which can have many different interpreta-
tions.

2.6 Algebraic abstract domains

We let 〈AΣ
I
, v, >, t, . . . , f, p, . . .〉 be an abstract domain abstracting multi-interpreted

properties in PΣ
I

for signature Σ and multi-interpretations I with partial ordering v.
Pre-orders are assumed to be turned into partial orderings by considering the quotient
by the preorder equivalence so AΣ

I
is a poset but may be not a complete lattice nor a

cpo.
The meaning of the abstract properties is defined by an increasing concretization

function γΣ
I
∈ AΣ

I

1
→PΣ

I
[8]. In case of existence of a best abstraction, we use a Galois

connection 〈PΣ
I
, ⊆〉 −−−−→←−−−−

αΣ
I

γΣ
I

〈AΣ
I
, v〉 [7] such that, by definition, ∀P ∈ PΣ

I
, P ∈ AΣ

I
:

αΣ
I

(P) v P if and only if P ⊆ γΣ
I

(P).
The soundness of abstract domains 〈AΣ

I
, v〉, is defined as, for all P,Q ∈ AΣ

I
,

(P v Q)⇒ (γΣ
I

(P) ⊆ γΣ
I

(Q)) implication

γΣ
I

(>) =

{
〈I, η〉

∣∣∣∣ I ∈ I ∧ η ∈ RΣ
I

}
supremum

γΣ
I

(P t Q) ⊇ (γΣ
I

(P) ∪ γΣ
I

(Q)) join
...

The concrete least fixpoint semantics CΣ
I
JPK of a program P in Sect. 2.5 may have no

correspondent in the abstract e.g. because the abstract domain 〈AΣ
I
, v〉 is not a cpo so

5

that the abstract transformer has no least fixpoint, even maybe no fixpoint. In that case,
we can define the abstract semantics as the set of abstract inductive invariants of the
program P.

C
Σ

IJPK ∈ ℘(AΣ
I

) abstract semantics

F
Σ

IJPK ∈ AΣ
I
→AΣ

I
abstract transformer

C
Σ

IJPK ,
{

P
∣∣∣∣∣ F

Σ

IJPK(P) v P
}

postfixpoint semantics.

In practice, only one abstract postfixpoint needs to be computed (while the abstract
semantics defines all possible ones). Such an abstract postfixpoint can be computed
e.g. by elimination or iteratively from the infimum using widenings and narrowings
[9].

In the concrete semantics the least fixpoint is, by Tarski’s theorem, an equivalent
representation of the set of concrete postfixpoints [28].

2.7 Soundness and completeness of abstract semantics
The abstract semantics CJPK ∈ A is sound with respect to a concrete semantics CJPK of
a program P for concretization γ whenever ∀P ∈ A : (∃C ∈ CJPK : C v P)⇒ (CJPK ⊆
γ(P)). It is complete whenever ∀P ∈ A : (CJPK ⊆ γ(P)) ⇒ (∃C ∈ CJPK : C v P).
When the concrete semantics is defined in fixpoint form CJPK , lfp⊆ FJPK and the
abstract semantics in postfixpoints, the soundness of the abstract semantics follows
from the soundness conditions of the abstraction in Sect. 2.6 and the soundness of the
abstract transformer [6, 7]

∀P ∈ A : FJPK ◦ γ(P) ⊆ γ ◦ FJPK(P) .

If the concrete semantics is also defined in postfixpoint form, then the soundness con-
dition becomes

∀P ∈ A : (∃C ∈ CJPK : C v P)⇒ (∃C ∈ CJPK : C ⊆ γ(P)) .

Moreover, the composition of sound abstractions is necessarily sound. To prove this
let CJPK be a sound abstraction of CJPK (on an abstract domain 〈A1, v1, . . .〉 with
concretization γ1), and C[P] be a sound abstraction of CJPK (on an abstract domain
〈A2, v2, . . .〉 with concretization γ2), then ∀P ∈ A2 :

∃C ∈ C[P] : C v2 P

⇒ ∃C ∈ CJPK : C v1 γ2(P) Hsoundness of C[P]I

⇒ ∃C ∈ CJPK : C ⊆ γ1(γ2(P))

Hsoundness of CJPK choosing P = γ2(P) .I

The soundness of FJPK can usually be proved by induction on the syntactical struc-
ture of the program P using local soundness conditions.

6

γ(f̄Jx := tKP) ⊇ fI Jx := tKγ(P) assignment postcondition

γ(b̄Jx := tKP) ⊇ bI Jx := tKγ(P) assignment precondition

γ(p̄JϕKP) ⊇ pI JϕKγ(P) test.

2.8 Abstractions between multi-interpretations
The natural ordering to express abstraction (or precision) on multi-interpreted seman-
tics is the subset ordering, which gives a complete lattice structure to the set of multi-
interpreted properties: a property P2 is more abstract than P1 when P1 ⊂ P2, meaning
that P2 allows more behaviors for some interpretations, and maybe that it allows new
interpretations. Following that ordering 〈PΣ

I
, ⊆〉, we can express systematic abstrac-

tions of the multi-interpreted semantics.
If we can only compute properties on the standard interpretation = then we can

approximate a multi-interpreted program saying that we know the possible behaviors
when the interpretation is = and we know nothing (so all properties are possible) for
the other interpretations of the program. On the other hand, if we analyze a program
that can only have one possible interpretation with a multi-interpreted property, then we
are doing an abstraction in the sense that we add more behaviors and forget the actual
property that should be associated with the program by the standard semantics. So, in
general, we have two sets of interpretations, one is I , the context of interpretations for
the program and the other one is I], the set of interpretations used in the analysis. The

relation between the two forms a Galois connection 〈PΣ
I
, ⊆〉 −−−−−−−→←−−−−−−−

αΣ

I→I]

γΣ

I]→I

〈PΣ

I
] , ⊆〉 where

αΣ

I→I]
(P) , P ∩ RΣ

I
]

γΣ

I
]→I

(Q) ,
{
〈I, η〉 ∈ RΣ

I

∣∣∣∣ I ∈ I] ⇒ 〈I, η〉 ∈ Q
}
.

Proof. Suppose P ∈ PΣ
I

and Q ∈ PΣ

I
] . Then

αΣ

I→I]
(P) ⊆ Q

⇔ ∀〈I, η〉 ∈ P ∩ RΣ

I
] : 〈I, η〉 ∈ Q Hdef. αΣ

I→I]
and ⊆I

⇔ ∀〈I, η〉 ∈ P : 〈I, η〉 ∈ RΣ

I
] ⇒ 〈I, η〉 ∈ Q Hdef. ∩I

⇔ ∀〈I, η〉 ∈ P : 〈I, η〉 ∈ I] ⇒ 〈I, η〉 ∈ Q

H〈I, η〉 ∈ P ∈ PΣ
I

= ℘(RΣ
I

) so 〈I, η〉 ∈ RΣ
I

proving η ∈ RΣ
I hence, under these

conditions, I ∈ I] iff 〈I, η〉 ∈ RΣ

I
]I

⇔ P ⊆
{
〈I, η〉 ∈ RΣ

I

∣∣∣∣ I ∈ I] ⇒ 〈I, η〉 ∈ Q
}

Hdef. ⊆I

⇔ P ⊆ γΣ

I
]→I

(Q) Hdef. γΣ

I
]→I

.I ut

Note that if the intersection of I] and I is empty then the abstraction is trivially ∅
for all properties, and if I ⊆ I] then the abstraction is the identity.

7

2.9 Soundness of the multi-interpretation abstract transformers
For all P] ∈ PΣ

I
] , we have soundness

fI Jx := eK ◦ γΣ

I]→I
(P])

=

{
〈I, η[x← JeKIη]〉

∣∣∣∣∣∣ 〈I, η〉 ∈ γΣ

I]→I
(P])

}
Hdef. fI Jx := eKP ,

{
〈I, η[x← JeKIη]〉

∣∣∣∣ 〈I, η〉 ∈ P)
}
I

=

{
〈I, η[x← JeKIη]〉

∣∣∣∣∣∣ 〈I, η〉 ∈ RΣ
I ∧

(
I ∈ I] ⇒ 〈I, η〉 ∈ P]

) }
Hdef. γΣ

I]→I
I

⊆

{
〈I, η[x← JeKIη]〉 ∈ RΣ

I

∣∣∣∣ I ∈ I] ⇒ 〈I, η〉 ∈ P]
}

Hsince 〈I, η〉 ∈ RΣ
I

implies 〈I, η[x← JeKIη]〉 ∈ RΣ
I

I

=

 〈I, η′〉 ∈ RΣ
I

∣∣∣∣∣∣∣ I ∈ I] ⇒ 〈I, η′〉 ∈
{
〈I, η[x← JeKIη]〉

∣∣∣∣ 〈I, η〉 ∈ P]
}

Hletting η′ = η[x← JeKIη ∈ R
Σ
I

]I

=

{
〈I, η′〉 ∈ RΣ

I

∣∣∣∣∣ I ∈ I] ⇒ 〈I, η′〉 ∈ f
I]

Jx := eK(P])
}

Hdef. f
I]

Jx := eKI

⊆ γΣ

I]→I
◦ f
I]

Jx := eK(P]) Hdef. γΣ

I]→I
I

and similarly for the other transformers.

2.10 Uniform abstraction of interpretations
We may want to describe the properties of the program without distinguishing the inter-
pretations in the context of the program. This is the case, for example, when expressing
properties that should hold for all possible interpretations of the program. That abstrac-
tion simply forgets the interpretations and just keeps the union of all possible behav-

iors. The abstraction is described by the Galois connection 〈PΣ
I
, ⊆〉 −−−−→←−−−−

αΣ
I

γΣ
I

〈
⋃
I∈I

RΣ
I , ⊆〉

where

αΣ
I (P) ,

{
η
∣∣∣ ∃ I : 〈I, η〉 ∈ P

}
and γΣ

I (E) ,
{
〈I, η〉

∣∣∣ I ∈ I ∧ η ∈ E
}
.

Example 2. That is what the Astrée analyzer [1, 10] does when taking into account
all possible rounding error modes for floating points computations. ut

2.11 Theories
The set ~xΨ of free variables of a formula Ψ ∈ F(Σ) is defined inductively as the set
of variables in the formula which are not in the scope of an existential quantifier. A
sentence of F(Σ) is a formula with no free variable, S(Σ) ,

{
Ψ ∈ F(Σ)

∣∣∣ ~xΨ = ∅
}
. A

theory T ∈ ℘(S(Σ)) is a set of sentences [4] (called the theorems of the theory). The
set of predicate and function symbols that appear in at least one sentence of a theory
T should be contained in the signature S(T) ⊆̇ Σ of theory T . The language F(T)
of a theory T is the set of quantified first-order formulæ that contain no predicate or
function symbol outside of the signature of the theory.

8

The idea of theories is to restrict the possible meanings of functions and predicates
in order to reason under these hypotheses. The meanings which are allowed are the
meanings which make the sentences of the theory true.

2.12 Models
An interpretation I ∈ I(Σ) is said to be a model of Ψ ∈ F(Σ) when ∃ η : I |=η Ψ (i.e. I
makes Ψ true). An interpretation is a model of a theory T if and only if it is a model of
all the theorems of the theory (i.e. makes true all theorems of the theory). The class of
all models of a theory T is

M(T) , {I ∈ I(S(T)) | ∀Ψ ∈ T : ∃ η : I |=η Ψ}

= {I ∈ I(S(T)) | ∀Ψ ∈ T : ∀ η : I |=η Ψ}

since if Ψ is a sentence and if there is an I and an η such that I |=η Ψ, then for all η′,
I |=η′ Ψ.

Quite often, the set of sentences of a theory is not defined extensively, but using a
(generally finite or enumerable) set of axioms which generate the set of theorems of
the theory by implication. A theory is said to be deductive if and only if it is closed by
deduction, that is all the theorems that are true on all models of the theory are in the
theory.

2.13 Abstraction by a theory
Another possibility for abstraction is to keep the context of interpretations and forget
about the properties on variables. This is simply a projection on the first component
of the pairs interpretation, environment. In some cases it can be difficult to represent
exactly an infinite set of interpretations, and we can use theories (preferably deductive
theories with a recursively enumerable number of axioms) to represent the set of in-
terpretations which are models of that theories. The relationship between theories and
multi-interpreted semantics is expressed by the concretization function

γM(T) ,
{
〈I, η〉

∣∣∣∣ I ∈ M(T) ∧ η ∈ RΣ
I

}
.

Notice, though, that because the lattice of sentences of a theory is not complete, there
is no best abstraction in general.

Example 3. If = interprets programs over the natural numbers, then by Gödel first
incompleteness theorem there is no enumerable first-order theory characterizing this
interpretation, so the poset has no best abstraction of {=}. ut

Once an (arbitrary) theory T has been chosen to abstract a set I of interpretations there
is a best abstraction αS(T)

I→γM(T)(P) of interpreted properties in P ∈ PS(T)
I

by abstract

properties in PS(T)
γM(T).

9

2.14 Logical abstract domains

A logical abstract domain is an abstract domain 〈AΣ
T
, v, >, t, . . . , f, p, . . .〉 such that

T ∈ ℘(S(Σ)) and AΣ
I
⊆ F(T) with v , ⇒, > , tt, t , ∨, etc, and the concretization

is γΣ
T

(Ψ) ,
{
〈I, η〉 ∈ γM(T)

∣∣∣∣ I |=η Ψ
}
.

Remark that there might be no finite formula in the language F(T) of the theory
T to encode a best abstraction. In absence of a best abstraction there is no Galois
connection, in which case soundness can always be formalized by a concretization
function only as in Sect. 2.6. Moreover, in presence of infinite ascending chains of
finite first-order formulæ (e.g. (x = 0) ⇒ (x = 0 ∨ x = 1) ⇒ . . . ⇒

∨n
i=1 x = i ⇒ . . .)

and descending chains of finite formulæ (e.g. (x , −1)⇐ (x , −1∧ x , −2)⇐ . . .⇐∧n
i=1 x , −i⇐ . . .) with no finite first-order formula to express their limits, the fixpoint

may not exist. Hence the fixpoint semantics in the style of Sect. 2.5 is not well-defined
in the abstract. However, following Sect. 2.6, we can define the abstract semantics as
the set of abstract inductive invariants

C
S(T)
T JPK ∈ ℘(F(T)) abstract semantics

F
S(T)
T JPK ∈ F(T) 1

→F(T) abstract transformer

C
S(T)
T JPK ,

{
P

∣∣∣∣∣ F
S(T)
T JPK(P) ⊆ P

}
postfixpoint semantics.

3 Observational semantics
Besides values of program variables, it may be interesting to allow the concrete seman-
tics to observe values of auxiliary variables (e.g. as in Owicki and Gries proof method
for parallel processes [24] which does not use the program counters and so requires
using auxiliary variables) or values of functions over program variables (such as wait
conditions in monitors [20]). Whereas such cases can be described in the general set-
ting above (e.g. by inclusion of the auxiliary variables as program variables in Owicki
and Gries proof method or by reevaluating wait conditions if a signal on the sensitivity
lists changes), it is more convenient to explicitly define the observables of the program
semantics.

3.1 Observable properties of multi-interpreted programs
We name observables by identifiers (which, in particular, can be variable identifiers).
Observables are functions from values of program variables to values.

Σ = 〈s, x, f , p, #〉 signature
x ∈ xP program variables (xP ⊆ x)

ΣP = 〈s, xP, f , p, #〉 ⊆̇ Σ program signature
x ∈ xO observable identifiers (xO ⊆ x)

ΣO = 〈s, xO, f , p, #〉 ⊆̇ Σ observable signature
v ∈ IV values (for interpretation I ∈ I(Σ))
η ∈ RΣP

I , xP→ IV program variable environments

10

I ∈ ℘(I(Σ)) multiple interpretations

R
ΣP
I
,

{
〈I, η〉

∣∣∣∣∣ I ∈ I ∧ η ∈ RΣP
I

}
multi-interpreted progr. envir.

P
ΣP
I
, ℘(RΣP

I
) multi-interpreted program properties

ζ ∈ RΣO
I , xO→ IV program observable environments

R
ΣO
I
,

{
〈I, ζ〉

∣∣∣∣∣ I ∈ I ∧ ζ ∈ RΣO
I

}
multi-interpreted environments

P
ΣO
I
, ℘(RΣO

I
) multi-interpreted observable properties

ωI ∈ O
ΣP
I , RΣP

I → IV observables (for I ∈ I)

ΩI ∈ xO→O
ΣP
I observable naming.

Whereas a concrete or abstract program semantics is relative to PΣP
I

or AΣP
I

, the obser-
vational semantics is relative to PΣO

I
or AΣO

I
and both can be specified in fixpoint or in

postfixpoint form.

Example 4 (Variable multiple observations). We may want to observe values of vari-
ables at different time instants, as abstracted to program points, which leads to SSA [12]
renaming variables such that a property of static single assignment holds. ut

Example 5 (Term observation). We may want to observe values of a term t of the
program for a particular interpretation I stored in an auxiliary variable x ∈ xO \ xP so
that ΩI(x) , JtKI . For example, quaternions are analyzed in [1] by observing the value
of their norm t =

√
a2 + b2 + c2 + d2 (where a, b, c, d ∈ xP ∪ xO are variables) for

several rounding semantics of floats. ut

Example 6 (Combining symbolic and numerical analyzes). One can observe the
length of a list, the height of a stack, etc. and reuse classical numerical abstractions on
that observation [13]. ut

Example 7 (Memory model). In the memory model of [21], a 32 bits unsigned/posi-
tive integer variable x can be encoded by its constituent bytes 〈x3, x2, x1, x0〉 so that,
for little endianness, η(x) = ΩI(x3)η×232 +ΩI(x2)η×216 +ΩI(x1)η×28 +ΩI(x0)η. ut

Given a program property P ∈ PΣP
I

, the corresponding observable property is

αΩ
I

(P) ,
{
〈I, λ x . ΩI(x)η〉 ∈ RΣO

I

∣∣∣∣∣ 〈I, η〉 ∈ P
}
.

ζ(x) is therefore the value ΩI(x)η of the observable named x when the values of pro-
gram variables are given by η. Inversely, given an observable property Q ∈ PΣO

I
, the

corresponding program property is
γΩ
I

(Q) ,
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ Q
}
.

Example 8 (Variable observation). If we limit our observations to values of program
variables then xO = xP and ∀x ∈ xO : ∀η ∈ RΣP

I : ΩI(x)η , η(x) so that λx.ΩI(x)η = η
pointwise hence λ x . ΩI(x), αΩ

I
and γΩ

I
are the identity. If we do not want to analyze

the values of all program variables then xO (xP. ut

11

We have the Galois connection

Theorem 9. 〈PΣP
I
, ⊆〉 −−−−→←−−−−

αΩ
I

γΩ
I

〈P
ΣO
I
, ⊆〉 .

Proof.
αΩ
I (P) ⊆ Q

⇔

{
〈I, λ x . ΩI(x)η〉 ∈ RΣO

I

∣∣∣∣∣ 〈I, η〉 ∈ P
}
⊆ Q Hdef. αΩ

I
I

⇔ ∀〈I, η〉 ∈ P : 〈I, λ x . ΩI(x)η〉 ∈ Q Hdef. ⊆ and Q ∈ PΣO
I

= ℘(RΣO
I

)I

⇔ P ⊆
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ Q
}

Hdef. ⊆ and P ⊆ RΣP
I

I

P ⊆ γΩ
I (Q) Hdef. γΩ

I
.I ut

3.2 Soundness of the abstraction of observable properties
The observational abstraction will be of observable properties in PΣO

I
so with con-

cretization γΣO
I
∈ AΣO

I
→ P

ΣO
I

where AΣO
I

is the abstract domain. The classical direct
abstraction of program properties in PΣP

I
will be the particular case where xO = xP and

λ x . ΩI(x) is the identity. The program properties corresponding to observable ΩI are
given by

γΩ,P
I
∈ AΣO

I
7→ P

ΣP
I

γΩ,P
I
, γΩ

I
◦ γΣO
I

= λ P .
{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

(P)
}
.

Under the observational semantics, soundness conditions remain unchanged, but
they must be proved with respect to γΩ,P

I
, not γΣO

I
. So the soundness conditions on

transformers become slightly different. For example the soundness condition on the
abstract postcondition f̄Jx := eK becomes:

γΩ,P
I

(f̄Jx := eKP) ⊇ fI Jx := eK(γΩ,P
I

(P))

⇔

{
〈I, η〉 ∈ RΣP

I

∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

(f̄Jx := eKP)
}
⊇{

〈I, η[x← JeKIη]〉
∣∣∣∣∣ 〈I, η〉 ∈ RΣP

I
∧ 〈I, λ x . ΩI(x)η〉 ∈ γΣO

I
(P)

}
Hdef. γΩ,P

I
, fI Jx := eK, and γΩ,P

I
I

⇔ ∀〈I, η〉 ∈ RΣP
I

: ∀〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

(P) :

〈I, λ x . ΩI(x)(η[x← JeKIη])〉 ∈ γΣO
I

(
f̄Jx := eKP

)
Hdef. ⊆I

⇔ γΣO
I

(
f̄Jx := eKP

)
⊇

{
〈I, λ x . ΩI(x)(η[x← JeKIη])〉

∣∣∣ 〈I, η〉 ∈ R
ΣP
I
∧ 〈I,

λ x . ΩI(x)η〉 ∈ γΣO
I

(P)
}

Hdef. ⊆ .I

3.3 Observational extension
It can sometimes be useful to extend an abstract property P for observables Ω with a
new observable ω named x. We will write extend(x,ω)

(
P
)

for the extension of P with
observable ω for observable identifier x.

12

Example 10. Let AxO be the abstract domain mapping observable identifiers x ∈ xO
to an interval of values [6]. Assume that intervals of program variables are observable,
that is xP ⊆ xO and let x ∈ xP be a program variables for which we want to observe
the square x2 so ωI , Jx2KI . Let x2 < xO be a fresh name for this observable. This
extension of observable properties with a new observable can be defined as

extend(x2,Jx2K) ∈ AxO→AxO∪{x2}

extend(x2,Jx2K)

(
P
)
, λ x ∈ xO ∪ {x2} . (x , x2 ? P(x) :

P(x2) ⊗ P(x2))
(where ⊗ is the product of intervals) is sound. ut

The semantics of the extension operation is defined by its soundness condition
γλ I . λ y . y=x ?ωI : ΩI (y),P
I

(
extend(x,ω)

(
P
))
⊇ γΩ,P

I

(
P
)
.

Example 11. For the logical abstract domain A , F(Σ) with γΣO
I

(Ψ) ,
{
〈I, η〉

∣∣∣∣ I ∈ I ∧ I |=η Ψ
}
,

extend(x,JeK) (Ψ[x← e]) , ∃ x : (x = e ∧ Ψ) is sound.

Proof.

γ
λ I . λ y . y=x ? JeKI : ΩI (y),P
I

(
extend(x,JeK) (Ψ[x← e])

)
= γ

λ I . λ y . y=x ? JeKI : ΩI (y),P
I

(∃ x : (x = e ∧ Ψ))

Hdef. extend(x,JeK) (Ψ[x← e]) , ∃ x : (x = e ∧ Ψ)I

=
{
〈I, η〉 ∈ RΣP

I

∣∣∣ 〈I, λ x′ . (
λ y . y = x ? JeKI : ΩI(y)

)
(x′)η〉 ∈ γΣO

I
(∃ x : (x = e ∧ Ψ))

}
Hdef.

γΩ,P
I

I
=

{
〈I, η〉 ∈ RΣP

I

∣∣∣ 〈I, λ x′ . (
x′ = x ? JeKI (η) : ΩI(x′)η

)
〉 ∈ γ

ΣO
I

(∃ x : (x = e ∧ Ψ))
}

Hdef.
applicationI

=
{
〈I, η〉 ∈ RΣP

I

∣∣∣ I ∈ I ∧ I |=λ x′ . (x′=x ? JeKI (η) : ΩI (x′)η) ∃ x : (x = e ∧ Ψ)
}

Hdef. γΣO
I

(Ψ) ,
{
〈I, η〉

∣∣∣ I ∈ I ∧ I |=η Ψ)
}
I

=
{
〈I, η〉 ∈ RΣP

I

∣∣∣ I ∈ I ∧ I |=λ x′ .ΩI (x′)η Ψ[x← e]
}

Hdef. substitutionI

=
{
〈I, η〉 ∈ RΣP

I

∣∣∣ 〈I, λ x′ . ΩI(x′)η〉 ∈ γΣO
I

(Ψ[x← e])
}

Hdef. γΣO
I

I

= γΩ,P
I

(Ψ[x← e]) Hdef. γΩ,P
I

I ut ut

This extension operation can also be used for vectors of fresh variables and vectors of
observables in the natural way.

Definition 12 (Extension of observable properties with new observables). Let AΣO
I

be an abstract domain with partial ordering v abstracting multi-interpreted properties
in PΣO

I
for signature ΣO with observable identifiers xO ⊆ x, multi-interpretations I ,

and observables named by Ω such that ∀I ∈ I : ΩI ∈ xO→O
ΣP
I .

Consider the new observables Ω′ such that ∀I ∈ I : Ω′I ∈ xO′ \ xO→O
ΣP
I where

xO′ are the new observable names such that xO ⊆ xO′ . The abstraction now uses the
abstract domain AΣO′

I
with partial ordering v′ abstracting multi-interpreted properties

in PΣO′

I
for signature ΣO′ with observable identifiers xO′ ⊆ x . A sound extension

extendΩ′ ∈ AΣO
I
→AΣO′

I
satisfies the soundness condition

13

γ
λ I . λ y . y∈xO′ \xO ? Ω′I (y) : ΩI (y),P
I

(
extendΩ′

(
P
))
⊇ γΩ,P

I

(
P
)
.

Given A ⊆ AΣO
I

, we write extendΩ′ [A] ,
{

extendΩ′

(
P
) ∣∣∣∣∣∣ P ∈ A

}
.

4 Iterated reduction
A reduction makes a property more precise in the abstract without changing its concrete
meaning. By iterating this reduction, one can improve the precision of a static analysis
without altering its soundness.

Definition 13 (Reduction). Let 〈A, v〉 be a poset which is an abstract domain with
concretization γ ∈ A 1

→C where 〈C,⊆〉 is the concrete domain. A reduction is ρ ∈ A→A
which is reductive that is ∀P ∈ A : ρ(P) v P and sound in that ∀P ∈ A : γ(ρ(P)) =

γ(P). The iterates of the reduction are ρ0 , λ P . P, ρλ+1 = ρ(ρλ) for successor ordinals
and ρλ =

d
β<λ ρ

β for limit ordinals. The iterates are well-defined when the greatest
lower bounds

d
(glb) do exist in the poset 〈A, v〉.

Lemma 14 (Iterated reduction). Given a sound reduction ρ, for all ordinals λ, ρλ is
a sound reduction. If the iterates of ρ from P are well-defined then their limit ρ∗(P)
exists. We have ∀β < λ : ρ∗(P) v ρλ(P) v ρβ(P) v P. If γ is the upper adjoint of a
Galois connection then ρ∗ is a sound reduction. It ρ is increasing then ρ∗ = λ P . gfpv

P
ρ

is the greatest fixpoint (gfp) of ρ less than or equal to P.

Proof. Assuming the iterates of ρ from P ∈ A to be well-defined (otherwise the result
holds only for λ < ω, where ω is the first infinite ordinal) we observe, by transfinite
induction, that the iterates form a descending chain since ρ is reductive and by defi-
nition of the glb

d
. By antisymmetry of v in the poset 〈A, v〉, a fixpoint is reached

when the ordinal ε has a cardinality greater than that of A since otherwise the iterates
all contained in A would have a cardinality strictly greater than that of A. The iterates
must be stationary beyond λ so that the limit ρ∗(P) , ρε(P) is well-defined. It fol-
lows that ∀β < λ : ρ∗(P) v ρλ(P) v ρβ(P) v P since the iterates are v-decreasing.
Soundness follows by transfinite induction. For the basis γ(ρ0(P)) = γ(P) by def.
of ρ0. For successor ordinals, γ(ρλ+1(P)) , γ(ρ(ρλ(P))) = γ(ρλ(P)) = γ(P) since ρ
is sound and by induction hypothesis. For limit ordinals λ, when γ is the upper ad-
joint of a Galois connection, hence preserves existing greatest lower bounds, we have
ρλ(P) , γ(

d
β<λ ρ

β(P)) =
d
β<λ γ(ρβ(P)) =

d
β<λ γ(P) = γ(P) by induction hypothesis

and def. of glb. Let Q be another fixpoint of ρ assumed to be increasing such that
Q v P so that ∀λ : Q = ρλ(Q) v ρλ(P) by transfinite induction proving that the limit
Q v ρε(P) = ρ∗(P) is the gfp. ut

A particular case of iterated reduction was proposed by [15] following [7].

14

5 Reduced product

5.1 Definition
Let 〈Ai, vi〉, i ∈ ∆, ∆ finite, be abstract domains with increasing concretization γi ∈

Ai→P
ΣO
I

. Their Cartesian product is 〈~A, ~v〉where ~A ,
�

i∈∆ Ai, (~P ~v ~Q) ,
∧

i∈∆(~Pi vi

~Qi) and ~γ ∈
�

i∈∆ Ai→P
ΣO
I

is ~γ(~P) ,
⋂

i∈∆ γi(~Pi). In particular the product 〈Ai × A j,
vi j〉 is such that 〈x, y〉 vi j 〈x′, y′〉 , (x vi x′)∧ (y v j y′) and γi j(〈x, y〉) , γi(x)∩ γ j(y).

Their reduced product is 〈
(�

i∈∆ Ai
)
/~≡, ~v〉 where (~P ~≡ ~Q) , (~γ(~P) = ~γ(~Q)) and ~γ

as well as ~v are naturally extended to the equivalence classes [~P]/~≡, ~P ∈ ~A, of ~≡ [7].
The simple cartesian product can be a representation for the reduced product, but if

we just abstract transformers componentwise, then we obtain the same result as running
analyses with each abstract domain independently. We can obtain much more precise
results if we try to compute precise abstract values for each abstract domain, while
staying in the same class of the reduced product. Computing such values is naturally a
reduction.

5.2 Iterated product reduction
Implementations of the most precise reduction (if it exists) can hardly be modular since
in general adding a new abstract domain to increase precision implies that the reduced
product must be completely redesigned. On the contrary, the pairwise iterated product
reduction below, is more modular, in that the introduction of a new abstract domain
only requires defining the reduction with the other existing abstract domains.

For i, j ∈ ∆, i , j, let ρi j ∈ 〈Ai × A j, vi j〉 7→ 〈Ai × A j, vi j〉 be pairwise reductions
(so that ∀〈x, y〉 ∈ Ai × A j : ρi j(〈x, y〉) vi j 〈x, y〉, preferably lower closure operators
i.e. reductive, increasing and idempotent). Define the pairwise reductions ~ρi j ∈ 〈~A,
~v〉 7→ 〈~A, ~v〉 of the Cartesian product as

~ρi j(~P) , let 〈~P′i , ~P
′
j〉 , ρi j(〈~Pi, ~P j〉) in ~P[i← ~P′i][j← ~P′j]

where ~P[i← x]i = x and ~P[i← x] j = ~P j when i , j. Define the iterated pairwise
reductions ~ρ n

, ~ρ
∗
∈ 〈~A, ~v〉 7→ 〈~A, ~v〉, n > 0 of the Cartesian product as in Def. 13 for

~ρ , ©
i, j ∈ ∆,
i, j

~ρi j (1)

where
n
©
i=1

fi , fπ1
◦ . . . ◦ fπn is the function composition for some arbitrary permutation

π of [1, n].
The pairwise reductions ~ρi j and the iterated ones ~ρ n, n > 0 as well as their closure

~ρ
?, if any, are sound over-approximations of the reduced product in that

Theorem 15. Under the hypotheses of Def. 13 and assuming the limit of the iterated
reductions is well defined, the reductions are such that ∀~P ∈ ~A : ∀λ : ~ρ ?(~P) ~v ~ρ λ(~P) ~v
~ρi j(~P) ~v ~P, i, j ∈ ∆, i , j and sound since ~ρ λ(~P), ~ρi j(~P), ~P ∈ [~P]/~≡ and if γ preserves
lower bounds, ~ρ ?(~P) ∈ [~P]/~≡ also.

15

Proof. The inequalities ~ρ ?(~P) ~v ~ρ λ(~P) ~v ~ρi j(~P) ~v ~P follow from the observation that
the composition ~ρ of reductions is a reduction and Lem. 14. By def. of the quotient we
have ~P ∈ [~P]/~≡ so, by def. of the reduced product ~γ([~P]/~≡) = ~γ(~P) = ~γ(~ρ(~P)) since ~ρ is
sound proving the reduced product to be sound. It follows, by transfinite induction on
the iterates, that ∀λ : ~ρ λ(~P) = ~γ([~P]/~≡) and so, passing to the limit, that if γ preserves
lower bounds, ~ρ ?(~P) = ~γ([~P]/~≡) proving ~ρ ?(~P), ~ρ λ(~P), ~ρi j(~P), ~P ∈ [~P]/~≡ by def. of
equivalence classes of ~≡ as well as soundness since ~ρ is sound. ut

The following theorem proves that the iterated reduction may not be as precise as the
reduced product. It is nevertheless easier to implement.

Theorem 16. In general ~ρ ?(~P) may not be a minimal element of the reduced product
class [~P]/~≡ (in which case ∃ ~Q ∈ [~P]/~≡ : ~Q ~@ ~ρ

?(~P)).

Proof. Let L = ℘({a, b, c}), A1 = {∅, {a},>}, A2 = {∅, {a, b},>} et A3 = {∅, {a, c},>}
where > = {a, b, c}. We have 〈>, {a, b}, {a, c}〉/~≡ = 〈{a}, {a, b}, {a, c}〉. However ~ρ~i j(〈>,
{a, b}, {a, c}〉) = 〈>, {a, b}, {a, c}〉 for ∆ = {1, 2, 3}, i, j ∈ ∆, i , j and so ~ρ ∗(〈>, {a, b},
{a, c}〉) = 〈>, {a, b}, {a, c}〉 proving, for that example, that ~ρ ?(~P) is not a minimal
element of [~P]/~≡. ut

Sufficient conditions exist for the iterated pairwise reduction to be a total reduction to
the reduced product.

Theorem 17. If the 〈Ai, vi, ti〉, i ∈ ∆ are complete lattices, the ρi j, i, j ∈ ∆, i , j, are

lower closure operators, and ∀~P, ~Q :
(
~γ
(
~P
)
⊆ ~γ

(
~Q
))
⇒

(
∃ n > 0 :

(
~̇d

i, j ∈ ∆,
i, j

~ρi j

)n
(~P) ~v

~Q
)

then ∀~P : ~ρ ?(~P) is the minimum of the class ~P/~≡.

Proof. First, a direct consequence of Th. 15 is that for all n, ~ρ ? ~̇v
(
~̇d

i, j ∈ ∆,
i, j

~ρi j

)n
. Let

~Q ∈ ~P/~≡. Then ~γ
(
~P
)

= ~γ
(
~Q
)
, so ~γ

(
~P
)
⊆ ~γ

(
~Q
)
. By hypothesis, that implies there is an

n such that
(
~̇d

i, j ∈ ∆,
i, j

~ρi j

)n
(~P) ~v ~Q, and so ~ρ ?(~P) ~v ~Q. ut

5.3 (Reduced) product transformers
The transformers fI Jx := eK, bI Jx := eK, and pI JϕK for the (pairwise iterated) reduced
product proceed componentwise and reduce the result. This can be improved in the
abstract, as follows.

Let us consider a reduced product 〈
(�

i∈∆ Ai
)
/~≡, ~v〉 of abstract domains 〈Ai, vi〉,

i ∈ ∆ with concretizations γi ∈ Ai
1
→ C and sound transformers f̄iJx := tK such that

fJx := tKγi(P) ⊆ γi(f̄iJx := tKP) where fJx := tK ∈ C 1
→ C is the increasing concrete

transformer. The corresponding transformer of a property ~P ∈
�

i∈∆ Ai in the product
is the reduction

(�
i∈∆ f̄iJx := tK(~Pi)

)
/~≡ of the componentwise transformation. This is

sound since

16

~γ

�
i∈∆

f̄iJx := tK(~Pi)

/~≡

= ~γ

�
i∈∆

f̄iJx := tK(~Pi)

 Hdef. reduced productI

=
⋂
i∈∆

γi(f̄iJx := tK(~Pi)) Hdef. ~γI

⊇
⋂
i∈∆

fJx := tK(γi(~Pi)) Hsoundness of the f̄iJx := tKI

⊇ fJx := tK

⋂
i∈∆

γi(~Pi)

 HfJx := tK increasingI

= fJx := tK(~γ(~P)) Hdef. ~γ .I

However this definition of the product transformer is not modular since it must be
entirely redesigned when adding a new abstract domain to the product. Notice however,
that abstract transformers themselves are elements of a reduced product, by defining
their concretization as

~γ

�
i∈∆

f̄iJx := tK(~Pi)

=

⋂
i∈∆

γi(f̄iJx := tK(~Pi)) Hdef. ~γI

=
⋂
i∈∆

γ̇i(f̄iJx := tK)(~P) Hpointwise definition γ̇i(f)(~x) , γi(f (~xi))I

=

⋂̇
i∈∆

γ̇i(f̄iJx := tK)

 (~P) Hpointwise def.

⋂̇
i∈∆

fi

 (x) ,
⋂
i∈∆

fi(x)I

= ~̇γ

�
i∈∆

f̄iJx := tK

 (~P) Hdef. ~γ(
�

i xi) ,
�

i γi(xi)) for products.I

A direct consequence is that we can approximate the product transformer by iterated
reduction of the componentwise transformers. Observe that we have the following
Galois connection

fI Jx := eKP ⊆ Q

⇔{〈I, η[x← JeKIη]〉 | I ∈ I ∧ 〈I, η〉 ∈ P)} ⊆ Q Hdef. fI Jx := eKI

⇔∀I ∈ I : ∀〈I, η〉 ∈ P : 〈I, η[x← JeKIη]〉 ∈ Q Hdef. ⊆I

⇔∀〈I, η〉 ∈ P : I ∈ I ∧ 〈I, η[x← JeKIη]〉 ∈ Q

Hsince 〈I, η〉 ∈ P implies I ∈ II

⇔ P ⊆
{
〈I, η〉

∣∣∣ I ∈ I ∧ 〈I, η[x← JeKIη]〉 ∈ Q
}

Hdef. ⊆I

P ⊆ bI Jx := eKQ Hdef. bI Jx := eK .I

It follows that if fI Jx := eKP ⊆ Q then fI Jx := eK(bI Jx := eK(Q)) is a more pre-
cise sound overapproximation of fI Jx := eKP than Q, which suggests the following

17

pairwise reduction ρ̇i j of transformers (based on the pairwise reduction ρi j of abstract
properties)
ρ̇i j(〈fiJx := tK, f jJx := tK〉) ,

λ 〈x, y〉 . let 〈x′, y′〉 , ρi j(〈fiJx := tK(x), f jJx := tK(y)〉) in

let 〈‘x, ‘y〉 , ρi j(〈x ui biJx := tK(x), y u j b jJx := tK(y)〉) in

ρi j(〈fiJx := tK(‘x), f jJx := tK(‘y)〉)

which defines a reduction ~̇ρ of transformers by (1) lifting the reduction ~ρ on the product
of abstract properties at higher-order.

Example 18. Consider the product of equality and sign analysis. The componentwise
forward propagation of 〈a = b, >〉 through the assignment a :=

√
b + a is 〈>, b > 0〉

(with runtime error when b < 0 in which case execution is assumed to stop). The
backward propagation yields the precondition 〈a = b, b > 0〉 reduced to 〈a = b,
b > 0 ∧ a > 0〉 which forward propagation is now reduced to 〈>, a > 0 ∧ b > 0〉. So
the reduced componentwise forward propagation of 〈a = b, >〉 through the assignment
a :=

√
b + a is 〈>, a > 0 ∧ b > 0〉 (more precise than 〈>, b > 0〉). ut

Similar reductions can be done for the backward assignment bJx := tK (thus generaliz-
ing [15]) and tests pJϕK.

Example 19. An iterated reduction of the product of linear equalities and sign analyses
of pJ(x = y)∧ ((z+ 1) = x)∧ (y = z)K with precondition x = 0 yields the postcondition
x = 0 ∧ y = 0 ∧ z < 0, see the details in [5, Sect. 13.9]. ut

5.4 Widening
The widening/narrowing [6] of a reduced product is often defined componentwise using
widenings/narrowings of the component abstract domains. This ensures convergence
for the product. However it must be proved that the reduction does not break down the
termination of the product widening, in which case reduction must be weakened or the
widening strengthened.

Example 20. The closure operation in the octagon abstract domain can be considered
as a reduction between separate domains, each considering only a pair of variables: if
one applies the classical widening operation on octagons followed by closure (reduc-
tion), then termination is no longer ensured (e.g. see [22, Fig. 25–26]). ut

5.5 Observational reduced product
The observational reduced product of abstract domains 〈Ai, vi〉, i ∈ ∆ consists in in-
troducing observables to increase the precision of the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational Cartesian product with observables named by Ω. It can
be seen as the application of the extension operator of Sect. 3 followed by a Cartesian
product

�
i∈∆ Ai. This operation is not very fruitful, as the shared observables will not

bring much information. But used in conjunction with an iterated reduction, it can
give very precise results since information about the observables can bring additional
reductions.

18

Definition 21 (Observational reduced product). For all i ∈ ∆, let 〈iAΣO
I
, iv〉, 〈iAΣO′

I
,

iv′〉 be abstract domains, Ω′ be the new observables, and iextendΩ′ ∈
iAΣO
I
→ iAΣO′

I
be

the sound extensions satisfying the conditions of definition 12.
The observational cartesian product is

Ω′
�
i∈∆

iAΣO
I
,
�
i∈∆

iextendΩ′

[
iAΣO
I

]
and the observational reduced product is 〈

(
Ω
�

i∈∆ Ai

)
/~≡, ~v〉.

6 The Nelson-Oppen combination procedure

6.1 Formula purification
6.1.1 Formula purification in the Nelson-Oppen theory combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality and decision
procedures sati for satisfiability of quantifier-free conjunctive formulæ ϕi ∈ C(Σi),
i = 1, ..., n, the Nelson-Oppen combination procedure [23] decides the satisfiability of
a quantifier-free conjunctive formula ϕ ∈ C(

⋃n
i=1 Σi) in theory T =

⋃n
i=1 Ti such that

M(T) =
⋂n

i=1M(Ti).
The first “purification” phase [29, Sect. 2] of Nelson-Oppen combination procedure

consists in repeating the replacement of (all occurrences of) an alien subterm t ∈ T(Σi)\
x of a subformula ψ[t] < C(Σi) (including equality or inequality predicates ψ[t] = (t =

t′) or (t′ = t)) of ϕ by a fresh variable x ∈ x such that #(x) = #(t) and introducing
the equation x = t (i.e. ϕ[ψ[t]] is replaced by ϕ[ψ[x]] ∧ x = t and the replacement is
recursively applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2. ϕ = (g(x) =

f (g(g(x))))→ (∃ y : y = f (g(y))∧y = g(x))→ (∃ y : ∃ z : y = f (z)∧y = g(x)∧z = g(y))
→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) = ϕ′ where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ut

Upon termination, the quantifier-free conjunctive formula ϕ is transformed into a for-
mula ϕ′ of the form

ϕ′ = ∃ ~x1, . . . , ~xn :
n∧

i=1

ϕi where ϕi = ϕ′i ∧
∧
xi∈~xi

xi = txi ,

~x ,
⋃n

i=1 ~xi is the set of auxiliary variables introduced by the purification , each txi ∈

T(Σi) is an alien subterm of ϕ renamed as xi ∈ x such that #(xi) = #(txi), and each
ϕ′i (hence each ϕi) is a quantifier-free conjunctive formula in C(Σi

O
). We have ϕ ⇔∧n

i=1 ϕ
′
i[xi ← txi]xi∈~xi

so ϕ and ϕ′ are equisatisfiable.
In case of non-disjoint theories Ti, i = 1, ..., n, purification is still possible, by

considering the worst case (so as to purify any subterm of theories Ti or T j occurring
in a term of theories Ti or T j). The reason the Nelson-Oppen purification requires
disjointness of theory signatures is that otherwise they can share more than equalities
and cardinality, a sufficient reason for the procedure to be incomplete. Nevertheless, the
purification procedure remains sound for non-disjoint theories, which can be exploited
for static analysis, as shown below.

19

6.1.2 The Nelson-Oppen purification as an observational cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ), xP = ~xϕ plus the fresh
auxiliary variables ~x introduced by the purification xO = xP ∪ ~x. Let ΣP and ΣO be
the corresponding signatures of Σ. Given an interpretation I ∈ I , with values IV, the
observable naming Ω

ϕ
I is

Ω
ϕ
I ∈ xO→R

ΣP
I → IV

Ω
ϕ
I (x)η , η(x) when x ∈ xP,

, JtxKη when x ∈ ~x .

From a model-theoretic point of view, the purification of ϕ ∈ A into 〈ϕ1, . . . , ϕn〉

can be considered as an abstraction of the program properties in PΣO
I

abstracted by ϕ
to observable properties in RΣO

I
themselves abstracted to the observational cartesian

product Ωϕ�
i∈∆

iAΣO
I

where the component abstract domains are 〈iAΣO
I
, vi〉 , 〈C(Σi

O
),

⇒〉 with concretizations iγΣO
I
∈ C(Σi

O
)→ iP

ΣO
I

such that iγΣO
I
∈ C(Σi

O
)→ iP

ΣO
I

and
iγΣO
I

(ϕ) ,
{
〈I, η〉 ∈ RΣO

I

∣∣∣∣ I ∈ M(Ti) ∧ I |=η ϕ
}
, i = 1, . . . , n. This follows from the fact

that the concretization is the same, as shown below.

γΩϕ,P
I

Ωϕ
n�

i=1

ϕ′i

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x . ΩI(x)η〉 ∈ γΣO
I

Ωϕ
n�

i=1

ϕ′i

Hdef. γΩϕ,P
I
, γΩϕ

I
◦ γΣO
I

I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x . Ω
ϕ
x (η)〉 ∈

n⋂
i=1

iγΣO
I

(ϕ′i)

Hdef. γΣO

I
for the observational cartesian productI

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x . Ω
ϕ
x (η)〉 ∈ γΣO

I

 n∧
i=1

ϕ′i

Hdef. γΣO
I

(Ψ) ,
{
〈I, η〉

∣∣∣∣ I ∈ I ∧ I |=η Ψ
}

and |=I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣ 〈I, λ x ∈ xP . η(x) ∪̇ λ x ∈ ~x . JtxKη〉 ∈ γΣO
I

 n∧
i=1

ϕ′i

Hdef. Ω
ϕ
x , x = xP ∪ ~x, and xP ∩ ~x = ∅I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣∣ 〈I, η〉 ∈ γΣO
I

∃ ~x :
n∧

i=1

ϕ′i ∧
∧
x∈~x

x = tx

Hdef. γΣO
I

and |=I

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣∣ 〈I, η〉 ∈ γPI
∃ ~x :

n∧
i=1

ϕ′i ∧
∧
x∈~x

x = tx

20

HSince ΣP ⊆ ΣO and ∃ ~x :
∧n

i=1 ϕ
′
i ∧

∧
x∈~x x = tx has no free auxiliary variable in

ΣO \ ΣPI

=

 〈I, η〉 ∈ RΣP
I

∣∣∣∣∣∣∣∣∣∣ 〈I, η〉 ∈ γPI
∃ ~x1, . . . , ~xn :

n∧
i=1

(
ϕ′i ∧

∧
xi∈~xi

xi = txi

)

Hdef. ~x ,

⋃n
i=1 ~xiI

= γP
I

∃ ~x1, . . . , ~xn :
n∧

i=1

(
ϕ′i ∧

∧
xi∈~xi

xi = txi

) Hdef. { x | P(x) }I

= γP
I

∃ ~x1, . . . , ~xn :
n∧

i=1

ϕi

 Hdef. ϕi = ϕ′i ∧
∧
xi∈~xi

xi = txiI

= γP
I

(
ϕ′

)
Hdef. ϕ′ = ∃ ~x1, . . . , ~xn :

n∧
i=1

ϕi .I

After purification, the components of the observational cartesian product are not yet
the most precise ones.

6.2 Formula reduction
6.2.1 Formula reduction in the Nelson-Oppen theory combination procedure

After purification, the Nelson-Oppen combination procedure [23] includes a reduction
phase where all variable equalities x = y and inequalities x , y information available
from one component ϕi in its theory Ti are propagated to all components ϕ j (in practice
only to those components ϕ j where the information is useful, that is those ϕ j, including
ϕi, sharing free variables x and y with ϕi). The decision procedure for Ti is used to
determine all possible disjunctions of conjunctions of (in)equalities that are implied by
ϕi. These are determined by exhaustively trying all possibilities in the nondeterministic
version of the procedure or by an incremental construction in the deterministic version,
which is more efficient for convex theories [29]. The reduction is iterated until no new
disjunction of (in)equalities is found.

6.2.2 The Nelson-Oppen reduction as an iterated fixpoint reduction of the prod-
uct

Let 1S ,
{
〈s, s〉

∣∣∣ s ∈ S
}

be the identity relation on a set S and E(S) be the set of all
equivalence relations on S that is E(S) ,

{
r ∈ ℘(S × S)

∣∣∣ 1S ⊆ r ∧ r = r−1 ∧ r = r ◦ r
}
.

Define the pairwise reduction
ρi j(ϕi, ϕ j) , 〈ϕi ∧ Ei j ∧ E ji, ϕ j ∧ E ji ∧ Ei j〉 where

eq(E) ,
∨
≡∈E

∧
x≡y

x = y ∧
∧
x.y

x , y

Ei j ,

∧{
eq(E)

∣∣∣∣ E ⊆ E(~xϕi ∩ ~xϕ j) ∧ ϕi ⇒ eq(E)
}
.

21

The Nelson-Oppen reduction of ϕ purified into Ωϕ�n
i=1 ϕ

′
i consists in computing the

iterated pairwise reduction ~ρ ∗
(
Ωϕ�n

i=1 ϕ
′
i

)
.

Example 23. Let ϕ1 , (x = a∨x = b)∧y = a∧z = b and ϕ2 , f(x) , f(y)∧f(x) , f(z)
so that ϕ , ϕ1∧ϕ2 is purified. We have E12 , (x = y)∨(x = z) and E21 , (x , y)∧(x ,
z) so that ~ρ ∗ (ϕ) = ff. ut

Observe that the result of the iterated pairwise reduction may not be as precise as the
reduced product.

Example 24. A classical example is given by [29, p. 11] where ϕ1 , f(x) , f(y) in
the theory of Booleans admitting models of cardinality at most 2 and ϕ2 , g(x) ,
g(z) ∧ g(y) , g(z) in a disjoint theory admitting models of any cardinality so that
ϕ = ϕ1 ∧ ϕ2 is purified. The reduction yields ϕ ∧ x , y ∧ x , z ∧ y ∧ z and not ff
since the cardinality information is not propagated whereas it would be propagated by
the reduced product which is defined at the interpretation level. Therefore the pairwise
reduction ought to be refined to include cardinality information, as proposed by [32].

ut

6.2.3 Formula reduction and the reduced product

A formula over a set of theories is equivalent to its purification, so that to find an in-
variant or to check that a formula is invariant, we could first purify it and then proceed
with the computation of the transformer of the program. This would lead to the same
result as simply using one mixed formula if the reduction is total at each step of the
computation. Such a process would be unnecessarily expensive if decision procedures
could handle arbitrary formulæ. But this is not the case actually: most of the time, they
cannot deal with quantifiers, and assignments introduce existential quantifiers which
have to be approximated. Such approximations have to be redesigned for each set of
formulæ. Using a reduced product of formulæ on base theories allows reusing the
approximations on each theory (as in [19], even if the authors didn’t recognize the re-
duced product). In that way, a reduced product of logical abstract domains will provide
a modular approach to invariant proofs.

6.3 Formula satisfiability
After purification and reduction, the Nelson-Oppen combination procedure [23] in-
cludes a decision phase to decide satisfiability of the formula by testing the satisfiabil-
ity of its purified components. This phase can also be performed during the program
static analysis since an unsatisfiability result means unreachability encoded by ff. The
satisfiability decision can also be used as an approximation to check for a postfixpoint
and that the specification is satisfied.

For briefness, we have concentrated in this paper on the Nelson-Oppen combination
procedure [23] but Shostak combination procedure [27, 26] can be handled in exactly
the same way.

22

7 Reduced product of logical and algebraic abstract do-
mains

7.1 Combining logical and algebraic abstract domains
Static analyzers such as Astrée [1, 10] and Clousot [14] are based on an iterated pair-
wise reduction of a product of abstract domains over-approximating their reduced prod-
uct [11]. Since logical abstract domains as combined by Nelson-Oppen combination
procedure are indeed an iterated pairwise reduction of a product of abstract domains
over-approximating their reduced product, as shown in Sect. 6.2, the design of abstract
interpreters based on an approximation of the reduced product can use both logical and
algebraic abstract domains.

An advantage of using a product of abstract domains with iterated reductions is that
the reduction mechanism can be implemented once for all while the addition of a new
abstract domain to improve precision essentially requires the addition of a reduction
with the other existing abstract domains when necessary [11].

Notice that the Nelson-Oppen procedure and its followers aim at completeness, at
least for the reduction to ff. However this is not needed in the iterated pairwise reduc-
tion used in static analysis since the reduction generally needs not to be optimal, e.g.
for performance motivations, so that, in that context, restrictions to e.g. stably-infinite
theories [29] or other similar hypotheses on interpretations [32] become irrelevant.

Similarly, the disjointness of the signatures of theories is essentially to achieve
completeness. Instead, one may assume that the theories are consistent i.e. agree on
the interpretations of their common signature, up to an isomorphism [30].

Example 25. As a simple example, consider the combination of the logical domain
of Presburger arithmetics (where the multiplication is inexpressible) and the algebraic
domain of sign analysis (which is complete for multiplication). The abstraction of a
first-order formula to a formula of Presburger arithmetics is by abstraction to a subsig-
nature eliminating all terms of the signature not in the subsignature:

αΣ(x) , x

αΣ(f(t1, . . . , tn)) , ?, f < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?
, f(t1, . . . , tn), otherwise

αΣ(ff) , ff

αΣ(p(t1, . . . , tn)) , tt, p < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?, in
positive position

, ff, p < Σ ∨ ∃ i ∈ [1, n] : αΣ(ti) = ?, in
negative position

, p(t1, . . . , tn), otherwise
αΣ(¬Ψ) , ¬αΣ(Ψ)

αΣ(Ψ ∧ Ψ′) , αΣ(Ψ) ∧ αΣ(Ψ′))
αΣ(∃ x : Ψ) , ∃ x : αΣ(Ψ) .

The abstract transformers for Presburger arithmetics become simply fPJx := eKP ,
αΣP (∃ x′ : P[x← x′] ∧ x = e[x← x′]), pPJϕKP , αΣP (P ∧ ϕ), etc, where ΣP is the
signature of Presburger arithmetics.

23

The reduction of the Presburger arithmetics logical abstract domain by the sign
algebraic abstract domain is given by the concretization function for signs.

Ei j(η) ,
∧

x∈dom(η)

γ(x, η(x)) γ(x, pos0) , (x > 0)
γ(x, pos) , (x > 0) etc.

Assume the precondition 〈P(x), x : >〉 holds, then after the assignment x := x × x,
the post condition 〈∃ x′ : P(x′)∧x = x′× x′, x : pos0〉 holds, which must be abstracted
by αΣP to the Presburger arithmetics logical abstract domain that is 〈∃ x′ : P(x′), x :
pos0〉. The reduction reduces the postcondition to 〈∃ x′ : P(x′) ∧ x ≥ 0, x : pos0〉.

Symmetrically, the sign abstract domain may benefit from equality information.
For example, if the sign of x is unknown then it would remain unknown after the code
y := x; x := x * y whereas knowing that x = y is enough to conclude that x is
positive.

Of course the same result could be achieved by encoding by hand the Presburger
arithmetics transformer for the assignment to cope with this case and other similar
ones. Here the same result is achieved by the reduction without specific programming
effort for each possible particular case. ut

7.2 Reduced product for inconsistent interpretations
One of the issues with the use of logical abstract domains, or even with the use of SMT
solvers to prove invariants, is that the underlying theory is often not sound with respect
to the actual implementations of the program.

Example 26. Astrée [1, 10] has found runtime error bugs in programs which had
been “formally proved correct”. The problem was a buffer overrun. Indeed the theory
of arrays used in the “formal proof” was not taking buffer overruns into account [3]. In
practice, this can have dramatic consequences, as shown by the following example

#include <stdio.h>

int main () { int n, T[1];

n = 2147483647;

printf("n = %i, T[n] = %i\n", n, T[n]);

}

producing quite different results on different machines:
n = 2147483647, T[n] =

2147483647

Macintosh PPC

n = 2147483647, T[n] =

-1208492044

Macintosh Intel

n = 2147483647, T[n] =

-135294988

PC Intel 32 bits

Bus error PC Intel 64 bits
This example also shows that any attempt to define the machine semantics is hopeless.
In practice, one can consider such cases as errors and stop the analysis when they are
encoutered. It is also possible to keep the analysis running after reporting such cases,
but the meaning of the analysis is not a sound approximation of all program behaviors

24

anymore, just an approximation of the execution traces that don’t fall in that case.
However, this unsoundness problem disappears when proving the absence of runtime
error in such cases of unpredictable behavior after the error. ut

However, recovering soundness is possible by introducing reduced products with
well chosen abstract domains. For example, a logical abstract domain for mathematical
integers can be combined with an algebraic abstract domain handling bounded machine
integers. The coherence is achieved by a reduction of the logical abstract domain lim-
iting the range of variation of program integer variables to that are discovered by the
algebraic abstract domain.

Given two interpretations, I1 and I2 for a signature Σ = 〈s, x, f , p, #〉, we de-
fine their common interpretation I such that (fs signals a runtime error when the two
interpretations differ):

I s
V
, (I1,s

V
∩ I2,s
V

) ∪ {fs} 4 s ∈ s

Iγ(c) , I1
γ(c) when I1

γ(c) = I2
γ(c)

, fs otherwise (#(c) = s)
Iγ(f) , I1

γ(f) when #(f) = s1 × . . . × sn → s and ∀v1 ∈

I s1
V
, . . . ,∀vn ∈ I sn

V
: I1

γ(f)(v1, . . . , vn) =

I2
γ(f)(v1, . . . , vn)

, fs otherwise
Iγ(p) , I1

γ(p) when #(p) = s1 × . . . × sn → bool and
∀v1 ∈ I s1

V
, . . . ,∀vn ∈ I sn

V
: I1

γ(p)(v1, . . . , vn) =

I2
γ(p)(v1, . . . , vn)

, fs otherwise
all logical operators ¬, ∧, ∃ are strict in all errors fs, s ∈ s, the reduction is defined
such that ρi j(〈fs, Q〉) = ρi j(〈P,fs〉) = ρi j(〈fs,fs′〉) = fs, and errors are interpreted as
stopping program execution. It follows that the abstractions for different interpretations
can be left unchanged since the reduction takes the errors cases into account during the
static analysis.

The main consequence is that in absence of any errorfs, s ∈ s, the iterated pairwise
reduction of the two interpretations do coincide (more precisely up to the first error
during execution, if any), so that we have a sound approximation of the actual program
semantics.

7.3 Program purification
Whereas the reduced product proceeds componentwise, logical abstract domains of-
ten combine all these components into the single formula of their conjunction which
is then globally propagated by property transformers before being purified again into
components by the Nelson-Oppen procedure. These successive abstractions by pu-
rification and concretization by conjunction can be avoided when implementing the
logical abstract domain as an iterated reduction of the product of the component and
program purification, as defined below. The observational semantics is then naturally
implemented by a program transformation.

4This condition could also be considered up to an isomorphism.

25

Given disjoint signatures 〈fi, pi〉, i = 1, ..., n, the purification of a program P over
C(x,

⋃n
i=1 fi,

⋃n
i=1 pi) consists in purifying the terms t in its assignments x := e and the

clauses in simple conjunctive normal form ϕ appearing in conditional or iteration tests.
A term t ∈ T(x,

⋃n
i=1 fi) not reduced to a variable is said “to have type i” when it is of

the form c ∈ f0
i or f(t1, . . . , tn) with f ∈ fn

i . As a side note, one may observe that this
could very well be equivalent to using the variable and term types in a typed language.

The purification of an assignment x := e[t] where term e has type i and the alien
subterm t has type j, j , i consists in replacing this assignment by x = t; x := e[x]
where x ∈ x is a fresh variable of sort #(x) = #(t), e[x] is obtained from e[t] by
replacing all occurrences of the alien subterm t by the fresh variable x in e, and in
recursively applying the replacement to x = t and x := e[x] until no alien subterm is
left.

An atomic formula a ∈ A(x,
⋃n

i=1 fi,
⋃n

i=1 pi) not reduced to false is said to have
type i when it is of the form p(t1, . . . , tn) with p ∈ pn

i or t1 = t2 and t1 has type i or
x = t2 and t2 has type i.

The purification of an assignment x := a[t] where atomic formula a has type i
and the alien subterm t has type j, j , i consists in replacing this assignment by
x = t; x := a[x] where x ∈ x is a fresh variable of sort #(x) = #(t′), a[x] is obtained
from a[t] by replacing all occurrences of the alien subterm t by the fresh variable x, and
in recursively applying the replacement to x = t and x := a[x] until no alien subterm is
left.

The purification of a clause in simple conjunctive normal form ϕ ∈ C(x,
⋃n

i=1 fi,
⋃n

i=1 pi)
in a test consists in replacing all atomic subformulæ a (including equalities and dise-
qualities) by fresh variables, in introducing assignments x := a to these fresh variables
x of sort #(x) = bool before the test and in recursively purifying the assignments
x := a.

Example 27. Assume that f ∈ f1 and g ∈ f2. The purification is
if (g(w) = f (g(g(w)))) then . . .

→ x := (g(w) = f (g(g(w)))); if x then . . .
→ y := g(w); x := (y = f (g(y))); if x then . . .

Hg(w) has type 2 and f (g(g(w))) has type 1I
→ y := g(w); z := g(y); x := (y = f (z)); if x then . . .

H(y = f (g(y))) has type 1 and g(y) has type 2 .I ut

After purification all program terms, atomic formulæ, and clauses are pure in that no
term or atomic formula of a theory has a subterm in a different theory or a clause con-
taining terms of different theories. So all term assignments x := e (or atomic formulæ
x := a) have t ∈ T(Σi

O
) (resp. a ∈ A(Σi

O
,pi) for some i ∈ [1, n] and all clauses in tests

are Boolean expressions written using only variables, ¬ and ∧.
We let the observable identifiers xO = xP ∪ ~x be the program variables xP plus the

fresh auxiliary variables x ∈ ~x introduced by the purification with assignments x := ex.
Given an interpretation I, with values IV, the observable naming ΩI is

Ω ∈ xO 7→ (xP 7→ IV) 7→ IV
ΩI(x)η , η(x) when x ∈ xP

, JexKη when x ∈ ~x .

26

This program transformation provides a simple implementation of the observational
product of Def. 21. Moreover, the logical abstract domains no longer need to perform
purification.

Theorem 28. A static analysis of the transformed program with a (reduced/iteratively
reduced) product of logical abstract domains only involves purified formulæ hence
can be performed componentwise (with reduction) without changing the observational
semantics.

Proof. The proof is by structural induction on programs. For the base cases, first con-
sider the assignment x := e. For logical abstract domains which do not have e in their
theory Tk, the tranformer is ∃x′ : Ψ[x← x′] ∧ x = e[x← x′], which is purified into
∃y : ∃x′ : Ψ[x← x′]∧ x = y, which is equivalent to ∃x : Ψ, so that we don’t introduce
any more variable to observe. For the other domains, e is pure so no purification is
needed. The handling of backward assignement is similar and the test only contains
boolean formulæ in a purified program so that no purification is needed there either.

ut

Purification can also be performed for non-disjoint theories, but this requires us-
ing as many variables as the number of theories that contain the expression e in their
language, so that we can use existencials and remain precise by asserting the equal-
ity between thoses variables. The transformer will then be ∃ x′i : Pi[x← x′i] ∧ x′′i =

e[x← x′i] ∧ ∃ x′j : P j[x← x′j] ∧ x′′j = e[x← x′j] ∧ . . . ∧ x = x′′i = x′′j . . .

7.4 Evolving reduced product
Despite constant progress in this area, SMT solvers seem to be too expensive for an ex-
tensive use on programs of realistic size. But on that aspect also, the reduced product
approach can help: instead of a global refinement of a static analyzer, one can also con-
sider local ones, e.g. when precision must be locally enhanced to prove the invariance
of a user-provided assertion or a loop invariant. In that case the reduced product can
evolve locally to include a new abstract domain when more precision is required and
to exclude the new abstract domain when it is no longer required. In such an evolving
reduced product for local refinement

• the upgrade with a new abstract domain adds a new component in the product initial-
ized by top/tt which is then reduced pairwise with the other abstract domains (thus
introducing the known information to the new component);

• the downgrade consists in a pairwise reduction of the component of the new abstract
domain with the other components followed by the suppression of this component.

On non-critical parts, less precise but more efficient algebraic abstract domains are used
to infer the necessary properties to use in the next critical part.

This is complementary to the use of variable packs in relational abstract domains
[10], which can be seen as an evolution of one component of the product. In both cases,
this evolution of the abstraction during the static analysis can either be decided before
the analysis (e.g. based on the program syntax and the user-provided assertions to be
proved) or during the iteration of the analysis itself (based on the observation of a lack
of precision for an upgrade or the ineffectiveness of an abstraction for adowngrade).

27

7.5 On the design of static analyzers by iterated reduction between
logical and algebraic domains with evolving refinement

The design we propose to combine algebraic and logical abstract domains is the fol-
lowing:

• purify the program (Sect. 7.3) according to the theories of the logical domains (and
even to operators which are poorly approximated by some algebraic abstract do-
mains),

• use independent formulæ for each theory,
• reduce between each domains after individual computation steps, including checking

for consistent interpretations (Sect. 7.2),
• only introduce each domain wherever necessary (Sect. 7.4),
• and finaly check if properties hold on each component after purification of the prop-

erties.

This design mechanism will give more precise results in cases where formulæ have
to be approximated, and faster sound results. In addition, this design pattern should
be used to put together independent works on so-far distinct research areas of static
analysis by abstract interpretation and program proofs by theorem provers.

8 Related work
SMT solvers have been used in abstract interpretation, e.g. to implement specific log-
ical abstract domains such as uninterpreted functions [18] or to automatically design
transformers in presence of a best abstraction [25].

Contrary to the logical abstract interpretation framework developed by [19, 33, 17]
we do not assume that the behavior of the program is described by formulæ in the same
theory as the theory of the logical abstract domain, which offers no soundness guar-
antee, but instead we give the semantics of the logical abstract domains with respect
to a set of possible semantics which includes the possibility of a sound combination
of a mathematical semantics and a machine semantics, which is hard to achieve in
SMT solvers without breaking down their performances (e.g. by encoding modular
arithmetics in integer arithmetics or encoding floats either bitwise or with reals and
roundings). So, our approach allows the description of the abstraction mechanism,
comparisons of logical abstract domains, and to provide proofs of soundness on a for-
mal basis.

Specific combinations of theories have been proposed for static analysis such as
linear arithmetic and uninterpreted functions [19], universally quantified formulæ over
theories such as linear arithmetic and uninterpreted functions [17] or the combination
of a shape analysis with a numerical analysis [16]5. The framework that we propose to
combine algebraic and logical abstract domains can be used to design static analyzers
incrementally, with minimal efforts to include new abstractions to improve precision
either globally for the whole program analysis or locally, e.g. to prove loop invariants
provided by the end user.

5These approaches can be formalized as observational reduced products.

28

9 Conclusion
We have proposed a new design method of static analyzers based on the reduced prod-
uct or its approximation by the iterated reduction of the product to combine algebraic
and logical abstract domains. This is for invariance inference but is also applicable to
invariant verification. The key points were to consider an observational semantics with
multiple interpretations and the understanding of the Nelson-Oppen theory combina-
tion procedure and its followers as an iterated reduction of the product of theories so
that algebraic and logical abstract domains can be symmetrically combined in a prod-
uct either reduced or with iterated reduction. The interest of the (reduced) product in
logical abstract interpretation is that the analysis for each theory can be separated, even
when they are not disjoint, thus allowing for an effective use of dedicated SMT solvers
for each of the components.

Logical abstract domains may not be very efficient but can be used for rapid proto-
typing and then implemented in algebraic form with efficient algorithms. Despite their
high cost, logical abstract domains can also be very expressive and could therefore
be used, at least locally, to enhance the precision of algebraic abstractions through an
evolving product with iterated reduction. Combined with algebraic abstractions they
can sometimes be made sound for the machine semantics.

Finally, having shown the similarity and complementarity of analysis by abstract
interpretation and program proofs by theorem provers and SMT solvers, we hope that
our framework will allow reuse and cooperations between developments in both com-
munities.

References
[1] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.

Static analysis and verification of aerospace software by abstract interpretation.
In Infotech@Aerospace 2010, pages AIAA 2010–3385. AIAA, 2010.

[2] A.R. Bradley and Z. Manna. The Calculus of Computation, Decision procedures
with Applications to Verification. Springer, 2007.

[3] A.R. Bradley, Z. Manna, and H.B. Sipma. What’s decidable about arrays? In
VMCAI, LNCS 3855, pages 427–442. Springer, 2006.

[4] C.C. Chang and H.J. Keisler. Model theory. volume 73 of Studies in logic and
the foundation of mathematics, New York, 1990. Elsevier Science.

[5] P. Cousot. The calculational design of a generic abstract interpreter. In Calcula-
tional System Design, volume 173, pages 421–505. IOS Press, 1999.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pages 238–252. ACM Press, 1977.

[7] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, pages 269–282. ACM Press, 1979.

29

[8] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

[9] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation. In PLILP, LNCS 631, pages 269–295.
Springer, 1992.

[10] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. The Astrée analyser. In ESOP, LNCS 3444, pages 21–30. Springer, 2005.

[11] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. Combination of abstractions in the Astrée static analyzer. In ASIAN,
LNCS 4435, pages 272–300. Springer, 2008.

[12] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Ef-
ficiently computing static single assignment form and the control dependence
graph. TOPLAS, 13(4):451–490, 1991.

[13] A. Deutsch. On determining lifetime and aliasing of dynamically allocated data
in higher-order functional specifications. In 17th POPL, pages 157–168. ACM
Press, 1990.

[14] P. Ferrara, F. Logozzo, and M. Fähndrich. Safer unsafe code in .NET. In OOP-
SLA, pages 329–346. ACM Press, 2008.

[15] P. Granger. Improving the results of static analyses of programs by local decreas-
ing iterations. In FST & TCS, LNCS 652, pages 68–79. Springer, 1992.

[16] S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking
partition sizes. In 36th POPL, pages 239–251. ACM Press, 2009.

[17] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quanti-
fied logical domains. In 35th POPL, pages 235–246. ACM Press, 2008.

[18] S. Gulwani and G.C. Necula. Path-sensitive analysis for linear arithmetic and
uninterpreted functions. In SAS, LNCS 3148, pages 328–343. Springer, 2007.

[19] S. Gulwani and A. Tiwari. Combining abstract interpreters. In PLDI, pages 376–
386. ACM Press, 2006.

[20] C.A.R. Hoare. Monitors: an operating system structuring concept. CACM,
17(10):549–557, 1974.

[21] A. Miné. Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In LCTES, pages 54–63. ACM Press, 2006.

[22] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computa-
tion, 19:31–100, 2006.

[23] G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures.
TOPLAS, 1(2):245–257, 1979.

30

[24] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Inf., 6:319–340, 1976.

[25] T.W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the best trans-
former. In VMCAI, LNCS 2937, pages 252–266. Springer, 2004.

[26] N. Shankar and Harald Rueß. Combining Shostak theories. In Rewriting Tech-
niques and Applications, LNCS 2378, pages 1–18. Springer, 2002.

[27] R.E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1–
12, 1984.

[28] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

[29] C. Tinelli and M.T. Harandi. A new correctness proof of the Nelson–Oppen com-
bination procedure. In Frontiers of Combining Systems, pages 103–120. Kluwer
Academic Publishers, 1996.

[30] C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations
of satisfiability procedures. Theor. Comput. Sci., 290(1):291–353, 2003.

[31] C. Tinelli and C.G. Zarba. Combining decision procedures for sorted theories. In
JELIA, LNCS 3229, pages 641–653. Springer, 2004.

[32] P. Tinelli and C.G. Zarba. Combining non-stably infinite theories. Electr. Notes
Theor. Comput. Sci., 86(1), 2003.

[33] A. Tiwari and S. Gulwani. Logical interpretation: Static program analysis using
theorem proving. In Automated Deduction – CADE-21, LNCS 4603, pages 147–
166. Springer, 2007.

31

	Introduction
	Syntax and semantics of programs
	Sorts
	Signatures
	Syntax
	Interpretations
	Multi-interpreted program semantics
	Algebraic abstract domains
	Soundness and completeness of abstract semantics
	Abstractions between multi-interpretations
	Soundness of the multi-interpretation abstract transformers
	Uniform abstraction of interpretations
	Theories
	Models
	Abstraction by a theory
	Logical abstract domains

	Observational semantics
	Observable properties of multi-interpreted programs
	Soundness of the abstraction of observable properties
	Observational extension

	Iterated reduction
	Reduced product
	Definition
	Iterated product reduction
	(Reduced) product transformers
	Widening
	Observational reduced product

	The Nelson-Oppen combination procedure
	Formula purification
	Formula purification in the Nelson-Oppen theory combination procedure
	The Nelson-Oppen purification as an observational cartesian product

	Formula reduction
	Formula reduction in the Nelson-Oppen theory combination procedure
	The Nelson-Oppen reduction as an iterated fixpoint reduction of the product
	Formula reduction and the reduced product

	Formula satisfiability

	Reduced product of logical and algebraic abstract domains
	Combining logical and algebraic abstract domains
	Reduced product for inconsistent interpretations
	Program purification
	Evolving reduced product
	On the design of static analyzers by iterated reduction between logical and algebraic domains with evolving refinement

	Related work
	Conclusion

