
HAL Id: hal-00544123
https://hal.archives-ouvertes.fr/hal-00544123

Submitted on 7 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Static Analysis of SIGNAL Programs using
Interval Techniques

Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic

To cite this version:
Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic. Toward Static Analysis of SIGNAL Programs
using Interval Techniques. Synchronous Languages, Applications, and Programming (SLAP 2006),
Mar 2006, Vienna, Austria. pp.SLAP 2006. �hal-00544123�

https://hal.archives-ouvertes.fr/hal-00544123
https://hal.archives-ouvertes.fr

SLAP 2006

Towards Static Analysis of SIGNAL Programs
using Interval Techniques

Abdoulaye GAMATIÉ 1,

INRIA - Synergie Park, rue Pierre et Marie Curie 59062 - Lezennes, France

Thierry GAUTIER, Paul LE GUERNIC 2,3

IRISA/INRIA - Campus de Beaulieu - 35042 Rennes cedex, France

Abstract

This paper presents a work-in-progress aiming at improving the functional analysis
of Signal programs. The usual adopted technique relies on abstractions. Typically,
in order to check the presence or absence of variables in a program at some logical
instants, the program is transformed into another program that reflects its clock
information so that the presence or absence of each variable can be straightforwardly
checked. Signal adopts a boolean abstraction for the static functional analysis of
programs. This abstraction does not enable to fully reason on the values of non
logical variables. Here, we propose a solution based on interval techniques in order
to be able to deal with both logical and numerical parts of programs.

1 Motivations

Safety-critical systems (e.g. medical, automotive, avionics systems) are in-
creasingly evolving in complexity and functionalities. Their design conse-
quently requires reliable technologies allowing to unambiguously describe and
analyze their behaviors so as to meet their stringent requirements. Over the
last decade, the synchronous approach [4] has demonstrated its efficiency to
cope with design problems inherent to such systems. In particular, verification
issues are addressed using trustworthy formal techniques.

Model-checking [9] is part of these techniques. It associates a system with
a finite discrete model (e.g. a finite state machine) against which properties
are checked (e.g. reachability, liveness). Both model and properties can be

1 abdoulaye.gamatie@lifl.fr
2 thierry.gautier@irisa.fr
3 paul.leguernic@irisa.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

GAMATIÉ, GAUTIER & LE GUERNIC

specified with formalisms such as the synchronous languages. The Sigali tool
[19] associated with the synchronous language Signal adopts this technique.
While model-checking has been successfully used in several studies, it some-
times appears impractical. Typically, when a finite model does not exist for a
system or when the properties of interest involve non-linear numerical terms.
A verification technique that suits more in these cases is theorem proving [12].
It allows one to prove some properties from a set of “facts” (axioms of the
system) and deduction rules according to the underlying logic. Examples of
theorem provers are Coq [24] and Pvs [21]. The semantics of Signal has been
formalized in Coq. A few studies based on this formalization addressed the cor-
rectness issues of a steam-boiler [15] and a protocol for loosely time-triggered
architectures [16]. Although theorem proving is a powerful technique, a main
drawback is that the associated tools often require interaction with users.
The verification process therefore becomes slow, even error-prone. The last
technique we mention is abstract interpretation [11], which is a theory of dis-
crete approximation of the semantics of languages. The central idea is that
the precision of the semantics depends on the considered level of observation.
The coarser is the approximation, the less precise but computable version is
yielded by this approximation. While all questions cannot be addressed, those
answered through the effective computation of the approximate semantics are
always correct. Abstract interpretation is mainly applied to static analysis.

In this study, we use abstract interpretation to statically address the func-
tional properties of Signal programs. The analysis process currently relies on
an abstraction on the boolean domain. While the values of boolean variables
are fully taken into account, it is not the case for numerical variables. More
generally, one can observe that while synchronous design environments pro-
vide several verification tools, only a few of them enable to address numerical
properties. Here, we combine interval techniques with boolean calculus in
order to address both logical and numerical properties of Signal programs.
Intervals are very interesting abstract domains for several reasons. First, they
enable approximations that can be easily manipulated. They are powerful
enough to be considered in abstract interpretation [10] or in numerical anal-
ysis [1]. Second, interval techniques have been successfully experimented for
an efficient manipulation of boolean formulas. The result is the definition of
interval decision diagrams (IDDs) [23], which are considered in this paper.

In the next, Section 2 briefly introduces the abstract interpretation notions.
Then, Section 3 presents the Signal language (semantics and analysis). Section
4 defines an approximation of Signal programs using IDDs in order to address
numerical properties. Finally, Section 5 gives conclusions and perspectives.

2 Abstract interpretation

Introduced by Cousot [11], abstract interpretation is a general theory for dis-
crete approximation of the semantics of systems based on monotonic functions

2

GAMATIÉ, GAUTIER & LE GUERNIC

over ordered sets. The static analysis is stated as a formal correspondence be-
tween the concrete semantics of a program and its abstract semantics with
respect to the property to be verified. Two basic transformations are distin-
guished: an abstraction function α : C → A and a concretization function
γ : A → C, where C and A respectively denote the concrete and abstract
domains. The function α associates each concrete element with an abstract
element that reflects its properties whereas γ defines the sub-set of concrete
elements that satisfy the property characterized by an abstract element.

To define a correct abstract interpretation, the tuple (C,A, α, γ) must sat-
isfy the following properties:

• C is a complete partially ordered set, meaning that it admits an inf ⊥C

element and a partial order � relation such that: ∀c ∈ C, ⊥C� c. A is a
complete lattice, i.e. a partially ordered set with inf ⊥A and sup ⊤ elements,
and meet ⊓ and join ⊔ operators, which admits a partial order ⊑ relation
such that: ∀a ∈ A, ⊥A⊑ a, a ⊑ ⊤A.

• The abstraction function α is first extended to the domain P(C) as follows:
α : P(C) → A, where ∀C ⊆ C α(C) =

⋃

c∈C α(c). Then, the following
correctness criteria must be verified:

{

Id ⊆ γ ◦ α ⇔ ∀c ∈ C c ∈ γ(α(c)),

Id = α ◦ γ ⇔ ∀a ∈ A a = α(γ(a)).

Furthermore, if f is a function defined on C and g is an associated abstract
version defined on A, then g is a correct approximation of f if f ⊆ γ ◦ g ◦α

or equivalently ∀c ∈ C, f(c) ∈ γ(g(α(c))).

The above notions are used in Section 4.2 to define an approximation of Sig-

nal programs using intervals as abstract domain for numerical variables.

3 The SIGNAL language

Signal [17] handles unbounded series of typed values, implicitly indexed by
discrete time and called signals. At a given logical instant, a signal may be
present or absent (denoted by ⊥). There is a particular type of signal called
event, which is always true when it is present. The set of instants where
a signal x is present is referred to as its clock, noted as ^x in the language.
Signals that have the same clock are said to be synchronous. A process is a
system of equations over signals. A program is a process. In the sequel, we
first introduce the denotational semantics of Signal, which will serve in the
definition of the abstract interpretation in Section 4.2. Then, we present the
functional analysis of programs based on syntactic abstractions (Section 3.2).

3.1 A denotational semantics

We present the basic notions of a denotational semantics (also called trace
semantics), which is used to give the semantics of Signal primitive constructs.

3

GAMATIÉ, GAUTIER & LE GUERNIC

3.1.1 Basic notions

Let us consider a finite set X = {x1, . . . , xn} of typed variables called ports.
For each xi ∈ X, Dxi

is the domain of values (e.g. integer, real, boolean) that
may be held by xi at every instant. In addition, we have:

D =
n

⋃

i=1

Dxi
and D⊥ = D ∪ {⊥},

where ⊥ 6∈ D denotes the absence of value associated with a port at a given
instant. D⊥

xi
and D⊥

X1 are defined in the same way (X1 is a subset of X).

For every non-empty subset X1 of X, we consider the following definitions:

• The set of applications m defined from X1 to D⊥
X1, called set of events on

X1, is denoted by EX1. The expression m(x) = ⊥ means that x does not
hold a value; m(x) = v means that x holds the value v; and m(X1) = {y|x ∈
X1, m(x) = y}. The set of events on X1 is denoted by EX1 = X1 → D⊥

X1,
and the set of all possible events is therefore E =

⋃

X1⊆X EX1. The event on
an empty set of ports is represented by E∅ = {∅}.

• The set of applications T defined from the set N of natural integers to
EX1, called set of traces on X1, is denoted by T ⊥

X1 : N → EX1. The set
of all possible traces is therefore T ⊥ =

⋃

X1⊆X T ⊥
X1. Moreover, we have

T∅ = 1 = N → E∅ and 0 = N → (X → {⊥}).

• For X2 ⊂ X1 and T being defined on X1, the restriction of T (t) to X2,
noted X2.T : N → EX2, satisfies: ∀t ∈ N, ∀x ∈ X2 X2.T (t)(x) = T (t)(x).
We have ∅.T ∈ T∅ (which is a singleton).

• A stream on X1 ⊆ X represents any trace T of T ⊥
X1 such that:

∃t (T (t)(X1) = {⊥} ⇒ ∀s ≥ t T (s)(X1) = {⊥}).

We denote by T (resp. TX1) the set of streams of T ⊥ (resp. T ⊥
X1). 0T is

defined on N → (X → {⊥}) and ∅.T is a stream.

g T

T

ee

ee

Te

ee

3

3

1

1

TTTT

T

2

2

4

Figure 1. Temporal expansion.

• Let g be a strictly increasing application N → N and T : N → X1 → D⊥
X1,

X1 6= ∅, a trace on X1. The expansion of T by g (i.e. insertion of ⊥, see
Fig. 1) is the trace g ↑ T : N → X1 → D⊥

X1 defined as (g ↑ T) ◦ g = T

where: ∀t ∀s g(t) < s < g(t + 1) (g ↑ T)(s)(X1) = {⊥}. Here, g is
referred to as expansion function. Finally, the following holds: g ↑ T∅ = T∅.

3.1.2 Semantic definition of the primitive constructs

The whole Signal language relies on six primitive constructs (see below). The
semantics associated with each construct is defined in terms of set of streams.

4

GAMATIÉ, GAUTIER & LE GUERNIC

Formally, a process on X1 ⊆ X is a set of constrained streams on X1 (i.e., a
subset of TX1). Each Signal statement defining a process P is associated with
the process [[P]] that denotes its semantics.

Functions/Relations : xn+1 := f(x1, . . . , xn).

[[P]] = { T ∈ T{x1,...,xn,xn+1}/ ∀t

T (t)({x1, . . . , xn+1}) = {⊥} or vn+1 = f(v1, . . . , vn), vi = T (t)(xi)}

Delay. x2 := x1 $1 init v0

[[P]] = { T ∈ T{x1,x2}/ ∀t

(T (t)({x1, x2}) = {⊥}) or (t > 0 and T (t)(x2) = T (t − 1)(x1))

or (t = 0 and T (0)(x2) = v0 and T (0)(x1) 6=⊥)}

Under-sampling. x3 := x1 when x2

[[P]] = { T ∈ T{x1,x2,x3}/ ∀t

T (t)(x2) = true ⇒ T (t)(x3) = T (t)(x1) or T (t)(x2) 6= true ⇒ T (t)(x3) =⊥}

Deterministic merging. x3 := x1 default x2

[[P]] = { T ∈ T{x1,x2,x3}/ ∀t

T (t)(x1) 6=⊥⇒ T (t)(x3) = T (t)(x1) or T (t)(x1) =⊥⇒ T (t)(x3) = T (t)(x2)}

Synchronous composition. P1|P2 such that [[P1]] ⊆ TX1, [[P2]] ⊆ TX2

[[P]] = { T ∈ TX1∪X2/

∃ T1 ∈ [[P1]], ∃ T2 ∈ [[P2]],∃ f1, f2 expansion functions such that

X1.T = f1 ↑ T1,X2.T = f2 ↑ T2}

Hiding. P1 where x1, . . ., xn such that [[P1]] ⊆ TX1

[[P]] = {T ∈ TX1−{x1,...,xn}/∃ T1 ∈ [[P1]], X1 − {x1, . . . , xn}.T1 = T}

The same symbol is used to denote the composition in the syntactic and
semantic domains, then: [[P]]|[[P’]] = [[P | P’]]. The smallest set of variables
associated with P is denoted by vars(P). Finally, the projection on a set
V of variables (which corresponds to applying the hiding operator on the
complementary of V in vars(P)) is denoted as [[P]]|V .

3.2 Functional analysis of programs

The functional properties of a program P include invariant properties as well
as dynamic properties. The Signal compiler itself addresses only invariant
properties. A major part of its task is referred to as the clock calculus. Dy-
namic properties (e.g. reachability of some state, liveness), which are not in
the scope of this paper, are addressed using Sigali [19]. The verification of
functional properties of P relies on abstractions of P, which suit for the target
analysis. These abstractions are defined using syntactic transformations.

5

GAMATIÉ, GAUTIER & LE GUERNIC

3.2.1 Syntactic abstraction

A Signal program P specifies on the one hand relations between clocks of
signals, and on the other hand values of signals. Specific properties of P can
be addressed by separating both aspects. In particular, P can be abstracted by
a new program P’, which only describes its clock information. For instance,
to check the absence of reaction in P, one just needs to focus on P’.

A possible way to derive P’ from P is to use syntactic transformations.
Basically, from the semantics of the composition operator, we can state that
for any P, P’: ([[P]] | [[P’]])|vars(P) ⊆ [[P]]. More precisely, the following can be
proved: [[P]] = ([[P]] | [[P’]])|vars(P) iff [[P]]|vars(P’) ⊆ [[P’]]|vars(P). In other words,
every stream that belongs to [[P]] is consistent with a stream from [[P’]]. Hence,
if vars(P) = vars(P’) then: [[P]] | [[P’]] = [[P]] iff [[P]] ⊆ [[P’]]. If P’ denotes
some property, P satisfies P’ iff the previous equivalence holds.

A syntactic abstraction of P is based on a decomposition of P that syntac-
tically derives from P another program α(P) that abstracts P. It often leads
to a pairwise decomposition of P, e.g.: dynamic part (induced by the delay
operator) vs static part (induced by the other primitive constructs); control
part (boolean and event signals) vs computation part (signals of other types).

Definition 3.1 [syntactic abstraction] Given a process P, the process α(P)
such that vars(α(P)) ⊆ vars(P) results from a syntactic abstraction α by
decomposition of P iff: [[P]] | [[α(P)]] = [[P]] or equivalently [[P]] ⊆ [[α(P)]].

We can notice a complementarity relation between α(P) and a subpart of
P. If ρ(P) denotes such a subpart (ρ stands for “residual”), each abstraction
of P can be associated with a syntactic decomposition (α, ρ) given by a set of
rewriting rules of the form:

P −→ α(P) | ρ(P) satisfying [[P]] = [[α(P) | ρ(P)]].

One can prove that α(P) is actually an abstraction of P [20]. Moreover,
the abstraction α resulting from this decomposition must be idempotent:
[[α(α(P))]] = [[α(P)]].

Definition 3.2 [syntactic decomposition] A syntactic decomposition is a pair
of transformations (α, ρ) s.t. for all primitive constructs P: [[α(P) | ρ(P)]] = [[P]]
and α is idempotent. Thus, the syntactic decomposition (α, ρ) is defined
inductively for composition and restriction:

α(P1 | P2) = α(P1) | α(P2) and ρ(P1 | P2) = ρ(P1) | ρ(P2)
α(P where x) = α(P) where x and ρ(P where x) = ρ(P) where x

3.2.2 Application: control abstraction

The control part of a Signal program P consists of the synchronization and
boolean signals of P. The abstraction of the boolean part of P is obtained by ex-
tracting from P the definition of boolean variables whereas the synchronization
abstraction is given by the clock relations specified in P. We concentrate on

6

GAMATIÉ, GAUTIER & LE GUERNIC

the synchronization sub-part in order to show the limits of the static analysis
adopted in the Signal compiler, and then motivate our idea.

The abstraction of the synchronization sub-part of P is a program αsync(P)
that corresponds to the largest relation between the clocks of signals of P. In
Signal, clocks and their associated relations are formalized through a clock
algebra [2], which we denote by C s.t.: C = 〈I,∩,∪, \, O〉, where I and O

respectively denote a reference set of instants and the empty clock. Given
a set of clock variables interpreted as subsets of I (containing for instance
x̂), C can represent relations like x̂ = ŷ ∪ ẑ. The set inclusion ⊆ operator
expresses that a clock is a subset of another clock. Fig. 2 illustrates αsync and
its associated formalization in C.

P αsync(P) constraints in C

xn+1 := f(x1,...,xn) xn+1 ^= x1 ^= ... ^= xn x̂n+1 = x̂1 = ... = x̂n

x2 := x1 $1 init v0 x2 ^=x1 x̂2 = x̂1

x3 := x1 when x2 x3 ^= x1 when x2 x̂3 = x̂1 ∩ [x2],

{

[x2] ∪ [¬x2] = x̂2,

[x2] ∩ [¬x2] = ∅

x3 := x1 default x2 x3 ^= x1 ^+ x2 x̂3 = x̂1 ∪ x̂2

Figure 2. Synchronizations in Signal.

There is a complementarity relation between αsync(P) and P (i.e. ρsync(P) =
P). Since αsync(P) does not induce any supplementary constraint on P when
composed, we trivially prove that: [[αsync(P)]] | [[P]] = [[P]].

In the clock algebra, a condition-clock denoted by [x2] is introduced for
the under-sampling operator. It denotes the set of instants where the boolean
expression x2 is present and true ([¬x2] corresponds to false). Note the par-
titioning of x̂2, which is defined using [x2] and [¬x2]. When x2 is defined by
some numerical operation (typically a comparison), [x2] and [¬x2] are seen as
“black boxes” that abstract, together with the partitioning, the value of x2.

Example 3.3 Let us consider the following Signal program:

(|...

| x1:= f(N1 when x>2*N) (s1)

| x2:= g(N2 when x<N) |) (s2)

where signals x, x1, x2 and constants N, N1, N2 are of integer type; f and g

represent two numerical functions. The corresponding abstraction in the clock
algebra is as follows:

(s1) ⇒ x̂1 = [c1], [c1] ∪ [¬c1] = ĉ1, [c1] ∩ [¬c1] = ∅ (c1 ≡ x > 2N),

(s2) ⇒ x̂2 = [c2], [c2] ∪ [¬c2] = ĉ2, [c2] ∩ [¬c2] = ∅ (c2 ≡ x < N)

Now, consider that a new equation defined by a function with x1 and x2

as arguments is added to the same program. The following synchronization is
therefore induced on x1 and x2: x̂1 = x̂2. It appears some clock inconsistency

7

GAMATIÉ, GAUTIER & LE GUERNIC

since the instants at which these signals are defined are exclusive: [c1]∩ [c2] =
∅. However, the clock constraint representing this inconsistency between [c1]
and [c2] does not belong to the set of constraints derived from the program
following the above abstraction rules. As a matter of fact, expressions c1 and
c2 are not interpreted since [c1] and [c2] are considered as black boxes. So, the
compilation process cannot fix such a clock inconsistency.

3.2.3 Boolean abstraction of the control

In [2], a correspondence between clock algebra and boolean functions is de-
fined. If one considers the propositional calculus, the following straightforward
encoding is therefore obtained [20]. First, each clock variable x̂ is associated
with a propositional variable bx. Condition-clocks such as [c] are also encoded
into b[c]. Then, the operators on sets considered in C are associated with the
suitable characteristic functions. An informal example is as follows:

Clock algebra I O x̂1 ∩ x̂2 = x̂3 ∪ x̂4 x̂1\x̂2 = x̂3

Prop. calculus true false bx1
∧ bx2

⇔ bx3
∨ bx4

bx1
∧ ¬bx2

⇔ bx3

This encoding allows the executable code to handle clock variables as
propositional ones and not as sets of instants. The advantage is that BDD
[6] packages can be used to efficiently implement clock manipulation in the
compiler. Note that in the Lustre language, clocks are also represented by
special boolean variables. From now, clocks and their associated operations
may be considered as propositional variables and boolean operators.

The control abstraction introduced in this section enables to fully deal with
values of boolean signals. However, it is not the case for numerical signals.
In particular, numerical expressions specified with condition-clocks (such as c1

and c2 in the above example), are not fully addressed. The consequence is that
they cannot be compared so as to detect that they are exclusive. This reduces
the power of the static analysis. The next section proposes an interval-based
abstraction that allows to overcome this limitation.

4 Static analysis of SIGNAL programs using intervals

A few investigations have been already done in order to cope with numerical
properties of Signal programs [5] [20]. While these studies showed promising
theoretical results, they did not unfortunately lead to the implementation of
the results. One reason is the complexity of the proposed solutions. In our
proposition, implementation issues are among major concerns. This proposi-
tion aims to extend the clock calculus of Signal in order to be able to reason
on both numerical and logical subparts of programs. We consider intervals as
abstract domains for numerical variables. As illustrated in [10], intervals favor
a simple and efficient way to compute approximations for numerical values.

We introduce interval decision diagrams (IDDs) that consist of directed

8

GAMATIÉ, GAUTIER & LE GUERNIC

acyclic graph structures where each non terminal node corresponds to a test on
an integer variable, and terminal nodes are propositional formula represented
by BDDs. Each outgoing edge from a non terminal node is associated with an
interval within the domain of the variable attached to the node. Each edge is
linked either to another non terminal node or to a terminal node.

4.1 Interval Decision Diagrams

The definition of IDDs given here slightly differs from the classical one [23]
[8] where terminal nodes are mainly boolean literals true or false instead of
complex propositional formulas. So, we consider a more general definition.
Let us assume the following sets:

• D is a totally ordered set of numeric constant values.

• X = {x1, ..., xk} is a finite set of variables defined on D.

• B = {b1, ..., b
′
k} is a finite set of boolean variables where X ∩ B = ∅. We

represent by B the set of all boolean formulas on B.

Definition 4.1 Let x be an integer variable defined on D ⊆ D and t a pred-
icate logic formula on X ⊆ X. t is an IDD node iff one of the following
holds:

• t ∈ B ∪ {true, false},

• t = (x ∈ I0 ∧ t0) ∨ (x ∈ I1 ∧ t1) ∨ ... ∨ (x ∈ Ik ∧ tk),

where (Ii)i≤k is a partition of D and (ti)i≤k a set of IDD nodes. The node t is
a predecessor of each (ti)i≤k.

An IDD root does not have any predecessor. A set of IDD nodes (ti)i<n is
said to be consistent if there is a unique root. Moreover, if t is an IDD node,
let var(t) be the function that gives the non boolean variable tested on t:

var(t) =

{

x, if t = (x ∈ I0 ∧ t0) ∨ (x ∈ I1 ∧ t1) ∨ ... ∨ (x ∈ Ik ∧ tk)

t if t ∈ B

On the other hand, I = ((ti)i<n,≻) is an IDD iff (ti)i<n is a consistent
set of IDD nodes and ≻ is an order on X ∪ B such that ∀t ∈ (ti)i<n verifying
t = (x ∈ I0 ∧ t′0) ∨ (x ∈ I1 ∧ t′1) ∨ ... ∨ (x ∈ Ik ∧ t′k), we have:

(x ≻ var(t′i) for each i ≤ k) and (x ≻ t′ for each t′ ∈ B ∪ {true, false}).

Fig. 3 depicts an IDD associated with the following predicate:

p(x1, x2, x3) =

{

t1 if (x1 ∈ [0, 3] ∧ x2 ∈ [0, 5]) ∨ (x1 ∈ [4,+∞[∧x3 ∈ [0, 7])

t2 if (x1 ∈ [0, 3] ∧ x2 ∈ [6,+∞[) ∨ (x1 ∈ [4,+∞[∧x3 ∈ [8,+∞[).

Non-terminal nodes (circles) consist of numerical variables (e.g. the root x1)
whereas the leaves (squares) are boolean formulas represented by BDDs (e.g.
t1 and t2). Every outgoing edge associated with a non-terminal node is labelled
with a possible range value of that node (i.e. an interval). As for logic formu-
las, we can perform all the usual logical operations on IDDs like negation (¬),

9

GAMATIÉ, GAUTIER & LE GUERNIC

t1

[8,∞]

x1

x2

[6,∞]

[4,∞][0, 3]

x3

[0, 7]

t2

[0, 5]

Figure 3. Interval decision diagram associated with p(x1, x2, x3).

conjunction (∧), disjunction (∨), equivalence (⇔), etc. An operational imple-
mentation of IDDs already exists [7]. However, this version must be slightly
modified in order to take into account the more general definition considered
here. A solution consists in extending the existing IDDs implementation with
a BDD package implementation (e.g. the Buddy package [18]). Both imple-
mentations propose optimizations that are performed on the corresponding
structures in order to prune redundant nodes and subtrees.

4.2 Abstraction of programs using intervals

In order to approximate Signal programs, we consider the following steps:

(i) Abstraction of Signal primitives using intervals,

(ii) Translation of the resulting descriptions into IDDs.

Every variable x of a program P is associated with an abstract numerical
variable ix in the program resulting from the abstraction of P. The variable ix
takes its values in a referential set 4 IP of intervals. This set is obtained using
the constant numerical values of P. Typically, if C denotes the set of these
constant values, then IP is the set of all possible disjoint intervals such that
their lower and upper bounds are either −∞ or +∞ or elements of C. For
instance, a possible value of IP where C = {2, 5, 11} is as follows:

IP = {] −∞, 2[, [2, 2],]2, 5[, [5, 5],]5, 11[, [11, 11],]11,+∞[}.

Since P may be composed of sub-processes as P = P1 |...| Pk, the set
IP, which is equal to IP1|...|Pk

, is obtained from C = C1 ∪ ... ∪ Ck where each
Ci represents the set of constant values associated with Pi. In the sequel, a
program approximation is determined w.r.t. a given referential set of intervals.

4 More generally, for a program P, there could be several referential sets of intervals. Every
numerical type (e.g. integer, real) of constants in P is associated with a referential set
where interval bounds are from the corresponding domain. Here, to simplify, we only
consider one referential set of intervals for each program.

10

GAMATIÉ, GAUTIER & LE GUERNIC

4.2.1 Approximation of the primitive constructs

For each primitive construct P of the language, we define a corresponding
abstraction αIP(P) on interval domains. Let fa be an approximation of a
pointwise function f on intervals:

Functions/relations: αIP(y:= f(x1,...,xn)) ; iy := fa(ix1, ..., ixn);

Delay: αIP(y:= x$1 init y0) ; iy := ix $ 1 init [y0, y0];

Under-sampling: αIP(y:= x when b) ; iy := ix when ib;

Deterministic merging: αIP(y:= u default v) ; iy := iu default iv;

Synchronous composition: αIP|Q(P|Q) ; αIP|Q(P)|αIP|Q(Q);

Hiding: αIP(P where x) ; αIP(P) where ix.

Example 4.2 Let IP = {] −∞, 2[, [2, 2],]2, 5[, [5, 5],]5, 11[, [11, 11],]11, +∞[}
be the set of intervals associated with a program P. In the following, a stream
of P (on the left) is associated with an abstract stream on IP (on the right):

x : 7 ⊥ 4 2 0 ...

b : t ⊥ f f t ...

z : 5 ⊥ ⊥ 11 17 ...

⇒

]5, 11[⊥]2, 5[[2, 2]] −∞, 2[...

t ⊥ f f t ...

[5, 5] ⊥ ⊥ [11, 11]]11,+∞[...

We denote by TI the set of abstract streams where numerical signals take
their values in the set of intervals.

4.2.2 Proof of correctness

Let us define the basic notions on which we have to reason for proving the
correctness of the abstraction: the concrete and abstract domains C and A,
the abstraction and concretization functions α and γ.

• C is defined as P(T). It admits an inf element: ∅. It is associated with the
order ⊆ (inclusion of stream sets).

• A is defined as P(TI). It admits inf and sup elements, respectively repre-
sented by ∅ and TI . It is associated with the order ⊆ (inclusion of stream
sets). The union and intersection of stream sets are respectively represented
by ∪ and ∩.

• Abstraction function:

α : C −→ A

c 7→ a where ∀T ∈ c, ∀T ′ ∈ a, ∀t ∀x, T ′(t)(x) = ik ⇔ T (t)(x) ∈ ik

• Concretization function:

γ : A −→ C

a 7→ c = {T | ∃T ′ ∈ a such that ∀t ∀x, T (t)(x) ∈ T ′(t)(x)}

The following correctness criteria are then verified:

(i) Id ⊆ γ ◦ α or equivalently ∀c ∈ C c ⊆ γ(α(c)).

11

GAMATIÉ, GAUTIER & LE GUERNIC

☞ ∀c ∈ C, ∃a ∈ α(c) ⇒ ∀T ∈ c, ∃T ′ ∈ a such that ∃ik and ∀t ∀x T ′(t)(x) =
ik ⇔ T (t)(x) ∈ ik; moreover c′ ∈ γ(a) ⇒ c′ = {T | ∃T ′ ∈ a, ∀t ∀x T (t)(x) ∈
T ′(t)(x)}. Finally, one trivially verifies that c ⊆ c′, hence c ⊆ γ(α(c)).

(ii) Id = α ◦ γ or equivalently ∀a ∈ A a = α(γ(a)).
☞ ∀a ∈ A ∃c = γ(a) ⇒ c = {T | ∃T ′ ∈ a, ∀t∀xT (t)(x) ∈ T ′(t)(x) ≡

ik}; it follows that a′ ∈ α(c) ⇒ ∀T ∈ c, ∃T ′ ∈ a′ such that ∃il and
∀t ∀x T ′(t)(x) = il ⇔ T (t)(x) ∈ il. Since considered intervals are disjoint,
we have il = ik. Finally, we obtain that a = a′, hence a = α(γ(a)).

4.3 Translation into IDDs

Let P be the interval abstraction of a Signal process, we denote by T (P) its
corresponding translation using IDDs. For each primitive construct of the
language, we define its corresponding predicate in terms of IDDs.

Functions/relations 5 : (y ∈ Ifa
) ∧ (bx1

⇔ ... ⇔ bxn
⇔ by);

Delay 6 : (y ∈ ix ⊎ [y0, y0]) ∧ (bx ⇔ by);

Under-sampling: (y ∈ ix) ∧ ((bx ∧ [b]) ⇔ by);

Deterministic merging: ((y ∈ iu ∧ bu) ∨ (y ∈ iv ∧ bv ∧ ¬bu)) ∧ (bu ∨ bv) ⇔ by);

Synchronous composition: T (αIP|Q(P)) ∧ T (αIP|Q(Q));

Hiding: ∃x T (αIP(P)).

The above translation can be applied to a Signal program so that we
are able to deal with numerical expressions that define clocks. Typically,
condition-clocks are no longer considered as “black boxes” as it was the case
in Section 3.2.2. For instance, let us consider again the Signal program of
that section (example 3.3). It could be represented as an IDD characterized
by the conjunction of the following predicates:

(s1) ⇒ (x1 ∈ If) ∧ (bx1
⇔ (x ∈]2N,+∞[))

(s2) ⇒ (x2 ∈ Ig) ∧ (bx2
⇔ (x ∈] −∞,N [))

The resulting IDD can be now considered to check that the statements
s1 and s2 cannot satisfy situations where boolean variables bx1

and bx2
are

both true. This information is then used by the compiler to infer the mutual
exclusion of the clocks of signals x1 and x2. The Signal clock calculus process
cannot determine such a property. As exposed in Section 3.2.2, it mainly
focus on a boolean abstraction of the control part of programs, which consists
of clocks and boolean conditions. The result of the performed analysis is a
clock hierarchy that makes explicit clock inclusions [2]. Clock manipulation
algorithms rely on an encoding of clocks into boolean variables. This does
not allow to fully reason on condition-clocks defined by numerical expressions.
The use of IDDs enables to represent precisely condition-clocks and perform

5 Ifa
is the interval computed by the interval approximation function fa of the pointwise

function f [1].
6 ix ⊎ [y0, y0] denotes the smallest interval that contains y0 and all elements of ix.

12

GAMATIÉ, GAUTIER & LE GUERNIC

boolean operations that take into account values of condition-clocks. The clock
calculus process is therefore able to deal with numerical expressions as well
as logical expressions. More program behaviours become analyzable while
this is not the case when only considering boolean abstractions during the
compilation. In particular, it allows to refine the synchronizability of clocks
defined from boolean relations on numerical signals. An additional expected
major impact concerns code generation, which should get better optimized.

4.4 Discussions and related work

We first observe that IDDs may be used at different description levels of a
Signal program. In the above example, the translation is applied to the initial
specification of a program. However, it is more interesting to consider de-
scriptions after specific transformations performed by the compiler. Typically,
programs that contain extended constructs of the language will necessarily re-
quire to be rewritten in the kernel language for which the transformation into
IDDs is quite straightforward.

In [22], an extension has been proposed in order to improve the Signal clock
calculus. It takes into account the possibility of having affine relations between
different clocks in a program. These clocks are therefore said to be synchroniz-
able. A data structure has been implemented, which enables to characterize
these relations in addition to the existing internal clock representations within
the compiler. In the same spirit, the implementation of our IDD-based trans-
lation can extend the clock calculus. Among other related approaches that
address the verification of functional properties, we can mention [13] and [14],
which use polyhedra techniques to approximate the numerical part. Our ap-
proach rather adopts interval techniques similarly to [3], [23] and [10]. While
polyhedra generally offer more precise results than intervals when considered
as abstract domain, it appears that polyhedra manipulation packages are more
complex and may rapidly lead to performance problems (typically, when the
number of numerical variables increases).

5 Conclusion and future work

In this paper, we propose a simple and promising solution in order to improve
the functional analysis of Signal programs. In particular, the solution al-
lows to deal with numerical properties, which are not fully taken into account
in the functional analysis performed by the compiler. We consider interval
techniques to represent numerical variable domains. These intervals are used
in predicates, which are associated with particular data structures called in-
terval decision diagrams (IDDs). Similarly to BDDs, IDDs offer a powerful
representation allowing one to perform complex boolean operations.

The present work needs to be carried out in Polychrony, the design envi-
ronment of Signal. All required basic packages already exist. So, the major

13

GAMATIÉ, GAUTIER & LE GUERNIC

efforts rather concern the integration of the packages in the compiler.

References

[1] G. Alefeld and J. Hertzberger. Introduction to Interval Computation. Academic
Press, NY, 1983.

[2] T.P. Amagbégnon. Forme canonique arborescente des horloges de Signal. In
Thèse de l’Université de Rennes I, IFSIC, France, December 1995.

[3] F. Benhamou, L. Granvilliers, and F. Goualard. Interval constraints: Results
and perspectives. In Joint ERCIM/Compulog Net Workshop on New Trends in
Contraints, pages 1–16, London, UK, 2000. Springer-Verlag.

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de
Simone. The synchronous languages twelve years later. In Special issue on
Embedded Systems, IEEE, 2003.

[5] F. Besson, T. Jensen, and J.-P. Talpin. Timed polyhedra analysis for
synchronous languages. In 10th International Conference on Concurrency
Theory (CONCUR’99), Eindhoven, The Netherlands, August 1999.

[6] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
transactions on computers, C-35(8):677–691, August 1986.

[7] M. Christiansen and E. Fleury. Interval decision diagram library (libidd).
http://www.cs.aau.dk/∼mixxel/libidd/index.html.

[8] M. Christiansen and E. Fleury. An MTIDD based firewall using decision
diagrams for packet filtering. Telecommunication Systems, Kluwer Academic
Publishers, 27(2-4):297–319, 2004.

[9] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic. ACM Trans. on Programming
Languages and Systems, 2(8):244–263, 1986.

[10] P. Cousot and R. Cousot. Static determination of dynamic properties
of programs. In Proceedings of the Second International Symposium on
Programming, pages 106–130. Dunod, Paris, France, 1976.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
proceedings of POPL’77, 1977.

[12] D.A. Duffy. Principles of automated theorem proving. John Wiley & Sons, Inc.,
New York, NY, 1991.

[13] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time
systems by means of the synchronous data-flow programming language Lustre.
IEEE Transactions on Software Engineering, Special Issue on the Specification
and Analysis of Real-Time Systems, September 1992.

14

http://www.cs.aau.dk/~mixxel/libidd/index.html

GAMATIÉ, GAUTIER & LE GUERNIC

[14] B. Jeannet. Dynamic partitioning in linear relation analysis. application to the
verification of reactive systems. Formal Methods in System Design, 23(1):5–37,
July 2003.

[15] M. Kerbœuf, D. Nowak, and J.-P. Talpin. Theorem proving in higher order
logics. In 13th International TPHOLs Conference (TPHOLs’2000), Portland,
Oregon, August 2000.

[16] M. Kerbœuf, D. Nowak, and J.-P. Talpin. Formal methods and software
engineering. In 5th International Conference on Formal Engineering Methods
(ICFEM’2003), Singapore, November 2003.

[17] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design.
In Journal for Circuits, Systems and Computers. Special Issue on Application
Specific Hardware Design. (c) World Scientific, April 2002.

[18] J. Lind-Nielsen. Buddy, a Binary Decision Diagram Package.
http://sourceforge.net/projects/buddy.

[19] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of
discrete-event controllers based on the Signal environment. In Discrete Event
Dynamic System: Theory and Applications, 10(4), pages 325–346, Oct. 2000.

[20] M. Nebut. Réactions synchrones : spécification et analyse. In Thèse de
l’Université de Rennes I, IFSIC, France, November 2002.

[21] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system.
In International Conference on Automated Deduction (CADE’92), June 1992.

[22] I. Smarandache. Transformations affines d’horloges: application au codesign de
systèmes temps-réel en utilisant les langages Signal et ALPHA. In Thèse de
l’Université de Rennes I, IFSIC, France, October 1998.

[23] K. Strehl and L. Thiele. Symbolic model checking of process networks using
interval diagram techniques. In ICCAD, pages 686–692, 1998.

[24] The Coq Development Team. The coq proof assistant : Reference manual :
Version 7.2. Technical Report 0255, INRIA - Rocquencourt, February 2002.

15

http://sourceforge.net/projects/buddy

	Motivations
	Abstract interpretation
	The SIGNAL language
	A denotational semantics
	Functional analysis of programs

	Static analysis of SIGNAL programs using intervals
	Interval Decision Diagrams
	Abstraction of programs using intervals
	Translation into IDDs
	Discussions and related work

	Conclusion and future work
	References

