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Abstract

This paper presents the techniques used for the compilation
of the data-flow, synchronous language SIGNAL. The key
feature of the compiler isthat it performsformal calculuson
systems of boolean equations. The originality of theimple-
mentation of the compiler liesinthe use of atree structureto
solve the equations.

1 Introduction

Traditionally, real-time systems have been programmed in
imperative asynchronous languages like ADA, Occam or C
together with some operating system facilities. But these
tools are not satisfactory as there is considerable need of
provably correct software and as systems become more and
more complex.

To remedy the insufficiencies of the current tools, the syn-
chronous paradigm has been proposed and developed in[4].
Its main hypothesisisthat @) operators react instantaneoudy
with their inputs (computations have zero duration), b) time
isjust asuccession of events (no explicit referencetoanotion
of physical time). The vaidity of the synchrony assumption
isthoroughly discussed in [5]. Let us point out briefly, some
advantages a programmer can get from this simplifying hy-
pothesis.

The assumption that an operator (e.g an adder) computes its
outputs simultaneously with the occurrences of itsinputsis
avery useful approximation in many fields. As an example
in the field of hardware synthesis, logic gates are supposed
to compute their outputs synchronoudly in the first approx-
imation. It makes the design of a circuit simple.  Then,

propagation time is taken into account and the maximum
clock frequency allowed is calculated. Such a separation
between pure functionality and execution time is now possi-
blein softwarewith synchronouslanguages: the programmer
specifiesafunctionality of the program, and the compiler of a
synchronouslanguage handles execution time on aparticul ar
target processor.

The second assumption of the synchronous paradigm (no
physical time) provides the programmer with a framework
in which he/she can handle uniformly real-time constraints.
As a matter of fact, real-time constraints are not always ex-
pressed in terms of milli- or micro-seconds. The statement
“the train must stop within 30 meters’ is a real-time con-
straint just as “the train must stop within 30 seconds’. In a
framework like ADA which possesses a notion of time only
in terms of seconds (and not in terms of meters), those con-
straints will not be handled with similar programs. Hence
the usefulness of the second synchrony hypothesis.

Four languages are built upon this synchronous paradigm:
they differ mostly in the programming style they of-
fer. ESTEREL[7] is an imperative synchronous language.
SIGNAL[6] and LUSTRE[11] are data-flow languages. Finaly
in ARGOS[21], systems are specified with parallel and hier-
archical automata. A summary of the synchronous approach
can befoundin [14].

This paper presents the techniques used in the compilation
of the SIGNAL language which is a data-flow language. In
thislanguage, systems are specified with equations over syn-
chronized streams. The declarative style of SIGNAL provides
the programmer with the nice high-level constructs needed
to describe areal-time system in terms of operators network,
differential/difference equations. But, the higher the level of
thelanguage, the bigger the challenge to construct acompiler
ableto generate efficient executable code by using a“ reason-
able” amount of computing resources (memory, cpu-time).

SIGNAL’scompilationishbased on an abstract i nterpretation of
each statement asa system of boolean equations. These equa-
tionsexpress the synchronizationsin the program. The com-
piler solves a system of boolean equationsfor each program
in order to @) check the consistency of the synchronizations,



and, b) generate efficient code (silicon[3], sequential[20],
pardlel[9]).

In this paper, we mainly report the techniques used to an-
alyze the boolean equations. In Section 2 we present the
language SIGNAL: the basic objects, the boolean equations
and the dependency graph associated to each SIGNAL pro-
gram. Section 3 putsthe emphasis on the system of boolean
equationsand introducesa hierarchichal representation for it.
Finally we conclude with some experimental results which
demonstrate the effectiveness of our approach.

2 The SIGNAL language

In this section, we present the basic objects of the language.
We use sequences to describe the semanti cs of the statements.
See [6] for more detailson formal semantics of SIGNAL.

2.1 Signalsand clocks

Signals. A signal X isasequence (X ):cr of values chosen
inadomain D (thetype of the signal). Integer, boolean, real
are examples of signal types. Thetimeindex I isatotally
ordered set of instants. We are interested in a discrete time
model. So, instants are taken in a denumerable set. At any
giveninstant ¢, asignal may be present or absent depending
on whether or not, theinstant under consideration belongsto
I; asignal carriesavaueonly when it is present.

Clocks. The set of instants at which asignal is present isits
clock. So, the clock of asignal (X;):er isitstimeindex I.
Two signals always present at the same instants are said to
be synchronous: they have the same clock. Thus, the clock
of asignal X istheequivalenceclassof X for the synchrony
relation; in that senseiit is denoted X .

Notation. Following [8], the set theoretic operators for
clocks, which are sets, are denoted A (intersection), v (union)
and \ (set difference). We use <op> to denote one of the
three operators.

2.2 Thekernd of SIGNAL

A statement in SIGNAL isan equation on signals; itiscalled a
process. Wegive here thekernel operators; thefull language
features other operators which can be rewritten in terms of
these kernel operators.

Functional expressions. The operators (e.g +, —, *, and)
defined on basic data types (e.g booleans, integers) are
canonically extended to seguences and consequently to
signals. Let f be such an operator of arity n and let
(X1)eer, - - -, (Xny)eer be n sequences with the same time
index . The equation

Vel Yy = f(Xug, ..o Xng)

iswrittenin SIGNAL (see Figure1)

Yo iz f(X e, %)

Thesignalsinvolved in that equation are required to have the
same time index /: they must be synchronous. Thus, the
definition of the signal Y implies the following equation on
the clocks: .

Y= )/(\1 =...= X,

Reference to past values. We reference past values of a—
discrete— signal withthe“$” operator. The SIGNAL process

ZX 1= X $ 1 init vg

is the representation of the following equation on the se-
quences (X )ier and (ZX;):c; defined on the same index
I

Vi € I, 7X; = X1 and ZX1 = vg

Hereagain, 7 X isby definitionsynchronouswith X': ZX =
X. Atiming diagram for this operator is depicted on Figure
2.

Downsampling. Given asigna U and aboolean-valued sig-
nal C (sometimes termed condition), the process

X := U whenC

defines the signal X which carries the same value as U when
both U and C are present, and, C carries the vaue true.
Before giving aformal definition of X, let usintroduce some
notationswe will use frequently. We denote:

[C] = thesetof instantsat which¢
carriesthevalue true

[-C] = thesetof instantsat which ¢
carriesthevalue false

When a boolean-valued signa occurs, it carries either the
valuetrue or thevalue false. Sothepair ([C], [-C]) defines
apartition of C' (the clock of C). This can be represented by:

[C]v][-Cc] = C
{[C]Am -0 @

where O denotes the null clock, the empty set of instants.
With this notation, the signal X : = U whenC is the se-
guence such that:

X = U A[C] thetimeindex, theclock
Vie X, X; =U;

(X1), 5 can be viewed as a subsequence of (U;), 5. See

Figure 3 for atiming diagram.

Deterministicmerge. GiventwosignalsUandV, theprocess
X := U defaultV

defines the signal which carries the same value as U when
Uis present, or the same value as V when U is absent. It is



Figurel: X : = X3 + X;

Figure2: ZX := X $ 1 init vq

I
N

D
LN
EEN

Figure3: X : = U whenC

absent when both Uand V are absent. It merges the flows U
and V and putsa priority on U. A timing diagram is depicted
on Figure 4. Moreformally:

X=UvV
VtE/U\ XtIUt
VieV\U X,=V,

X; iswel deﬁnegl for aIAIt € X, since any instant in X
belongseitherto U orto V' \ U.

Composition of processes. The elementary processes we
have presented till now may be composed with the com-
mutative and associative operator “|”. From an equational
point of view, this operator is the union of two systems of
equations. For example the SIGNAL process of the system:

ZX: = X
| Vte[,{ N
IS
(] zX = X$1
| X = ZX+Y
1)

2.3 Extended language

For convenience, the full language SIGNAL offers many de-
rived operators; they can be expressed in terms of the kernel
operators. Here are some of them:

o the operator event : syntacticaly, the clock X of a
signal Xiswritten event X; infact, it isan abbreviation

Figure4: X : = U defaul tV

for the boolean signal defined by event X : = (X =
X) ; itissynchronouswith X and carries the value true
each time it occurs; thusit can be identified with X the
clock of X;

e the unary when: for a condition C, the signal whenC
isan abbreviation for C whenC, thissigna carriesthe
value true each timeit is present, and is synchronous
with the clock [C] which isthe set of instants when the
signal C is present and carries the value true; so the
signal whenC and the clock [C] can be unified;

e similarly, the signal when( not C) can be identified
with the clock [~C1;

e the process synchro {X; , X,} in SIGNAL'S
syntax specifiestheequality of the clocks of itsoperands
i.etheequation X1 = Xo = ... = X,,.

24 System of boolean equations

It appears clearly that a system of boolean equations lies
under each SIGNAL process. We hinted that during the pre-
sentation of the kernel of SIGNAL. We recapitul ate these
equationsin Table 1.

At this stage, the main difference between SIGNAL and the
classical data-flow languages [16] [25] isthat in SIGNAL we
mani pul ate synchronized data-flow by means of clocks. The
main purpose of synchronized data-flow is that al the syn-
chronizations (expressed in terms of equations over clocks)
should be completely handled at compile time. For more
details, see [17].



signal process

clock calculus

additional equations

Yoz f(Xg, .0 %) ||V =
ZX: = X$1

Y: = X whenC

X
7X =
X:= U defaul tV X=U
Yy=X

Table 1: From SIGNAL operators to bool ean equations

2.5 Conditional dependency graph

A data dependency is associated with each process. A pro-
cess is compiled into a graph representing the dependencies
between signals. The edge X oy connecting X and
Y means that at each instant of the clock %, Y’s value de-
pends on X's value. Such a graph is constructed from the
elementary processes as shown in Table 2.

| process | dependency |
X
X::f(Xl,...,Xn) Vlzln,XZ——>X
ZX: = X$1 no dependency
X
X:= U whenC U — X
o V\U
X:= U defaul tV U X Vv
For each < [C]
condition C c -5 0]
X
For each signal X X——X

Table2: From SIGNAL operatorsto aconditional dependency
graph

2.6 Description of the generated code

Sequentia code generation from the conditional dependency
graph follows a very simple scheme thoroughly described
in [19]. Each signal isimplemented by a variable. Since a
signa carries a value only when it is present (i.e it's clock
is present), in the generated code, access (read or write) to
the variable that implements asignal is guarded by atest on
the presence of the signal. Moreover, the assignment of the
valueof avariableto another variableisguarded by the clock
that |abel s the dependency between the two variables.

Asan example, consider theprocess X : = U defaul tV.
The signal X merges thesignals Uand V with a priority to U.
The dependency graph of that processis

o V\U
U X 1%

and the code generated is:

~

i f present(X) then
i f present(U)
X =U
endi f
i f present(V\U) then
X =V
endi f

~

t hen

endi f

~

In that piece of code, we write i f present(U) to test if
the instant under consideration belongs to the clock U. In
the following paragraphs we will detail how the compiler
implements the test of a clock’s presence.

3 Solving the system of boolean equa-
tions

3.1 Resolution: the needs

The goal of the compiler is to check the consistency of the
synchronizations expressed by the system of equations and
to generate executable code for various architectures[3, 20].
From the conditiona dependency graph and the code gener-
ation scheme, we can figure out what the needs are in terms
of resolution.

~

The dependency, X * X requires that, at any given
instant, before the value of a signa X is computed, a test
be made on the presence/absence of X; that is, the pres-
ence/absence of its clock X. So thereis aneed for a reso-
[ution method that will allow to efficiently check at run-time
the presence of all the clocks which are related by a system
of equations. The choice made in the SIGNAL compiler is
to transform the system of equations into a list of explicit
definitions; that is, the compiler identifiesin the system a set
of clock variables (the free variables) in terms of which the
other clocks are expressed. This explicitization is achieved
by means of triangularization; that is, a transformation of
the system of equationsinto a set of equalities of the form
ki = k;1<op>k;, such that the clock-to-clock dependency
graph (the edges k1 ki ki») bean acyclic
graph (a partial order). So, the presence/absence of k; at
run-time, can be quickly deduced from the presence/absence




of k;1 and k;, where k;, and k; » are subtermswhich the com-
piler triesto share with other clocksin order to yield efficient
code.

Not only does atriangul arization compute the order in which
clocks must be evaluated, but it also exhibits the free vari-
ables of the system. It isimportant that the free variables be
determined because they are the ones that the environment of
the real-time system must provide as inputs to the program.
So, if they were not statically computed, there would be a
need for tests at run-time to check the consistency of thein-
puts; that overhead would make efficiency more difficult to
achieve.

The problem of transforming a system of boolean equations
into an explicit system is NP-hard [12]. So the agorithm
implemented in the compiler does not seek compl eteness. It
is rather a heuristic aimed at fast compilation of commonly
encountered systems of equations. Hence some correct SIG-
NAL programs may be rejected because the compiler failsto
producetheexplicit form of their clock equations. Currently,
the triangularization is carried out in the compiler through
an arborescent representation of the equations. Before going
into details on the representation, we give the main ideas of
the strategy that lies under it.

3.2 Strategy of resolution

A triangular system of equationsis progressively constructed
from the original system (see Table 1). An eguation of the
form k = ki<op>k, isoriented (we note k := ki1<op>k2)
in order to consider the clock formula k1 <op>k, as the defi-
nition of the clock variable k. During this process, an orien-
tation of some equations may not betrivialy possible. There
are two reasons for that.

1. The eguation under consideration is of the form k& =
k1<op>k, but thereisaready adefinition of thevariable
k. Inthis case, arewriting can be performed to verify
that theformula ki <op>k, isequivalent to the previous
definition of k.

2. It is an equation of the form k& = ki<op>k, but an
orientation would induce a cycle in the clock-to-clock
dependency graph. Inthiscase, an attempt can be made
to rewrite the formula ky<op>k, and break the cycle.

Note that an equation of the form ky<op>ko = hi<op>hy
can be brought to the two previous cases by the insertion
of a new variable h and by writing h = ki1<op>k, and
h = hy<op>hy: first orient the equations and then prove the
equivalence.

At the end of this process the program is said to be tempo-
rally incorrect if there are some equations whose orientation
induces a cycle or if there are some non-proved equalities.
Hence a canonical rewriting system is needed to check the
equivalence of two clock formulas (which are boolean for-
mul as).

Although this strategy cannot triangularize an arbitrary sys-
tem of equations, it is very efficient in compiling common
SIGNAL programs that implement redlistic systems.

3.3 Example

Wegiveinthis section, an example of SIGNAL program. The
purpose of this example isto illustrate the kind of rewriting
the compiler has to perform. The reader interested in real-
istic programs written in SIGNAL is referred to [2] for the
programming of a production cell controller, and to [18] for
a speech processing system.

Consider a SIGNAL program called PROCESS_AL ARMwhich
must compute a boolean-valued signal ALARM from 3
boolean-valued signals (say sensors) BRAKE, STOP_COK,
LI M T_REACHED. Hereis an informal specification of the
behavior:

o the sensor BRAKE is true if the brakes of the train are
activated;

e STOP_Kistrueif thetrain is stopped;

e LI M T_REACHED strueif thetrain goes beyond some
[imit it should not normally surpass;

e ALARMmust be trueif the train has not stopped before
the limit.

A possible implementation of PROCESS_ALARM s the fol-
lowing SIGNAL equation

ALARM : = BRAKE and LI M T_REACHED and

( not STOP_OK)

In that equation, all the signals are required to have the same
cock (ALARM = BRAKE = LIMIT _REACHED =
STOP_OK). This means that at each instant (a reaction of
the program), al the sensors are sampled and the value of
ALARMis computed.

Let usimagine a more sophisticated version of that program:
a sensor is sampled only when its value is necessary. We
can think of this as an improvement made by a programmer
in order to reduce the communications with the execution
environment of theprogram. ThesensorsLI M T_REACHED
and STOP_OK need to be sampled only during a braking
action. And the sensor BRAKE needs to be sampled only
when no braking isgoing on. So, weintroduceastatevariable
BRAKI NG_STATE as shown of figure 5.

Let us now focus on the clock equations that lies under this
program. If we denote for short BRAKI NG_STATE by C,
BRAKI NG.NEXT_STATE by C , BRAKE by D, STOP_OK by
Cl,LI M T_REACHED by C2 and ALARMby C3 we have:

c=C' (1
C'=[DIv[c]vC (2
Cl=C1=C; (3
(
(

—

[ﬂC]:D 4
C3=Cr=0C5 5

N N N e e



BRAKI NG.STATE

(] BRAKI NGSTATE : = BRAKI NGNEXT_STATE $ 1
| BRAKI NG.INEXT_STATE : = ( truewhenBRAKE) default
( falsewhenSTOP_OK) def aul t

synchro {whenBRAKI NG STATE, STOP_COK, LI M T_REACHED}
synchro {when( not BRAKI NG.STATE), BRAKE}
ALARM : = LI M T_REACHED and ( not STOP_OK)

% memorize the next state

% enter the braking state

% leave the braking state

% stay in the previous state

% samplein braking state

% sample when not in braking state

% the brake need no longer be checked

Figure 5: Source code of process Alarm

Lines (1), (3), (4) and (5) specify equalities of variables. For
such equations, we choose one variable which will replace
the others when they are referenced. By replacing C7 by C
in (2) we have:

c'=C

Ci =[]

Co =[]

C3=[C]

D =[-C]
C=[Dv[c]vE (6)

All the equations of the system can betrivially oriented from
right to left except for equation (6). Indeed, the variable
C' appears in both sides of the equation; so, an orientation
would induce a cycle. To break that cycle, let us use the
extraknowledge (not apparent in the system) we have about
boolean valued signals: the clock [C4] isincluded in C; this
is mainly due to the fact that ([C4], [-C4]) is a partition of
the clock Cy. Similarly [C] C €. Since C7 = [C] we have
[C1] € C and consequently [C1] v C' can be rewritten into
C. A similar argument shows that [D] C D = [-C] C C
and [D] v C = C. Thentheformula[D] v [C4] v C can be
rewritten into C'. Finally the equation (6) becomes C' = C
whichistrivialy true and deleted from the system.

In order to obtain the triangular form of the system of equa-
tions, the compiler must perform rewriting in respect to the
inclusion relation among clocks. That iswhy a special tree
representation has been introduced in the compiler to repre-
sent efficiently part of thisinclusion relation.

Note that in the previous example, the variable C' cannot be
computed by an expressionintheprogram: itisafreevariable
exhibited by the compilation. This means that the execution
environment must provideit as an input to the program. This
can be rephrased as. “the specification does not determine
the pace a which the sensors must be sampled”. Should
they be sampled every meter or every milli-second, it is a
choice of the environment; it isnot areal feature of theaarm
functionality.

3.4 Hierarchical representation of
the equations

To meet the requirements presented above, an arborescent

organization of the formulas has been defined in [8]. It
speeds up the rewriting and it captures the triangularity of
the system of equations. We present here the main idess.

Partition tree.

Consider the boolean-valued signal C' of the previous exam-
pleand itsclock C'. According to the properties described in
the previous sections, the pair ([C], [~C1]) isapartitionof C'.
Such a partitionis represented by thetreein Figure 6. Since
any clock can be partitioned by a condition, this basic tree
can grow as its nodes are partitioned. Figure 7 represents
the partition tree of the example PROCESS_ALARM of the
previous section. In such atree, an edge between a parent
node and a child node capturestheinclusionof thechildinits
parent. Theroot may be an arbitrary formulabut the internal
nodes are partitions.

Forest of clocks. Asany clock formula can be partitioned,
the formulas originating from a SIGNAL program can be
grouped into partition trees; this set of treesis called a forest
of clocks. Within this forest, some trees may be one-node
trees; these are clocks that have not been partitioned in the
original SIGNAL program.

Fusion of clock trees. In the forest of clocks, let 7" and 7’
be 2 trees with roots » and k such that @) & be defined by a
formulaki<op>k», b) k1 and k, belong to thetree 7"; which
means that the operands of the root & arein thetreeI". We
carry out afusion of 7" into 7" by inserting % into the tree T’
asdepicted in Figure 8. In Figure 8 we point out a particular
node h of thetree T". h isthebranching of the nodes k; and
ko; itisthefirst common ancestor of the2 nodes. 77 isnow a
subtree of the merge tree 7. The fusion of 2 partition trees
yieldsamore general tree we call clock tree.

The main idea of the insertion of the formula ki<op>ks
is that it is inserted under the branching of its operands,
at the “right hand side”. This insertion procedure has two
interesting festures: &) it preserves the triangularity of the
system of equations, b)it optimizes the code generated by
nesting if-then-else control structures.

Triangularity preservation. During a depth first search
(dfs) of thetree 7" “from l€ft to right”, the nodes k1 and k»
arevisited before the node k = ki<op>k2; it means that the
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Figure 7: A hierarchical partitioning
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Figure8: Fusion of trees

ordering that makes the system be triangular is embodied in
thetree.

Code optimization. A partition tree can be viewed as the
representation of an inclusion relation. In apartition tree, a
nodeisincludedinitsparent. And more generally, anodeis
included in its ancestors.

InFigure8theclock k = ki1<op>k, isincludedin the clock
h. As amatter of fact, h being an ancestor of both %; and
k2, wehave k; C h and ko C h. Consequently dl of the 3
formulas kq V ko, k1 A ko and kq \ k> — denoted k1<op>k,
— areincluded in h. That is, the clock tree resulting from
afusion of 2 trees represents an inclusion relation. On the
example PROCESS_ALARM we have shown the usefulness
of theinclusion relation for the rewriting. Now let us show
how it can help in optimizing the code generated.

The nesting of if-then-else structures for code optimization
is based on the remark that, if 2 and & are 2 clocks such that
h C k, then for an instant ¢, the following implication holds:
t¢ k= 1t¢ h Inother words, if thetest ¢t € £k fails,
thereis no need to test if t € h. Thus, code generation can
take advantage of the inclusion relation between clocks. For
examplein Figure 9, code a ismore efficient than code b. As
reported in [19] this kind of improvement can yield a code
which runs 300% faster for some SIGNAL programs.
Arborescent resolution

We give herein three steps the a gorithm of resolution.

1. Teke atree T” in the forest and attempt to rewrite its
root k& in away that will make the operands of & belong
to the same tree T". If this succeeds, the root formula
of 7" can beinserted into 7" as described in 3.4 without
disturbing the triangularity of 7'.



codea
if present(k) then
do-something-k
if present(h) then
do-something-h
endif
endif

code b.

if present(k) then
do-something-k

endif

if present(h) then
do-something-h

endif

Figure 9: Nesting if-then-else control structures

Figure 10: A hierarchical partitioning

[C]

[=C4]

[Ca]  [=C2] [D] [=D]

2. Redlize the fusion of 7" and 7" to yield atree 7"’ as
described above.

After thefusion of 7" and 7", aformulawhich had one
operand in 7" and the other one in 77 now has its 2
operandsinthetree 7. So, thefusion of 7" and 7" may
lead to more fusions; that is the purpose of step 3.

3. Do step 1 and step 2 till the rewriting rules of step 1 no
longer apply.

Step 1 isimplemented using a notion of p-depth resolution
thoroughly presented in [8]. To put it roughly, the user of
the compiler can set an integer parameter p; this parameter
is the maximum depth of the syntactic trees of the formu-
las manipulated during the rewriting. Setting a limit to the
formulas, solvesthe duration and termination problems com-
monly encountered in rewriting systems. Step 2 isasimple
tree manipulation. It raises though a question of canonicity
that weillustrate on the following example.

Example. Consider again the tree in Figure 7 (redrawn in
Figure 10 without some nodes which are not relevant for
the current context) and consider the formulas k1 and &

Figure 11: insertion of formulas

which are roots of some trees (not drawn). k; and &, are
defined respectively by [C1] v [D] and [C5] v [-D]. Recal
that the main idea of the fusion of atree 7" into atree T
isthat root ' of 7" isinserted into 7" under the branching
of its operands. Following that idea, the insertion of %; and
k» yields the tree depicted in Figure 11. Now consider the
formulak = k1 A k2. The same argument would trivialy
place k asachild of » (see Figure 12). But k can berewritten
into another expression. Applying axiomsof boolean algebra
and using the inclusion relations embodied in clock trees
alow to rewrite k as [C1] A [C5]. The branching of [C1] and
[C5] being [C], k can be placed under [C] (see Figure 12).
As the code generation is based on if-then-else nesting, the
insertion of & under [C] yields much more efficient code.

Canonical factorization. The previous example shows that
it isimportant to insert a formula under the deepest possible
parent. So we developed an insertion algorithm which op-
timizes the depth. Our agorithm has an important feature:
among the potentia parents of the formula, it chooses the
one with the greatest depth; and we show in [1] that such
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Figure 12: Best insertion

a parent is unique. That feature makes our tree structure a
canonical form. The algorithm is not detailed here but the
main concepts are given below:

e aBDD (Binary Decision Diagram [10]) is associated to
each clock; thusthetree of clocksistransformed into a
tree of BDDS;

¢ the problem of finding a parent for a formulaiis refor-
mul ated as factorizing a boolean function;

o factorizationsare carried out by taking advantage of the
specific properties of our tree.

4 Related work

The effort to generate code from a data-flow synchronous
language has a so been undertaken for the LUSTRE language.
The compilation of LUSTRE produces an automaton; it offers
as an option, a trade-off between response time and size of
generated code.

Theautomaton may beaone-state and one-transition automa-
ton. Thetransitionisfired at each reaction of the program. It
islabelled with a set of equationsto be evaluated in order to
compute the outputs. This style is termed single-loop code
generation scheme. SIGNAL’scompilation producesthesame
kind of automaton. The major difference is that in SIGNAL,
the code generated isimproved by the nesting of if-then-else
control structureswhich has been made possibleby our clock
inclusiontree. To our knowledge no such hierarchical inclu-
sion information has been used in LUSTRE to improve the
code generated.

Asreported in [15] for LUSTRE and in [22] for the ESTEREL
synchronous language, the efficiency of the code generated
can be improved by the production of a partialy explored
automaton: that is, the compiler may pick some boolean
variables and simulate statically their evolution. This static
simulation yields a bigger automaton than the one of the
single-loop style. But in this case, the set of equations eval-
uated at each reaction is smaller since the simulated boolean
variables need not be computed any longer. So the code
is bigger and runs faster. The problem with this style of
generationisthat, in theworst case, the automaton grows ex-
ponentially with the number of simulated boolean variables.
Hence the need of heuristics to cleverly select the variables
to be simulated.

5 Conclusion

In this paper we have presented the data-flow oriented lan-
guage SIGNAL and we have given an overview of the boolean
techniques used for its compilation. These techniques have
been successfully implemented and we give here some ex-
perimental results.

Figure 13 shows the amount of computing resources required
for thecompilation of sample SIGNAL programs. To show the
effectiveness of our arborescent representation, we compare
three representations of boolean systems of equations.

e Tree and BDD (T&BDD): atree structure together with
aBDD canonical form as presented earlier in this paper.

e BDD characterigtic function: thewhole system of equa
tionsis represented by a single BDD; a system of equa-
tionsover n boolean variables can beviewed as asubset
of {0,1}". Hence it can be given a representation in



sample number BDD BDD
SIGNAL of T&BDD characteristic charac. func.
programs variables function after T& BDD
nodes | time || nodes | time nodes | time
STOPWATCH 1318 61893 | 27.07s unable-cpu unable-cpu
WATCH 785 34753 | 14.67s unable-cpu unable-cpu
ALARM 465 3428 | 2.19s unable-mem unable-cpu
CHRONO 282 1548 | 0.92s unable-mem 422975 | 409.09s
SUPERVISOR 202 425 0.45s unable-cpu 226472 | 146.32s
PACE MAKER 96 50 0.10s || 53610 | 160.50s 582 0.36s
ROBOT 99 36 0.27s unable-cpu 415 0.31s
unable-cpu: computation was unable to terminate within the 40mn time limit.

unable-mem: computation was unabl e to terminate within the 200MB memory limit.

Figure 13: Comparisons

the form of a characteristic function. This representa
tion of subsetsof {0, 1} isvery common in thefield of
hardware verification and silicon compilation [13, 24].
To solve exactly boolean equations, thereis a complete
algorithm which runs polynomially in the size of this
BDD (see [12]). In order to justify our non-complete
algorithm, we show that very often in practical cases,
thisBDD istoo big to be computed.

e BDD characteristic function after T&BDD: the original
system of equationsis transformed by a T& BDD into a
tree (which is gtill a system of equations); then a BDD
characteristic function is constructed. The difference
between this system and the original one, is that some
variables may be (and very often are) eliminated dueto
their equivalence with other variables. So, the triangu-
larized system has less variables.

The representations are compared in terms of memory (hum-
ber of BDD nodes) and time ( Unix user-time). The measures
are conducted on a SUN4/Sparc10 with 64MB main mem-
ory. Manipulationsof BDDs use aUC Berkeley BDD package
[23].

For the experimentation we set a 200MB virtual memory
[imit and a40mn cpu time limit.

Asit is shown on the table 13, most of the measures that in-
volveacharacteristic functionwere unableto computewithin
theresourcelimits. It appearsclearly that characteristic func-
tionsare impractical.
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