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ABSTRACT

We describe and apply a flexible, adaptive cosine packet

transform to separate audio sources from instantaneous,

underdetermined audio mixtures by time-frequency mask-

ing. Previously studied adaptive transform schemes have

two main drawbacks: the signal can only be partitioned

into dyadic intervals, and the profiles of the overlap-

ping windows are often very short, thus tapering off very

quickly. The novel aspects of our new approach are that

it admits a much larger library of admissible orthogonal

bases, and thus does not require dyadic segmentation and

alleviates border artifacts at window boundaries.

Oracle estimation, which determines experimental up-

per performance bounds of our techniques, demonstrates

potential performance improvements of up to 3.0 dB SDR,

when compared with fixed-basis transforms such as the

short-time Fourier transform and modified discrete co-

sine transform, and the previously studied adaptive cosine

packet decomposition scheme.

Keywords: source separation, oracle estimators, adap-

tive transforms.

1 INTRODUCTION

The aim of audio source separation is to estimate a set

of simultaneously active audio sources from a set of ob-

served mixtures of those sources [9]. Let us consider the

case of the two-channel, underdetermined, instantaneous

mixture, and form the following time domain model of the

mixing process:

x(n) = As(n), (1)

where x(n) = [xi(n)]1≤i≤2 is a column vector represent-

ing the two-channel mixture signal, s(n) = [si(n)]1≤j≤J

is a column vector of J source signals, and A =
[ai,j ]1≤i≤2;1≤j≤J is the matrix of mixing parameters. Let
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the time domain index, n, range as 0 ≤ n < N . We con-
centrate on such a model because it can provide a useful

approximation to stereo audio signals consisting of J > 2
sources (underdetermined), mixed using a panned mono

mixing technique (instantaneous). If A is unknown, then
the problem is called blind, otherwise we call it semi-

blind.

1.1 Time-Frequency Masking

In the underdetermined case, even if we know or have

estimated A, matrix inversion techniques will not give
a unique solution for s(n). However, we can use tech-
niques based on time-frequency (TF) masking, which

transform the observed x(n) using linear, invertible, TF
transforms [12]. This preserves the mixing structure of

(1) to give

[Xi(k, f)]1≤i≤2 = A[Si(k, f)]1≤j≤J (2)

where (k, f) ∈ Γ is a time-frequency index pair, the com-
ponents of which index the block and frequency, respec-

tively.

Denote by J ′
k,f the assumed number of active (non-

zero) source coefficients at the TF index (k, f). Then
Jk,f = {j : Sj(k, f) 6= 0} is the set of all J ′

k,f sources

contributing to [Xi(k, f)]1≤i≤2, and is called the local ac-

tivity pattern at (k, f). Then (2) reduces to

[Xi(k, f)]1≤i≤2 = AJk,f
[Si(k, f)]j∈Jk,f

(3)

where AJk,f
is the 2 × J ′

k,f submatrix of A formed by

taking columns Aj , and [Sj(k, f)]j∈Jk,f
is formed by

taking rows of [Sj(k, f)]1≤j≤J , whenever j ∈ Jk,f . A

fundamental assumption of the TF representation is that

J ′
k,f ≤ 2, in other words, that it admits a sparse represen-
tation. Then, in the ideal case, (3) can be solved for each

(k, f) independently according to

{

Sj(k, f) = 0 if j /∈ Jk,f

[Sj(k, f)]j∈Jk,f
= A+

Jk,f
[Xi(k, f)]1≤i≤2 otherwise

(4)

where Jk,f is an estimate of Jk,f and A+
Jk,f
denotes the

(Moore-Penrose) pseudoinverse of AJk,f
[3]. Time fre-

quency masking can then be interpreted as the problem of

estimating local activity patterns. While binary masking



(J ′
k,f = 1) is now well understood [12], efficient estima-

tion of activity patterns with J ′
k,f ≤ J case is currently an

open question.

1.2 The problem

Commonly used transforms which can be used to esti-

mate [S(k, f)]1≤j≤J according to (4) include the short-

time Fourier transform (STFT) [12], the modified discrete

cosine transform (MDCT) [2] and adaptive cosine pack-

ets [7].

It has been shown that signal decompositions using

adaptive cosine packets have the potential to give superior

performance [6, 10] to the STFT and MDCT. However,

problems with these approaches include the necessity of

windowing the signal over dyadic segments, and the pres-

ence of border effects at window boundaries. In Section 2,

we describe a scheme which alleviates these problems,

and in Section 4, we show that the new scheme has the

potential to outperform the old one.

2 FLEXIBLE, ADAPTIVE SIGNAL
REPRESENTATIONS

One of the motivations for the use of orthogonal, adap-

tive transforms is that they have the potential to represent

the sources more sparsely than fixed-basis or overcom-

plete transforms (such as the STFT). Previous studies have

examined the benefits afforded by adaptive cosine packet

transforms in (semi-)blind [7, 8] and oracle contexts [6, 8].

The aim is to partition the signal using overlapping

windows of variable length. This defines an orthonormal

transform adapted to the time-varying characteristics of

the signal. Ideally we obtain longer windows over inter-

vals requiring fine frequency resolution, at the expense of

coarser time resolution, and shorter windows over inter-

vals with broadband frequency content, giving finer time

resolution.

2.1 Mathematical Definition of the Bases

The following exposition follows the style and notation

developed in previous work on adaptive cosine packets [4,

5]. Let λ denote a partition of the entire signal:

λ = {(nk, ηk)}0≤k≤Kλ

where

n0 = 0 < n1 < · · · < nKλ−1 < nKλ
= N

and where, for each nk, there is an associated bell param-

eter, ηk, which is the half-length of the overlap interval

between successive windows, and which defines the shape

of the overlapping windows such that we have

nk+1 − nk ≥ ηk+1 + ηk.

The important thing about this development is that the

bell parameters, ηk, are not necessarily all equal. In con-

trast to this, previous work using adaptive cosine packet

transforms imposed the constraint that ηk = η is constant

across all k = 1, . . . ,Kλ−1. For the k = 0,Kλ−1 cases,
appropriate border modifications need to be made [5].

For every k and k + 1 associated with the partition,
λ, we form an interval [nk − ηk, nk+1 + ηk+1], to which
the restriction of the signal is made through the use of a

window function:

β
ηk,ηk+1

nk,nk+1(n) =






















r
(

n−(nk−1/2)
ηk

)

if nk − ηk ≤ n < nk + ηk

1 if nk + ηk ≤ n < nk+1 − ηk+1

r
(

(nk+1−1/2)−n
ηk+1

)

if nk+1 − ηk+1 ≤ n < nk+1 + ηk+1

0 otherwise.

The bell function r satisfies r2(t) + r2(−t) = 1 for−1 ≤
t ≤ 1, r(t) = 0 for t < −1, and r(t) = 1 for t > 1,
where t is real-valued, and also satisfies various regularity
properties [5]. The bell parameters ηk and ηk+1 determine

how quickly the window monotonically rises on its left

side and monotonically falls on its right side. Although

there are many windows which satisfy these constraints,

in practice, we use a sine window [5]. The local cosine

basis spanning the signal space for this interval is then

given by

B
ηk,ηk+1

nk,nk+1 =

{

β
ηk,ηk+1

nk,nk+1(n)

√

2

nk+1 − nk

× cos

[

π

(

f +
1

2

)

n − (nk − 1/2)

nk+1 − nk

] }

0≤f<nk+1−nk

where f is the discrete frequency index.
Now we are finally in a position to construct the or-

thonormal basis, Bλ, associated with this particular λ, for
the space of signals of length N :

Bλ =

Kλ−1
⋃

k=0

Bηk,ηk+1
nk,nk+1

.

This basis is only one of many possibilities. Since our aim

is to find the best basis, we will consider all admissible

partitions, λ ∈ Λ, each of which determines a different
orthonormal basis. Thus we obtain a library of possible

cosine packet bases for this space of signals of length N :

L =
⋃

λ∈Λ

Bλ.

2.2 Computing the Best Basis

Our aim is to find that Bλ ∈ L which gives the best rep-
resentation of our signal by minimising an additive cost

function whose value is inversely related to separation per-

formance. (In Section 3 we will define a cost function for

oracle estimation.) Denote by C
ηk,ηk+1

nk,nk+1 the cost of repre-

senting the signal in the interval [nk − ηk, nk+1 + ηk+1]
over the basis B

ηk,ηk+1

nk,nk+1. If the cost function is additive,

then the overall cost of representing the signal over the

basis Bλ =
⋃Kλ−1

k=0 Bηk,ηk+1
nk,nk+1

is given by

C0,0
0,N =

Kλ−1
∑

k=0

Cηk,ηk+1

nk,nk+1
.



Past research on the use of adaptive cosine packet

transforms involves restricting the set of admissible seg-

mentations so that, in particular, the length of each inter-

val [nk, nk+1] as well as its end points are powers of two
for all k, and so that all bell parameters ηk = η = 2L for
k = 1, . . . ,Kλ − 1 [6, 7, 8]. This has the desirable effect
that we can use the computationally efficient Coifman-

Wickerhauser (CW) algorithm [1] to determine the best

orthogonal basis with minimum cost C0,0
0,N . On the other

hand, this also severely restricts the range of admissible

partitions, and hence the library from which we choose

the best basis is much smaller. It also causes distortions in

the estimated sources due to windowing artifacts because

if η is small, then very short overlaps will occur even be-
tween two relatively long adjacent windows [7]. To over-

come these problems, we employ an alternative, flexible

segmentation (FS) algorithm, also based on dynamic pro-

gramming [4, 11]. Whereas for the CW algorithm to be

applicable, the library must be representable as a complete

dyadic tree, the FS algorithm is much more lenient. It per-

mits time segmentations of resolution L, so that a signal
of length N is a multiple of L, and each partition point
can be written as nk = cL for some integer c ≥ 0. Fur-
thermore, provided that both L and N are powers of two,
the FS library is a superset of the CW library.

3 ORACLE ESTIMATORS FOR AUDIO
SOURCE SEPARATION

Oracle estimation allows us to judge the difficulty of sepa-

rating the sources from a given mixture and to gain insight

into the upper performance bounds of our class of separa-

tion algorithms. As it depends on knowing the reference

source signals, s, and the mixing matrix, A, it is intended
to be used for algorithm evaluation rather than for prac-

tical (semi-)blind separation applications. The aim is to

determine those J ′
k,f and Jk,f which give the best pos-

sible separation performance by optimising against some

performance criterion [10].

The oracle estimate of s(n) is the ŝ(n) which min-
imises a distortion measure such as

C0,0
0,N =

N−1
∑

n=0

J
∑

j=1

(ŝj(n) − sj(n))
2
, (5)

such that ŝ(n) has been estimated by applying (4) in a
particular basis Bλ. The advantages of defining C in this
way are that minimising it is equivalent to maximising the

signal to distortion ratio (SDR [dB]), given by

SDR = 10 log10

∑N−1
n=0

∑J
j=1 (sj(n))

2

C0,0
0,N

,

which we will use to evaluate our methods; and that it

satisfies the additivity constraints required for computing

the best orthogonal basis (Section 2.2).

For signals represented by an orthonormal transform,

(5) is equal to the following [8]:

C0,0
0,N =

Kλ−1
∑

k=0

C
ηk,ηk+1

nk,nk+1

=

Kλ−1
∑

k=0

nk+1−nk−1
∑

f=0

J
∑

j=1

(

Ŝj(k, f) − Sj(k, f)
)2

,

where the transform coefficients are computed in the basis

Bλ. It is clear that minimising C0,0
0,N is equivalent to min-

imising at each (k, f) independently, by computing oracle
local activity patterns:

J orak,f = arg min
Jk,f∈Pk,f

J
∑

j=1

(

Ŝj(k, f) − Sj(k, f)
)2

where Ŝj(k, f) on the right hand side is given by (4), and
Pk,f is the set of all possible activity patterns subject to

J ′
k,f . If J ′

k,f is small then an exhaustive search over all

Jk,f ∈ Pk,f is computationally feasible.

The STFT is often used in time-frequency masking,

but because it is non-orthogonal, it is computationally in-

feasible to determine the optimal oracle activity patterns.

We are therefore restricted to computing near-optimal or-

acle activity patterns, as in [10].

4 EXPERIMENTS AND RESULTS

We test and compare the various methods and transforms

on a mixture of J = 4 four musical sources. As we had
access to the original multitracked data, we were able to

synthesise instantaneous mixtures, with I = 2, to simu-
late a panned mono mixing process, using the following

mixing matrix:

A =

(

cos( π
16 ) cos( 3π

16 ) cos( 5π
16 ) cos( 7π

16 )
sin( π

16 ) sin(3π
16 ) sin(5π

16 ) sin(7π
16 )

)

The pitched sources were harmonically related so that

overlapping harmonics between different sources were ex-

pected. To ease computation time, we downsampled from

44.1 kHz to 22.05 kHz, kept at a resolution of 16 bits per

sample. The extract was of length 218 samples (approxi-

mately 11.9 s).

We allow the number of active sources at each time-

frequency index to range as J ′
k,f ≤ 2. Previous experi-

ments using oracle estimators on adaptive cosine packet

transforms (using the CW algorithm) have shown that this

gives significantly higher performance than the J ′
k,f = 1

and J ′
k,f = 2 cases, and hence, a better indication of what

time-frequency masking is potentially capable of achiev-

ing [6].

The resolution for the adaptive cosine packet trans-

forms determined by the CW and FS algorithms was set

to L = 28. We tested these transform methods with a

fixed bell parameter, η = 28, and, for the FS method,

also tested a range of bell parameters, η = c · 28, where

c = 1, . . . , 16, to take advantage of the large library it of-
fers. For the STFT and MDCT fixed-basis transforms, the

window overlap and block length parameters which gave



Trans. η L Av. SDR [dB]

STFT 212 213 13.8
MDCT 210 211 14.6
CW 28 28 15.9

FS
28 28 16.3

c · 28 (c = 1, . . . , 16) 28 16.8

Table 1: Results of oracle estimation. For the CW and

FS transforms, the parameter η indicates the range of bell
parameters used in adapting to the signal, and L is the res-
olution parameter. For the STFT and MDCT transforms,

the meanings of η and L are slightly different, and indi-
cate window overlap and fixed block size. The average

SDR of all extracted sources is given in dB.

the best average SDR in previous work were chosen a pri-

ori [6].

Results are presented in Table 1. Informal experimen-

tation indicates that the relative performance improve-

ments offered by the FS algorithm over the CW algorithm,

and over the MDCT and STFT transforms, are typical of

other mixtures of music sources as well.

5 DISCUSSION

Although we have presented results for only one mixture,

the relative performance differences between the trans-

forms are fairly typical for instantaneous, two-channel

mixtures of four harmonically related instruments.

Although the performance improvements are modest,

ranging from between several tenths to a whole decibel,

the increase in computation time far outweighed any per-

formance improvement as judged by the SDR. Decom-

posing the mixtures using the CW algorithm with a fully

flexible windowing scheme took in the order of days to ex-

ecute, whereas the same algorithm with only one possible

bell parameter generally takes in the order of minutes. In

our implementation, approximately three quarters of the

computation time is spent decomposing the segments in

local cosine bases, with the remaining quarter spent deter-

mining the oracle masks.

6 CONCLUSIONS AND FUTUREWORK

Using the FS algorithm to find the best orthogonal basis

for oracle estimation of audio sources leads to a modest

improvement of about 1 dB over more well known meth-

ods. However, for practical scenarios this performance in-

crease is outweighed by the large increase in computation

required to determine the best partition of the signal. Fu-

ture work include investigating the use of algorithms such

as beam search to find a suboptimal orthogonal basis us-

ing a flexible segmentation scheme, and listening tests to

determine subjective, perceptual differences between the

different transform schemes.

ACKNOWLEDGEMENTS

Andrew Nesbit is supported by EPSRC Grant

EP/E045235/1.

References

[1] Ronald R. Coifman and Mladen Victor Wicker-

hauser. Entropy-based algorithms for best basis se-

lection. IEEE Transactions on Information Theory,

38(2):713–718, March 1992.

[2] M. Davies and N. Mitianoudis. Simple mixture

model for sparse overcomplete ICA. IEE Proceed-

ings on Vision, Image and Signal Processing, 151

(1):35–43, February 2004.
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