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Transformational Heuristics for Animation - Towards Stepwise

Validation of Specifications ∗

Atif Mashkoor†, Jean-Pierre Jacquot‡§

December 7, 2010

Abstract

In formal methods, a key idea to assess that an implementation is correct is to break
its verification into smaller proofs associated with each refinement step. Likewise, the tech-
nique of animation could be used during refinement process to break its validation into
smaller assessments. Animating an abstract specification often requires to alter it in or-
der to make it animatable. So we design a set of heuristics whose application transforms
non-animatable specifications into animatable specifications and then based on these trans-
formational heuristics, we develop a rigorous validation framework for stepwise validation
of formal specifications.

1 Introduction

Formal languages are notorious for their comprehension difficulties. Furthermore, well written
specifications often introduce abstract objects and operations that have no intuitive concrete
counterpart. Hence, validation has to wait. This not only implies that the development of
specifications requires an uncomfortable level of trust but it also raises an important question:
when can we start validating?

Verification also raises a similar question. In test-based verification procedures, we need to
wait until actual piece of code is implemented and running. As the cost of correcting errors or
misunderstandings in requirements increases dramatically during the development life-cycle, it
makes a lot of sense to verify and validate as early as possible.

The pivotal concept of formal methods, such as Event-B [Abr10] is the notion of refinement
and its relation to correctness. The assessment of the correctness of a piece of code, its ver-
ification, is no more a unique big process step but it is broken down into small pieces along
with the whole development process. The proof of correctness is then the sum of all proofs of
small assertions (invariant preservation, well-formedness, existence of abstraction function, etc.)
associated to each refinement. Problems are then detected early. While a formal refinement
process does not preclude a testing activity, the latter will be more focused on finding true
implementation errors, not requirement problems.

Our aim is to introduce validation into refinement based software development processes.
We reap the benefits of our approach at two levels. First, early detection of problems in the
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requirements (say, misunderstanding about a certain behavior) becomes easier and inexpensive
to correct. Second, customers are involved into the development right from the start.

In this work, we focus on the “execution” of specification as a mean to validate it. However,
be it the inability of animator to perform standard operations or specification itself consists of
non-executable elements, such as non-constructive definitions, infinite sets, or complex quanti-
fied logic expressions, there are restrictions on the kind of specifications that can be animated.

We then design a set of heuristics which assists in animation of abstract specifications by
systematic transformations. These transformational heuristics are designed to keep the behavior
of specifications unaltered, possibly at the expense of other formal properties, such as provability.
The correctness of these heuristics is then rigorously asserted with the help of a rigorous process.

This report is organized as follows: section 2 introduces the language and tool we have used
for this work; section 3 discusses the concept of validation by animation; section 4 debates about
animatable and non-animatable specifications; section 5 discusses the shortcomings of animator
Brama; section 6 provides details on going from non-executable to executable specifications;
section 7 provides some definitions we have used in the work; we then present our proposed
problem solving transformational heuristics in section 8; followed by section 9, which highlights
our proposed stepwise validation framework; a discussion on animation concludes this report.

2 Language and Tool

2.1 Event-B

Event-B is a formal language for modeling and reasoning about large reactive and distributed
systems. Event-B is provided with tool support in the form of a platform for writing and proving
specifications called RODIN1.

An Event-B model is composed of two constructs: MACHINE and CONTEXT. Machine,
which defines the dynamic behavior of the model, contains the system variables, invariants
which define the state space of the variables and their safety properties, theorems, variants, and
events. Context, which defines the static behavior of the model, contains carrier sets, constants,
axioms, and theorems.

The refinement process is used to progress from abstract specifications to concrete and
elaborated specifications. In refinements, new variables can be introduced and old variables
can be refined to concrete ones. New events may also be introduced as long as they do not
prevent forever the old ones from being triggered. Variants are explicitly introduced to ensure
this property. Proof obligations are generated to ensure the consistency and correctness of both
models: the abstract model and its refinement.

2.2 Brama

Brama [Ser06] is an animator for Event-B specifications. It is an Eclipse based plug-in for the
Event-B platform RODIN. Brama can be used in two complementary modes: either Brama can
be manually controlled from within the RODIN interface or it can be connected to a Flash2

graphical animation through a communication server; it then acts as the engine which controls
the graphical effects.

A typical animation session begins by setting the values of the constants in different contexts
seen (either directly or transitively) by the animated machine. Then, the user must fire the
INITIALISATION event which is, at that time, the only enabled event. After this, the user will

1http://rodin-b-sharp.sourceforge.net
2Flash is a registered trademark of Adobe Systems Inc.
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play the animation by firing the events until there is no more enabled event, the system enters
to a steady loop, or an error occurs (broken invariant or non computable action typically).

A graphical interface can be connected to Brama in the form of a Flash application and
events can be directly fired from there. A mechanism of observers is provided. Expressions and
predicates can be individually monitored and their value is communicated to the Flash program
each time it changes. Last, a scheduler mechanisms allows for the automatic firing of events.

3 Validation by animation

Once a model has been formally specified, there are two important steps which realize its
correctness: verification and validation. These two distinct yet closely related concepts are
based on different techniques. While proof tools guarantee the consistency of the specification
(verification), they are of little help to check if the specification models the desired behavior
(validation). The figure 1 explains this phenomenon.

Figure 1: Verification vs. Validation

There are several ways to validate a specification: prototyping, structured walkthrough,
transformation into a graphical language, animation, and others. All concur to the same goal:
to evaluate a system to assess its conformance to its requirements, which later contributes in
the demonstration that the system is operational. To answer the question of validation we
use the technique of animation [HLP10]. Animation is a validation process which simulates
the execution of the specification thus allowing the specifier to check that the specification has
the intended behavior. Like the verification of the model can be broken down into smaller
proofs associated with each refinement step, we integrate the technique of animation with each
observation level [MJ10] of specification to break its validation into smaller assessments in order
to ensure that it represents actual requirements.

For our work, we make a distinction between refinements and observation levels. Refinements
allow concretization of specification while inducing proof obligations for formal correctness but
their flat structuring process may impair its readability. Observation levels, on the other hand,
provide specification with a super-structure which eases its understanding. They also facilitate
independent introduction of new properties. Strictly speaking, observation levels are refinements
which change the levels of abstraction.

Animation can be used early during the elaboration of the specification: there is no need to
wait until it is finished. As a relatively low cost activity, animation can be frequently used during
the process to validate important refinement steps. It then provides us with a validation tool
consistent with the refinement structure of the specification process. This property may also
be very interesting for certification of software due to several reasons. One of them is the fact
that problems are detected close to the point where their cause was introduced. This facilitates
the understanding of the cause. Another reason is the fact that an unforeseen behavior may be
associated with a specific refinement. If we see a refinement as a formalization of a requirement,
then we have an indication that some interactions between requirements need to be investigated.
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4 Animatable vs non-animatable

Animation by nature heavily depends on tools. Any limitation of the tool will be a restriction
on the class of animatable specifications. To validate a specification which does not belong to
this class, we need to “bring it in”. We do this by applying transformation rules which are
designed to keep the behavior unaltered, possibly at the expense of other properties, such as
“provability”.

While it would be interesting for the theoretician to know whether some tools’ limitations
come from implementation features or have a deep mathematical reason; we, as practitioners, are
more interested in designing practical rules for one particular tool. However, it is important to
have an explicit rule design technique so that the current effort can be leveraged and transposed
to other tools.

One can wonder why we do not produce an animatable specification at first. The reason
is that our transformation rules “downgrade” the initial specification on two important counts:
the specification becomes far less readable and, more importantly, may become unprovable.
The transformation process tends to alter and suppress elements that are essential to discharge
proof obligations.

The first observation we made when trying to animate a specification was the distinction
between a provable specification and an animatable specification:

1. a provable specification may not be animatable,

2. an unprovable specification may be animatable,

3. most well written specifications are likely to be non animatable.

Like a “bad” program can be executed, an incorrect specification can also be animated,
of course both would not solve the purpose. On the other hand, some important ingredients
of specifications, such as non-constructive definitions, infinite sets, or complex quantified logic
expressions are among the list of constructs, which are non-animatable. Unfortunately well-
written specifications often use these traits. Indeed, it is even advised that early specifications
be highly abstract and non constructive.

The first two bulleted items were a consequence of the first error message one is likely to
encounter with the animator Brama: “Brama does not support finite axioms”. Since these
axioms are mandatory to discharge the well-formedness proof-obligations generated when using
carrier sets, the case was settled. Beyond the anecdote (removing such technical axioms do not
change the essence of the specification), this feature of Brama gave us the essential insight to
dissociate proofs and animations. We could then focus on transformation rules which preserve
behavior without bothering about preserving proofs (or provability).

Of course, by putting proofs aside, we are at risk of generating incorrect specifications. In
fact, sometimes a transformation may not be provable within the formal Event-B rules. This
implies that the correction of these transformations must be asserted through other means. We
have then chosen to follow the mathematical tradition of providing rigorous and convincing
arguments as a proof of the preservation of behavior for such transformation rules.

Our proposed pragmatic approach based on controlled transformations of specification is
designed with a strong constraint: to replace non computable expressions by computable ex-
pressions while guaranteeing that the specification keeps the same behavior. We do not require
the transformations to maintain the provability of the specification: we do not mind if some
proof obligations cannot be discharged.

Since our aim is to validate a specification, we insist that the starting point of the animation
job must be a fully proven specification: there would be no point in validating an unproven
specification. The specification is then somehow downgraded to be animated.
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5 Limitations of Brama

The situations where Brama cannot animate a specification can be arranged in a typology of
five typical cases:

I Brama does not support the finite clause in axioms

II Brama must interpret quantifications as iterations

II.1 Brama only operates on finite sets

II.2 Brama cannot compute finite sets defined in comprehension with nested quantifica-
tion

II.3 Brama explicitly requires typing information of all those sets over which iteration is
performed in an axiom

III Brama cannot compute dynamic functional bindings in substitutions

III.1 Brama does not support dynamic mapping of variables in substitutions

III.2 Brama does not support dynamic function computation in substitutions

IV Brama does not compute arbitrary functions

IV.1 Functions with analytical definitions in context cannot be computed in events

IV.2 Functions using case analysis can not be expressed in a single event

IV.3 Invariants based on function computations can not be evaluated

V Brama has limited communication with its external graphical animation environment

These animation errors are due to two main reasons: either it is the limitation of the
animator or the expression itself is too complicated to be executed.

For each situation, we have defined a heuristic to transform the original specification into
one that can be animated. The heuristics are described following a rigid pattern shown by
figure 2.

Figure 2: The heuristic pattern

For each heuristic we first describe the symptoms i.e. in which particular cases this heuristic
should be used. The transform explains how the original statement must be transformed in
order to be animatable. Caution is the description of the applicability conditions, the possible
effects, and the precautions to follow. In the justification part we provide a rigorous argument
about the validity of the transformation. We describe why this solution works. In proof part
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we describe the formal condition to be checked to keep both specifications cohesive to each
other. Although not strictly formal but this rigorous and clear description frame allows us to
use animation safely to validate specifications.

It should be noted that our choice of tool, Brama, is contingent. At the time, it was the only
one able to animate Event-B specifications. More recent tools such as AnimB3 and ProB [LB03],
are now available and fully compatible with Event-B. While our rules should surely be adapted
to these specific tools, we suspect that the general philosophy of animation we have adopted is
still valid.

6 From non-executable to executable

The technique of animation is based on execution of specifications, thus non-animatability
means non-execution. Therefore, the rationale behind the proposed heuristics is to transform
non executable specifications and make them executable. This goal is achieved primarily by
reformulating the expressions and by adding some constructive elements to the specifications.
Some of the constructive elements which we have used to make these specifications executable
are: usage of extension for a finite domain; definition of upper and lower bounds to ensure
termination; simplification of complex formulas, such as lists and sequences; rewriting of com-
plex non-constructive expressions into executable format; inline/macro expansion of the formula
instead of calling the function; decomposition of events to include all the cases defined by func-
tions; etc. Our main constructive techniques are depicted by figure 3 and discussed as following:

Figure 3: Types of transformational heuristics

6.1 Approximation

Approximation is a standard mathematical phenomenon to represent something close enough
to the original and is a reasonably fast solution to be useful for computation and execution.
Approximations are used when original formulas are too complex to compute or take longer
time to compute than expected. In our transformations we use two types of approximations:
under-approximation and over-approximation. These approximation techniques are based on
abstract interpretation [CC77] and are often used to address state explosion problems in model
checking.

We use under-approximation to address the termination problem. This is a specific ter-
mination problem which is based on enumeration of values. When a formula is based on an
unbounded value it becomes non terminal because animator will continue enumerating it in-
finitely. Consequently Brama fails to execute such expressions. Therefore, we define their upper
and lower bounds which settle the case.

3http://www.animb.org
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In other cases, where we deal with complex data structures, such as sequences or lists, we
exploit the over-approximation technique. The primitive data type of sequence is not provided
in Event-B. In the time of need, we can use its standard definition which is based on nested
quantifications (see section 8.3 for more details). As we discussed in previous paragraph that
(un-bounded) quantifications cause problems during animation so consequently this definition
fails to animate. Apparently it seems that under-approximation can again be the solution and
defining bounds will solve the problem but a quantification over another quantification becomes
very complex expression for animator to execute. Therefore we simplify the expression using
over-approximation technique to achieve its executability.

The idea behind this transformation is two fold: first, simplification of formula to replace
non-executable elements with something executable, second, to employ an holistic approach to
quickly analyze and establish that if some property exists in the abstract (over-approximate)
system then it holds in the concrete system that it abstracts. However, if the property is absent
in the abstract system, we do not know if the concrete system violates this property.

6.2 Refinement

Refinement is an established formal activity to transform an abstract (high-level) formal spec-
ification into a concrete (low-level) executable program. This is exactly how we use this tech-
nique and transform our non-executable high level non-constructive formulas and expressions
into low-level animatable and executable elements. Although transformations achieved by ap-
proximations can also be discussed in terms of abstract-refinement relationship, but the case of
supply of missing type, case of event decomposition, and specially the case of introduction of
observation variable/invariants/events are the cases of pure refinement.

The following proof obligation must be proved in order to define the abstract-refinement
relationship between original and transformed specifications:

P (s, c)∧I(s, c, v)∧Q(s, t, c, d)∧J(s, t, c, d, v, w)∧H(s, t, c, d, w)∧S(s, t, c, d, w,w′) ⇒ G(s, c, v)∧
∃v′.(R(s, c, v, v′) ∧ J(s, t, c, d, v′, w′))

Where v defines the variables of the abstract machine and w defines the variables of refined
machine, s and c define the sets and constants of the abstract context, and t and d define sets
and constants for refined context. The axioms on the sets and constants of the abstract context
are denoted by P (s, c) and on refined context by Q(s, t, c, d). The invariant of abstract machine
are denoted by I(s, c, v) and refined machine by J(s, t, c, d, v, w). G(s, c, v) is the guard of
the abstract event whose before-after predicate are defined by R(s, c, v, v′). The corresponding
concrete event of the refined machine has the guard H(s, t, c, d, w) and the before-after predicate
S(s, t, c, d, w,w′).

6.3 Rewriting

Rewriting is a method to replace formulas and expressions with their equivalent counterparts.
The rationale behind using this technique for transformation is same as others: to replace
non-executable elements with their equivalent but executable counterparts.

In generalized substitutions, dynamic functions whose parameters are passed at runtime
(non-deterministically) and depend upon the computations performed by guards, are hard for
animator to compute. Same hardships are also faced when animators have to compute sets of
tuples in generalized substitutions. This is animator’s inability to perform some standard oper-
ations. Our approach towards these animation problems is to reformulate the non-computable
formulas by their counterparts in set algebra. While less readable, they have same semantics
and easy enough for animation.
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6.4 Inlining

Inline/macro expansion is an optimization technique to replace the call of the function by its
body. While writing specifications, this is a common practice to use functions for readability
and simplifying proofs. These functions are generally defined in contexts. We use constants
for their typing and axioms for their body definitions. Now we know that we need to feed the
values to constants in order to perform animation on them. When these constants (which in
turn are functions) are given values, they must adhere with the axioms which define the body
of the function. Depending upon the axioms, sometimes there are more values for each function
which need to be tabulated. This tabulation of values, at the time of feeding values, is not
possible in Brama. The situation becomes further more complicated, when function definition
consists of cases. Consequently, animation fails to execute.

This problem can be solved by using inline expansion technique i.e. to replace the function
call by its body. We take the function body from the context and replace it in events where
they are called. Like this we do not have to pre-define values at compile time and animator
gives the values to guards at run time by itself, so problem is solved and animation is possible.

Inline expansion technique, in turn, is based on two previously defined transformational
techniques: rewriting and refinement. It is rewriting because we are replacing the function call
by its body which means semantically both expressions are equivalent, of course proper care
has to be exerted with the use of involved variables. It can be defined as the refinement of the
original machine if we can prove the enabledness preservation of the involved events. Following
proof obligation must be proved:

∀S,C, Sr, Cr, V, V r, x, xr.A ∧Ar ∧ I ∧ Ir ⇒ (Gr ⇒ G)

Where S and C respectively represent sets and constants of the abstract context, Sr and Cr

respectively represent sets and constants of the refined context, V is the variable of the abstract
machine, V r is the variable of the refined machine, x is the local variable of the abstract event,
xr is the variable of refined event, and A, Ar, I, Ir, G, Gr are the axioms, invariants and guards
of abstract and refined machines respectively.

Before we describe our proposed heuristics in details one by one, let us first introduce some
vocabulary and formal definitions in the forthcoming subsection which will help understanding
what do we exactly mean by some technical terms.

7 Definitions

This subsection provides the formal definitions of the elementary concepts used while arguing
about the correctness of the heuristics.

7.1 State

State is a set of mappings of variables to values constrained by conditions expressed with the
help of invariants.

state = {variable 7→ value}

7.2 Event

Event is a transition from one state to another. Event E is made of a guard G, which is
a predicate built on state variables and expresses necessary condition for the transition, and
generalized substitution S, which describes the way how state is modified.

E(v) = When G(v) Then S(v) End

8



We say that a state t is reached from a state s after an event e(v) where e is the event and

v is the parameter supplied to the event and we express this like s
e(v)
−→ t.

7.3 Behavior

Behavior is a sequence of sates and events. A behavior of a specification (bs) is defined as:

bs = {(s1, e1(v1), s2), (s2, e2(v2), s3), ..., (sn−1, en−1(vn−1), sn)}
Speaking in terms of states, a state is reachable from its previous state provided previous

(enabled) event and parameter.

si = ei−1(vi−1)[si−1]

7.4 Transformation relation

There exists a transformation relation between a transformed specification and its original
specification. We say that for all transformed events e′ in a transformed specification Spect
there exists an event e in the original specification Speco and a transformation relation TransRel

between both of these events and vice versa.

∀ e′. e′ ∈ Spect ⇒ ∃ e . e ∈ Speco ∧ e′ 7→ e ∈ TransRel

∀ e. e ∈ Speco ⇒ ∃ e′ . e′ ∈ Spect ∧ e′ 7→ e ∈ TransRel

7.5 Shared states

Shared states are the common states of both original and transformed specifications. Let So

and St be the set of all states in the original specification and the transformed specification
respectively then Sc is a set of common states of both specifications.

Sc = So ∩ St

7.6 Shared parameters

The set of shared parameters contains the values (parameters) which are legal/permissible in
both (the original and the transformed) specifications. Let Vo and Vt be the set of all legal
values in the original specification and the transformed specification respectively then Vc is a
set of common values of both specifications.

Vc = Vo ∩ Vt

7.7 Shared behaviors

Let Bo = {{(s1, e1(v1), s2), (s2, e2(v2), s3), ..., (sn−1, en−1(vn−1), sn)}, ...} and

Bt = {{(s′1, e
′
1(v

′
1), s

′
2), (s

′
2, e

′
2(v

′
2), s

′
3), ..., (s

′
n−1, e

′
n−1(v

′
n−1), s

′
n)}, ...} be the set of all behav-

iors of the original and the transformed specifications respectively. Let bo and bt be any two
behaviors of Bo and Bt respectively, then bo and bt are shared if they share same states and
parameters, and their events establish a transform relation with each other.

Bc = {(bo, bt)|bo, bt, i.bo ∈ Bo ∧ bt ∈ Bt ∧ i ∈ dom(bo) ∧ dom(bo) = dom(bt) ∧ s′
i
= si ∧ v′

i
=

vi ∧ e′
i
7→ ei ∈ TransRel}

Let us define a relationship TransRel∗ between original (Bo) and transformed (Bt) behaviors
(i.e. a set of couples of bo and bt).

TransRel∗ ∈ Bo ↔ Bt

TransRel∗ ∈ P(Bo ×Bt)

TransRel∗ ∈ {∀bo, bt, i.bo ∈ Bo ∧ bt ∈ Bt ∧ events(bti) 7→ events(boi) ∈ TransRel}
Now if seen from transformed specification perspective, then
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Bt
c = {bt|bt.bt ∈ Bt ∧ TransRel∗−1[{bt}] ⊆ Bo}

and if seen from original specification perspective, then

Bo
c = {bo|bo.bo ∈ Bo ∧ TransRel∗[{bo}] ⊆ Bt}

7.8 Behavioral equivalence

Two specifications Speco and Spect are behaviorally equivalent if all interesting behaviors4

(starting from a shared state) observed in Spect are shared with Speco.

Speco
B
= Spect , ∀bi.bi ∈ Bt ∧ s1 ∈ Sc ⇒ bi ∈ Bt

c

7.9 Properties of behavioral equivalence

Following are the essential properties of behaviorally equivalent specifications:

1. Non-emptiness

The sets of shared states, parameters, and behaviors are non-empty sets.

Sc 6= ∅

Vc 6= ∅

Bc 6= ∅

2. Shared behaviors share states.

∀b.b ∈ Bc ⇒ Sb ⊆ Sc

7.10 Proofs for behavioral equivalence

The transformed specification Spect is behaviorally equivalent to original specification Speco

(Spect
B

≡ Speco) if following properties hold:

• Enabledness preservation

If an event is enabled with certain parameter at certain state in original specification then
its transform must be enabled in transformed specification given same parameter and
state.

Enabledness(Speco) = Enabledness(Spect) , [∀s, e, v.s ∈ Sc ∧ e ∈ Speco ∧ v ∈ Vc ∧
enabled(e, v, s) ⇒ (∃e′.e′ ∈ Spect ∧ e′ 7→ e ∈ TransRel ∧ enabled(e′, v, s))] ∧ [∀s, e′, v.s ∈
Sc ∧ e′ ∈ Spect ∧ v ∈ Vc ∧ enabled(e′, v, s) ⇒ (∃e.e ∈ Speco ∧ e′ 7→ e ∈ TransRel ∧
enabled(e, v, s))]

• State reachability

If a state is reachable in original specification after an event with certain parameter then
same state should be reachable in transformed specification as well given transform of the
event and same parameter.

Reachability(Speco) = Reachability(Spect) , [∀s, t, e, v.s, t ∈ Sc ∧ e ∈ Speco ∧ v ∈

Vc ∧ s
e(v)
−→ t ⇒ (∃e′.e′ ∈ Spect ∧ e′ 7→ e ∈ TransRel ∧ s

e
′(v)
−→ t)] ∧ [∀s, t, e′, v.s, t ∈ Sc ∧ e′ ∈

Spect ∧ v ∈ Vc ∧ s
e
′(v)
−→ t ⇒ (∃e.e ∈ Speco ∧ e′ 7→ e ∈ TransRel ∧ s

e(v)
−→ t)]

4An interesting behavior is a behavior which starts from a shared state and we are interested to observe in
the transformed specification and would have been observable in the original specification as well.
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• Closure property

All the states reachable from a shared state, after an event with a shared parameter, are
shared states as well.

∀s, t, e, v.s ∈ Sc ∧ t ∈ So ∧ e ∈ Speco ∧ v ∈ Vc ∧ enabled(e, v, s) ∧ s
e(v)
−→ t ⇒ t ∈ Sc

• Behavioral equivalence

If two specifications are behaviorally equivalent then they have same enabledness and
reachability.

Speco
B
= Spect ⇒ Enabledness(Speco) = Enabledness(Spect) ∧ Reachability(Speco) =

Reachability(Spect)

8 Transformational heuristics

The aforementioned animation problems of Brama discussed in section 5 lead us to design 10
transformation heuristics, one for each case. We designed the heuristics to preserve the behavior
of the specification, not its formal properties. In particular, the transformed specification may
not be provable in RODIN platform. The correctness of the transformation is then a crucial
issue.

Since not all heuristics maybe provable within Event-B formal logic system, we relied on the
mathematical tradition of “rigorous arguments”. For this to work, we need a basic assumption:
the initial specification text must have been formally verified. Most of the arguments given in
the justification clause of heuristic rely on this hypothesis.

As aforementioned, to transform non-animatable specifications into animatable ones, our
proposed heuristics are mainly based on four kinds of transformational techniques: approx-
imation, refinement, inlining, and rewriting. While former is the technique related to state
exploration from abstract interpretation point of view, refinement is a standard formal tech-
nique used to transform abstract specifications into concrete ones, and inlining and rewriting
are the techniques used to facilitate computations for animator while preserving the semantics.

Kinds of transformations

Following are the kinds of transformational heuristics:

1. Context

In contexts, we transform its axioms. Axioms are either modified or removed during the
transformation process.

2. Machine

In machines, we introduce transformations at two levels:

(a) Invariant

At invariant level, we remove an invariant from the specification.

(b) Event

At event level, we transform each event into its equivalent event. If some event does
not require any heuristic application, its transformed counterpart is the image of it.
In other cases, we introduce transformations in following fashions:

i. Guards
We modify the guard of an event by inlining the value of the involved function.
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ii. Substitution
We modify the substitution of the event by rewriting it.

iii. Decomposition
A transformed event E′ is the decomposition of (original event) E into multiple
events and the multiplicity of events depends upon the original function definition
which leads to event decomposition and cases defined by it.
E′(v) = {E′

1(v), E
′
2(v), ..., E

′
n(v)}

Where
E′

i
(v) = When G′

i
(v) Then S(v) End

Guard of E is also decomposed accordingly and composition of all (decomposed)
guards forms the original guard.
G(v) = G′

1(v) ∨G′
2(v) ∨ ... ∨G′

n(v)
∀v.G(v) ⇒ ∃i.G′

i
(v)

∀i, v.G′
i
(v) ⇒ G(v)

G′
i
(v) is a guard of the corresponding decomposed event E′

i
(v). Please note that

the generalized substitution is kept same as of the original event E.

8.1 Remove the axiom finite from the specification

Symptom: Error message that keyword finite is not supported.

Pattern: Remove all the instances of axiom finite from the specification.

Caution: Removal of axioms finite invalidates many well-formedness proof-obligations.

Justification: Axioms like finiteness and non-emptiness can be considered as purely technical
axioms [MJS08] [MJS09a]. They do not bring much information into the specified system
whose implementation will necessarily be finite, even if it could conceptually be infinite. These
technical axioms are required by the inference rules used by the provers. Since all the sets of
values will be defined by extension, the animation will work upon necessarily finite values. The
behavior is trivially maintained.

Proof: This heuristic is the application of transformational kind 1. Because of its technical
nature as defined in justification part, this heuristic does not require any formal proof.

8.2 Specify the finiteness of a quantified domain

Symptom: Error message about dependent variables which do not have an iterator.

Pattern: Limit the range of the list.

Original n.n ∈ N ⇒ expression(n)

Transformed n.n ∈ min..max ⇒ expression(n)

Caution: The range must be wide enough so that the values computed during the anima-
tion never fall outside it. Some proof obligations may become impossible to discharge (e.g,
n+ 1 ∈ N).

Justification: This heuristic is the opposite of the previous rule; the argumentation on the
necessary finiteness of the values during animation holds. The major difference with the previous
rule is the necessity to check during the whole animation that the range is always wide enough.
If this condition is ensured, then the behavior is the same.

In broader formal framework spectrum, this is the example of refinement. The newly con-
structed expression is a refined version of the original expression which contains lesser but precise
values. From more focused abstraction framework’s point of view, this is under-approximation,
which allows us to check quickly the state reachability by exploring the subset of the reachable
states.
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Proof: This heuristic is the application of transformation kind 1. In order to prove the correct-
ness of this heuristic we need to show that the introduced limitation does not preclude some
legitimate states which exist in original specification. Therefore it is imperative to check that
following (closure) condition holds:

∀s, t, e, v.s ∈ Sc ∧ t ∈ St ∧ e ∈ Speco ∧ v ∈ Vc ∧ enabled(e, v, s) ∧ s
e(v)
−→ t ⇒ t ∈ Sc

Now if the condition v ∈ Vc can be ensured then this proof is straightforward. Since this
heuristic explicitly requires the given range to be wide enough to incorporate all the legitimate
values therefore the correctness can be ensured if this pre-condition is met.

For proofs like n+ 1 ∈ N or n− 1 ∈ N, we can use lazy proof approach or proof by demand
i.e. always extending or retracting max and min to incorporate the desired value into the range.

8.3 Generalize expressions involving complex iterations

Symptom: Error message about the impossibility to build the iterators of the predicate.

Transform: Take super-set of the expression.

Original var = {x|∃n.n ∈ N1 ∧ x ∈ 1..n → y}
Transformed var ∈ P(N 9 y)

Caution: Although there is an apparent similarity with the problem dealt with Rule 8.2, the
situation is very different: the computation requires two levels of iterations. This transformation
loosens the constraints on the values, some maybe essential to the behavior (for instance, the
property that all integer between 1 and the length of the sequence belong to the range of the
function). Brama cannot ensure anymore that the properties hold. The burden of the check is
passed onto the input of the values.

Justification: On the subset of values shared by the specification (that is, those values re-
specting the constraints left out by the generalization), both specifications must have the same
behavior. Two cases must be considered:

• the value is a constant: it does not change during the animation and it keeps its properties,

• the value is a variable: at least one of the proof obligations in the initial specification
deals with proving that the result of the computation belongs to the set. Since the initial
specification is verified, the values in the modified specification have the same property.

This is an example of abstraction because the transformed formula is an abstraction of the
original formula. In abstraction framework, this technique is known as over-approximation.
The idea behind this technique is that if a property holds in the abstract (over-approximate)
system then it holds in the concrete system that it abstracts. However, if the property does not
hold in the abstract system, we do not know if the concrete system violates this property.

Proof: This heuristic is the application of transformation kind 1. In order to prove the cor-
rectness of this heuristic we need to show that considering additional values do not leave out
the original values which must have been part of the original specification. Again the (closure)
condition states that:

∀s, t, e, v.s ∈ Sc ∧ t ∈ St ∧ e ∈ Speco ∧ v ∈ Vc ∧ enabled(e, v, s) ∧ s
e(v)
−→ t ⇒ t ∈ Sc

Now if the condition v ∈ Vc can be ensured then this proof is straightforward. Since this
heuristic takes the super set of the values then it implicitly contains all the abstracted values.

8.4 Explicitly provide the typing information of all sets used in an axiom

Symptom: Error message about the impossibility to build the iterators of the predicate.

Transform: Always provide the type of variables.
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original x ⇒ expression(x)

Transformed x.x ∈ X ⇒ expression(x)

Caution: The type provided must be consistent with the type inferred by the provers. Pay
special attention in case of subtypes, for example set of even or odd (natural) numbers. In such
cases take the super type i.e. N.

Justification: Brama does not use the information derived by the provers. The provided set
is actually redundant. Brama needs it to set up the iteration process. Two cases must be
considered:

• if the type is equal to a carrier set, or a subset, the modified expression is just a redundant
form of the initial expression,

• if the type is an infinite set, such as N, then Rule 8.2 should also be applied. The same
caution and reasoning apply.

Proof: This heuristic is the application of transformation kind 1. This is the case of supplying
the missing type therefore semantics remain intact. Provided type must be fully consistent with
the inferred type. Although Rodin doesn’t show any proof obligation for this heuristic but this
heuristic can also be justified as the refinement of the system.

8.5 Avoid dynamic mapping of variables in substitutions

Symptom: Error message: “Default number can not be casted to IMapplet”. Brama does not
compute sets of tuples in substitutions.

Transform: Rewrite the substitution to avoid mapping.

Original var := {x, y.x ∈ X ∧ y ∈ Y |x 7→ y}
Transformed var := ({x ∈ X|x} × {y ∈ Y |y})

Justification: The transformation is simply a rewriting of the initial expression as a formula
in set algebra. While less readable, it has the same semantics.

Proof: This heuristic is the application of transformation kind 2(b)ii. This is the case of
rewriting and if the transformed expression is the exact translation of the original expression in
set algebra, then no other condition needs to be checked.

8.6 Avoid dynamic function computation in substitutions

Symptom: Error message: “Related invariant is broken after executing the event”. Brama
cannot apply a function defined by its graph in a substitution.

Transform: Rewrite the substitution to avoid function computation.

Original var := {x.x ∈ X|fun(x)}
Transformed var := {ran({x.x ∈ X|x}⊳ fun)}

Justification: The transformation is simply a rewriting of the initial expression as a formula
in set algebra. While less readable, it has the same semantics.

Proof: This heuristic is the application of transformation kind 2(b)ii. This is the case of
rewriting and if the transformed expression is the exact translation of the original expression in
set algebra, then no other condition needs to be checked.

8.7 Inline the functions defined in contexts in events

Transform: Substitute function calls by their “inlined” equivalent

Original (in Context) ∀x.x ∈ S ⇒ f(x) = expression(x)

Original (in Event) f(v)
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Transformed (in Context) true

Transformed (in Event) v ∈ S ∧ expression(v)

Caution: All occurrences of f in the specification must be replaced; special care must be
exerted when replacing formal parameters by actual values.
Justification: In a mathematical context, the value f(v) is equal to its definition expression
where v has been substituted to x; both expressions are interchangeable.

Contexts in Event-B are precisely meant to contain constants and general definitions, such as
functions. Using this structure eases the proofs and provides better legibility. As for 8.5 and 8.6,
the “inlining” heuristic is strongly connected to the issue of readability and understandability
of formal texts.

Proof: This heuristic is the application of transformation kind 2(b)i. This is the case of inline
expansion and following condition needs to be checked to ensure consistency:

∀S,C, Sr, Cr, V, V r, x, xr.A ∧ Ar ∧ I ∧ Ir ⇒ (Gr ⇒ G). Since Ir = I because invariants
are not changed in this heuristic and Ar ⊂ A because axioms of refined contexts are subset of
original context, therefore we are left to prove: ∀S,C, Sr, Cr, V, V r, x, xr.A ∧ I ⇒ (Gr ⇒ G).
See section 6.4 for more details about the proof.

8.8 Replicate events which use functions defined “by cases”

Symptom: Same as 8.7, plus a function defined “by cases”

Transform:

Original (in Context) ∀x.x ∈ S ⇒ (p(x) ⇒ f(x) = expression(x) ∧ q(x) ⇒ f(x) =
expression′(x))

Original (in Machine) EVENTS

EVENT A

WHEN ...f(v)...

THEN ...f(v)...

Transformed (in Context) true

Transformed (in Machine) EVENTS

EVENT A1

WHEN ...

grdc1 p(v)

THEN ...

EVENT A2

WHEN ...

grdc1 q(v)

THEN ...

Caution: This heuristic must be followed by the application of 8.7. Check that all cases
have been covered. Be particularly careful if the function is applied to several, different actual
parameters; this may require several application of this heuristic.

Justification: The predicates used in the case definitions are equivalent to guards in events.
They have the same form and are used for the same purpose. Events A1 and A2 are copies of
A, except for the new guard: their union is equivalent to A. Hence the transformed specification
has the same behavior as the initial specification.

This heuristic entails major surgery in the specification. A blind application may intro-
duce many copies of the events. By using the structures of other guards (some may already
prevent cases in the function definition to be used) and by grouping several function into one
transformation, it is possible to reduce the number of duplications.
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Proof: This heuristic is the application of transformation kind 2(b)iii. This is the case of inline
expansion followed by event decomposition. Along with the proof defined for the previous
heuristic, the additional condition needs to be checked is ∀v.G(v) ⇒ ∃i.G′

i
(v) and ∀i, v.G′

i
(v) ⇒

G(v) i.e. new guards cater all the cases defined by original guard.

8.9 Remove Invariants

Symptom: Error message about dependent variables which do not have an iterator.
Transform: Remove the related invariant.
Caution: Removal of invariant may pop up some proof-obligations.
Justification: Invariants express the conditions which specification must adhere. Removal of
invariant is safe because (1) invariant do not modify behaviors (they are only observed) and (2)
proof-obligations related to maintaining the invariant have already been successfully discharged.
Proof: This heuristic is the application of transformation kind 2a. Since we started from the
proven specification and all (invariant related) proof obligations are already discharged, therefore
it is safe to use this heuristics. Generally behavior of a specification is changed when newer
states are reachable. Since no new state transition is defined therefore behavior is maintained.
Although some of the consistency proof obligations can not be discharged anymore in Event-B
formal framework.

8.10 Introduce observation variables/invariants/events

Symptom: Front end requires observatory elements
Transform: Introduce observation variables/invariants/events to the specification.
Caution: Use this heuristic only for observatory purposes not for introduction of new behavior
Justification: The observation variables, invariants and events are introduced to the specifi-
cation when we want to demonstrate a particular behavior in external flash application. Since
the flash interface is bound to Event-B specification where the actual values are being changed
so it’s easier to introduce new constructs there rather than at front end. These new constructs
are purely cosmetic changes to the specification and only facilitates the graphical look of the
specification and does not define any new behavior.
Proof: This is pure refinement and standard consistency checking proofs can ensure the cor-
rectness of this heuristic.

9 The 3-step validation framework

We now introduce our rigorous requirement validation framework for refinement based software
development. In our work, we integrate the technique of animation with each observation level of
specification to break its validation into smaller assessments. Our proposed stepwise validation
framework, for each observations level, is summed up by figure 4 and as follows:

1. start from a fully verified specification. This step is essential.

2. for each non animatable trait:

(a) pick an appropriate rule

(b) check that the applicability conditions hold

(c) prove that the argument used in the justification part of the rule is valid

3. animate for validation. If an anomalous behavior is encountered, modify the initial spec-
ification, prove it to be correct, and restart from step one.
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Figure 4: The stepwise validation framework

9.1 Step 1: Verification

The step 1 of our proposed validation framework is based on verification of specifications.
Our belief is that there is no point in validating a specification which could not be verified!
Such a specification is a dead-end as far as formal development is concerned. In our proposed
validation process, a verified specification must be the starting point of the animation process.
The application of the heuristics may downgrade it to a non provable specification. Running the
animation may uncover some mistakes. These entail the modification of the initial specification,
which then must be verified, and transformed again for proceeding with the validation.

It is important to note that the order between verification and validation is the reverse
of what a development relying on tests would use. In the later case, there is no point in en-
gaging a costly series of tests on a piece of code which does not fulfill users’ needs. We give
verification preeminence over validation mainly for two reasons. First, it provides us with a
reasonable safeguard. Second, and more importantly, it allows us to justify some heuristics
with sound arguments. For instance, let us consider two heuristics. One calls for the erasure
of an invariant 8.9. This is safe because (1) invariant do not modify behaviors (they are only
observed) and (2) proof-obligations related to maintaining the invariant have been successfully
discharged. Another heuristic calls for the replacement of a set defined through complex prop-
erties of its elements by a simpler super-set 8.3. Provided we exert great care when feeding the
animation with values which conform to the “complex” set, the transformation is safe because
proof obligations have been discharged under the assumption that the values belonged to the
“complex” set, and (1) either the values are only used (they are constants), and so properties
are trivially maintained, or (2) the values are computed, but then at least one of the discharged
proof-obligation was about the belonging of the computed value to the “complex” set. Though
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less direct, the justification for the other heuristics rely heavily on the fact that they are applied
to verified texts.

9.2 Step 2: Transformation

As soon as all proof obligations have been discharged, we start animating the specification.
This animation process is often struck either due to some shortcomings of animators or by some
non-executable elements which are used to specify the behavior. This is the point where we
introduce our proposed heuristics to the stepwise validation process. Whenever we discover any
element in the specification which is non-executable, we inspect the problem and try to match
the case with the list of our proposed heuristics. This inspection and matching practice includes
checking if the same application condition holds as defined by heuristic framework and also that
the use of this heuristic can be justified. This justification can either be provided in the form
of formal proof or by a rigorous argument that application of heuristic would not change the
behavior of the specification.

We have designed our heuristics with a very strong guideline: they must preserve the be-
havior of the specification. Behavior of a specification is defined by sequence of states and
transitions. Based on precise semantics, the transformation relation of heuristics maintains
shared behaviors between the original and the transformed specification. Some transforma-
tions, such as approximations may change the set of states or affect the provability. The proofs
of enabledness preservation, state reachability, closure, are then employed to assert the behavior
equivalence. Correctness of transformations are then again justified by other means, such as
defining a refinement-relationship between the original and the transformed specification. Stan-
dard refinement and consistency checking conditions could then be proved in order to assert
correctness rigorously.

9.3 Step 3: Animation

Once transformations have been applied, it means now specification is animatable. Animatable
specification would demonstrate the behavior of the specification. If the demonstrated behavior
is as per expectations then we have both the verified and the validated specification in our hands.
However, if this is not the case and a closer look at the specification has revealed deviations
from the intended behavior, then we need to go back to the initial specification and would have
to correct the anomalous behavior. This triggers the loop i.e. re-proving, re-application of the
heuristics, and re-animation until the specification conforms to actual requirements.

10 Animation: A reflection

Although animation is a strong contender to be a standard validation technique for real life
projects, but during this academic research project it has been used as a “light-weight” valida-
tion technique. By light-weight validation, we mean that we did not have real customers and
Software Requirement Specifications (SRS), consequently no “systematic” and “real” valida-
tion. Absence of real customers also indicates the absence of requirements coverage matrices.
Even for covered requirements, we do not use different oracles to prove or disprove whether
some test has passed or failed. We also have not defined and categorized different system’s
outputs against which we can compare our specification. No test plans, neither individual test
cases nor collaborative test suites have been defined. Then it becomes a very pertinent question
that what is the role of animation as a “hardcore” validation technique.
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During our experience, we have discovered that animation is a multi-disciplinary validation
technique. Animation can be used for variety of activities during software development. Pri-
marily, animation is used as a quality assurance activity i.e. to gain confidence in specifications.
It can also be used as prototyping. The benefit over here is that we can convert the specification
into a prototype without translating it into code. It then acts as a quick and low cost validation
technique.

Animation is also a modeler’s first hand choice to quickly analyze what he/she has specified.
After defining one behavior and before going to the next, specifier can use animation to be sure
that he is going along the right path.

Animation can also be an aide during verification. Sometimes proofs became difficult to
discharge. With animation at our disposal, we can thoroughly investigate some of the inter-
actions among involved guards and axioms. It then provides us with some insight about the
specification and helps us simplifying the proof.

Animation can also be beneficial in reducing software faults. There are many reasons for
software faults, such as unrecognized requirements, bugs, etc. All of these result in errors and
omissions in specifications. Some of the obvious or never-thought-like-that requirements can be
discovered while animating the specification. The unintended behavior can then point out how
the system should have worked ideally and what else need to be included in order to achieve
desired results. Bug hunting with animation becomes far easier because deviation from the
intended behavior clearly identifies where and what is wrong in the specification.

11 Related work

The concept of animation of specifications as a mean of prototyping and validation dates back
to 80’s [BGW82]. Since then many tools have been provided to help visualize requirements and
system specifications, e.g. [SMRO97, VvLMP04, BLLS08].

There are two school of thoughts as far as execution of specifications is concerned. While
one group believes that specifications should not necessarily be executable [HJ89], other group
negates this idea and advocates that specifications should preferably be executable [Fuc92], some
even propose transformation mechanisms to do so [Par90]. We find ourself inclined towards
latter and our work is a continuation of this effort.

12 Conclusion and future work

This research explores the possibility to incorporate validation of formal specifications into
their stepwise development process. We propose a rigorous validation framework for software
specifications by systematic transformations.

Our approach is novel in a sense that we break the requirements validation process into
small steps and integrate it into stepwise development of specifications. We are now able to
detect and rectify errors right away even those which were still left behind after verification.
Our framework, based on low-cost transformations and activities like animation, reduces the
overall cost and time of validation process.

We have successfully utilized our framework for the validation of two safety critical case
studies: a formal specification of land transportation domain [MJS09b] and a formal specifi-
cation of platooning systems [MJ09]. We have also used our framework to validate gradual
introduction of formalism into the requirement engineering phase [MM10].

Though we are assured that applications of heuristics are independent of each other i.e.
application of one heuristic does not contradict with other and one application does not depend
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on another, yet this belief must be put on test. In future, we intend to formally establish that
applications of heuristics are independent. We also plan to check that these heuristics are also
compatible with animators other than Brama.
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