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1040 Vienna, Austria
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Abstract. Cut-elimination is the most prominent form of proof trans-
formation in logic. The elimination of cuts in formal proofs corresponds
to the removal of intermediate statements (lemmas) in mathematical
proofs. The cut-elimination method CERES (cut-elimination by resolu-
tion) works by extracting a set of clauses from a proof with cuts. Any
resolution refutation of this set then serves as a skeleton of an ACNF,
an LK-proof with only atomic cuts.
The system CERES, an implementation of the CERES-method has been
used successfully in analyzing nontrivial mathematical proofs (see [4]).In
this paper we describe the main features of the CERES system with spe-
cial emphasis on the extraction of Herbrand sequents and simplification
methods on these sequents. We demonstrate the Herbrand sequent ex-
traction and simplification by a mathematical example.

1 Introduction

Proof analysis is a central mathematical activity which proved crucial to the
development of mathematics. Indeed many mathematical concepts such as the
notion of group or the notion of probability were introduced by analyzing existing
arguments. In some sense the analysis and synthesis of proofs form the very core
of mathematical progress.

Cut-elimination introduced by Gentzen [8] is the most prominent form of
proof transformation in logic and plays a key role in automatizing the analysis
of mathematical proofs. The removal of cuts corresponds to the elimination
of intermediate statements (lemmas) from proofs resulting in a proof which is
analytic in the sense that all statements in the proof are subformulas of the
result. Therefore, the proof of a combinatorial statement is converted into a
purely combinatorial proof.

The development of the method CERES (cut-elimination by resolution) was
inspired by the idea to fully automate cut-elimination on real mathematical
proofs, with the aim of obtaining new interesting elementary proofs. While a
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fully automated treatment proved successful for mathematical proofs of mod-
erate complexity (e.g. the “tape proof” [2] and the “lattice proof” [9]), more
complex mathematical proofs required an interactive use of CERES; this way
we successfully analyzed Fürstenberg’s proof of the infinitude of primes (see [4])
and obtained Euclid’s argument of prime construction. Even in its interactive use
CERES proved to be superior to the reductive cut-elimination due to additional
structural information provided by the characteristic clause set (see below).

CERES [5, 6] is a cut-elimination method that is based on resolution. The
method roughly works as follows: From the input proof ϕ of a sequent S a clause
term is extracted and evaluated to an unsatisfiable set of clauses CL(ϕ), the
characteristic clause set. A resolution refutation γ of CL(ϕ), which is obtained
using a first-order theorem prover, serves as a skeleton for an (atomic cut normal
form) ACNF ψ, a proof of S which contains at most atomic cuts. This method
of cut-elimination has been implemented in the system CERES

1. The system is
capable of dealing with formal proofs in an extended version LKDe of LK,
among them also very large ones.

However, the large size of ACNFs, automatically generated by CERES, turned
out problematic in practice. Indeed, the aim is not only to produce an ACNF
ψ from ϕ, but also to interpret ψ as a mathematical proof. In fact, the huge
sizes of output proofs result from an inherent redundancy of formal calculi. Less
redundant representations of the underlying mathematical arguments can be
obtained by extracting a Herbrand sequent H(ψ) from an ACNF ψ (see [9] and
[11]). Thereby, H(ψ) is a sequent consisting of instances of the quantifier-free
parts of the formulas in S (we assume that S is skolemized). Though Herbrand
sequents proved clearly superior to ACNFs in the analysis by humans, further
simplifications of these sequents turned out important in practice. In this sys-
tem description we lay specific emphasis on the extraction and simplification of
Herbrand sequents, and illustrate transformations by an example.

By its high efficiency (the core of the method is first-order theorem proving by
resolution and paramodulation), and by automatically extracting crucial struc-
tural information from proofs (e.g. the characteristic clause set) CERES proved
useful in automated proof mining, thus contributing to an experimental culture
of computer-aided proof analysis in mathematics.

2 The System CERES

The cut-elimination system CERES is written in ANSI-C++. The core function-
ality of CERES[3] allows the user to input a first order proof ϕ and obtain an
ACNF(ϕ). The core system also includes two additional tools: the compiler hlk2

for the intermediary proof language HandyLK and the proof viewer ProofTool3.

1 available at http://www.logic.at/ceres/
2 http://www.logic.at/hlk
3 http://www.logic.at/prooftool
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The system follows a uniform data representation model for proofs and sequents
in the form of XML using the proofdatabase DTD4.

This functionality is extended in the current system by various optimizations
on the resulted proof. CERES allows the computation of a Herbrand-sequent of the
theorem and applies to it several simplification algorithms. Due to the important
role of resolution provers in CERES, the system interfaces now with two additional
provers: Prover95 and ATP6.

The execution cycle starts with the mathematician using HandyLK to pro-
duce a formal LKDe-proof ϕ. LKDe is an extension of LK[2] to include def-
inition and equality rules. HandyLK produces a formal proof by focusing on
essential information as input. In particular, propositional inferences and con-
text formulas are not required. HandyLK also simplifies the writing of proofs
in a tree form by supplying meta-variables denoting proofs. Finally, HandyLK
enables the definition of proof schemata by supporting parameterization over
meta-terms and meta-formulas.

Since the restriction to skolemized proofs is crucial to the CERES-method,
the system includes a proof skolemization transformation sk following Andrew’s
method[1]. sk(ϕ) is then parsed by CERES to produce CL(ϕ).

CL(ϕ) is given as input to one of the three possible theorem provers (Otter,
Prover9 and ATP) and a resolution refutation is extracted. Otter and its succes-
sor Prover9 are both very efficient resolution provers that produce the resolution
tree as output. Because a fully automatic refutation is not always possible, the
interactive prover ATP was developed. ATP is a basic resolution prover that
supports interaction with the user as well as customizable refinements. Interac-
tion was used in order to validate and complete (manually obtained) refutations
while customization can be used in order to implement specific and more efficient
refinements[12].

In the last phase, CERES maps the refutation into an LKDe-proof such that
resolution steps are mapped into atomic cuts, paramodulation into equality rules,
etc. Moreover, it inserts proof projections (which are cut-free parts of the input
proof[5, 6]) in order to obtain an ACNF(ϕ).

For a convenient analysis of the results, the system is equiped with the proof
viewer/editor ProofTool. ProofTool is capable of presenting all data objects used
in the process: the original and skolemized proof, the profile, the refutation, the
ACNF-proof and the simplified Herbrand-sequent.

Herbrand-sequent extraction and simplification. As a post-process,
the system now supports the extraction of a Herbrand-sequentH(ϕ) from ACNF(ϕ).
This process transforms the ACNF(ϕ) into a proof in an intermediary calculus
LKeA, in which weakly quantified formulas are being replaced by an array of
their instances. By “inverting” the transformation, we obtain H(ϕ), which is still
valid and contains all the desired information in a more compact form. H(ϕ) is
simplified further by the application of three algorithms[7].

4 http://www.logic.at/ceres/xml/5.0/proofdatabase.dtd
5 http://www.cs.unm.edu/~mccune/prover9/
6 http://www.logic.at/atp
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The first simplification algorithm Suse removes formulas containing irrelevant
information: formulas which were introduced either by weakening or as the side-
formulas of the main formulas of some other inferences.

An algebraic simplification Salg is performed on the resulted sequent by nor-
malizing each term with regard to a user-defined set of rewriting rules.

The last simplification algorithm Slog strips logically irrelevant formulas. As
a Herbrand-sequent is always valid with regard to a given theory, we negate
H(ϕ) and apply a resolution theorem prover in order to obtain a refutation γ

of the background theory and ¬H(ϕ). The logically irrelevant formulas are all
those formulas not appearing as leaves in γ.

3 An Example

In this section, we will treat a simple example from lattice theory. There are
several different, but equivalent, definitions of the notion of lattice. Usually, the
equivalence of several statements is shown by proving a cycle of implications.
While this approach is elegant, it has the drawback that it does not provide
direct proofs between the statements. Using cut-elimination, direct proofs of the
implications between any two of the statements can be obtained. Hence we will
demonstrate how the CERES system can be used to automatically generate such a
proof via cut-elimination, how the Herbrand sequent extracted from the resulting
proof can be simplified, and how the simplified Herbrand sequent provides a
minimal explicit construction which was implicit in the original proof.

Lattice definitions. We will consider three definitions of the notion of lat-
tice: two are algebraic, using 3-tuples 〈L,∩,∪〉, while the third one depends on
the notion of partially ordered set 〈S,≤〉.

Definition 1 (Algebraic Lattices). A semi-lattice is a set L together with an

operation ◦ fulfilling for all x, y, z ∈ L

x ◦ y = y ◦ x and x ◦ x = x and (x ◦ y) ◦ z = x ◦ (y ◦ z).

A L1-lattice is a set L together with operations ∩ (meet) and ∪ (join) s.t. both

〈L,∩〉 and 〈L,∪〉 are semi-lattices and for all x, y ∈ L

x ∩ y = x↔ x ∪ y = y.

A L2-lattice is a set L together with operations ∩ and ∪ s.t. both 〈L,∩〉 and

〈L,∪〉 are semi-lattices which for all x, y ∈ L obey the absorption laws

(x ∩ y) ∪ x = x and (x ∪ y) ∩ x = x

Definition 2 (Partial Order). A binary relation ≤ on a set S is called partial
order if for all x, y, z ∈ S

x ≤ x and (x ≤ y ∧ y ≤ x) → x = y and (x ≤ y ∧ y ≤ z) → x ≤ z.
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Definition 3 (Lattices based on Partial Orders). A L3-lattice is a partially

ordered set 〈S,≤〉 s.t. for all x, y ∈ S there exist a greatest lower bound ∩ and a

least upper bound ∪, i.e. for all z ∈ S

x ∩ y ≤ x ∧ x ∩ y ≤ y ∧ (z ≤ x ∧ z ≤ y → z ≤ x ∩ y) and
x ≤ x ∪ y ∧ y ≤ x ∪ y ∧ (x ≤ z ∧ y ≤ z → x ∪ y ≤ z).

It is well known that the above three definitions of lattice are equivalent. We
will formalize the proofs of L1 → L3 and L3 → L2 in order to extract a direct
proof of L1 → L2, i.e. one which does not use the notion of partial order.

Formalization of the Lattice Proof. The full LKDe-proof of L1 → L2,
formalized in the HandyLK language and compiled to LKDe by hlk, has 260
rules (214 rules, if structural rules, except cut, are not counted). It is too large
to be displayed here. Below we show only a part of it, which is close to the end-
sequent and depicts the main structure of the proof, based on the cut-rule with
L3 as the cut-formula. The full proofs, conveniently viewable with ProofTool,
are available on the website of CERES.

We note here that the proof is formalized in the theory of semi-lattices: it
uses (instances of the open versions of) the semi-lattice axioms, and hence the
theorem is valid in the theory T of semi-lattices, but not in general.

[pR]
⊢ R

[pAS ]
⊢ AS

[pT ]
⊢ T

⊢ AS ∧ T
∧ : r

⊢ R ∧ (AS ∧ T )
∧ : r

⊢ POSET
d : r

[pGLB ] [pLUB ]

L1 ⊢ GLB ∧ LUB
∧ : r

L1 ⊢ POSET ∧ (GLB ∧ LUB)
∧ : r

L1 ⊢ L3
d : r

[p23]
L3 ⊢ L2

L1 ⊢ L2
cut

– L1 ≡ ∀x∀y((x ∩ y) = x→ (x ∪ y) = y) ∧ ((x ∪ y) = y → (x ∩ y) = x)
– L2 ≡ ∀x∀y(x ∩ y) ∪ x = x ∧ ∀x∀y(x ∪ y) ∩ x = x

– L3 ≡ POSET ∧ (GLB ∧ LUB)
– pAS , pT , pR are proofs of, respectively, anti-symmetry, transitivity and re-

flexivity of ≤, which is defined as x ≤ y ≡ x ∩ y = x.
– pGLB and pLUB are proofs that ∩ and ∪ are greatest lower bound and

greatest upper bound, respectively.
– p2

3
is a proof that L3-lattices are L2-lattices.

Cut-Elimination of the Lattice Proof. Prior to cut-elimination, the for-
malized proof is skolemized by CERES, resulting in a proof of the skolemized
end-sequent L1 ⊢ (s1 ∩ s2) ∪ s1 = s1 ∧ (s3 ∪ s4) ∩ s3 = s3, where s1, s2, s3 and
s4 are skolem constants for the strongly quantified variables of L2. Then CERES

eliminates cuts (using Prover9 for computing the refutation), producing a proof
in ACNF (available for visualization with ProofTool in the website of CERES).

Herbrand Sequent Extraction of the ACNF of the Lattice Proof.
As our proof under investigation uses axioms of the theory T , also our ACNF ϕ

is a proof in T , and the Herbrand sequent H(ϕ), extracted from ϕ according to
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the algorithm from [9], is valid in T . After the application of Suse, H(ϕ) becomes
the sequent H ′:

s1 ∪ (s1 ∪ (s1 ∩ s2)) = s1 ∪ (s1 ∩ s2) → s1 ∩ (s1 ∪ (s1 ∩ s2)) = s1,

s1 ∩ s1 = s1 → s1 ∪ s1 = s1,

(s1 ∩ s2) ∩ s1 = s1 ∩ s2 → (s1 ∩ s2) ∪ s1 = s1,

(s1 ∪ (s1 ∩ s2)) ∪ s1 = s1 → (s1 ∪ (s1 ∩ s2)) ∩ s1 = s1 ∪ (s1 ∩ s2),
(s3 ∪ (s3 ∪ s4) = s3 ∪ s4 → s3 ∩ (s3 ∪ s4) = s3
⊢L2, (s1 ∩ s2) ∪ s1 = s1 ∧ (s3 ∪ s4) ∩ s3 = s3

Observe that Suse has pruned some subformulas from H(ϕ): as H(ϕ) is a Her-
brand sequent of our theorem, its antecedent only contains instances of L1.
Observe that the formulas in the antecedent of H ′ are not instances of L1 (some
conjuncts where deleted), but still H ′ is valid in T and contains the relevant
information from the ACNF.

By Slog, H
′ is further pruned and four formulas are deleted, finally resulting

in the Herbrand sequent H ′′

(s1 ∩ s2) ∩ s1 = s1 ∩ s2 → (s1 ∩ s2) ∪ s1 = s1,

s3 ∪ (s3 ∪ s4) = s3 ∪ s4 → s3 ∩ (s3 ∪ s4) = s3
⊢ (s1 ∩ s2) ∪ s1 = s1 ∧ (s3 ∪ s4) ∩ s3 = s3

H ′′ is minimal in the sense that if we remove a formula from H ′′, the resulting
sequent is not valid in T anymore. This is not the case in general; minimality is
determined by the resolution refutation computed in Slog.

H ′′ now gives rise to an elementary proof of the theorem L1 ⊢ L2: Our goal
is to prove (1) (s1 ∩ s2) ∪ s1 = s1 and (2) (s3 ∪ s4) ∩ s3 = s3. For (1), we prove
(s1 ∩ s2)∩ s1 = s1 ∩ s2 using idempotency, associativity and commutativity of ∩
and conclude with L1. For (2), we prove s3∪(s3∪s4) = s3∪s4 using idempotency
and associativity of ∪. We conclude with L1 and commutativity of ∩.

Summarizing, the CERES system has taken as input a proof in lattice the-
ory which used the auxiliary notion of partial order. By cut-elimination, a new
proof not using any auxiliary notions is computed. From this proof, a Herbrand
sequent summarizing the mathematical information (i.e. the instantiations) is
extracted. This sequent is further pruned, resulting in a compact presentation
of the relevant mathematical ideas of the proof (in this case, an algebraic con-
struction not visible in the input proof). In the present example, the algorithm
Salg was not used: we refer to [7] for further examples.

4 Summary of Recent Improvements and Future Work

The simplification of Herbrand sequents is one of the most important features
recently added to the CERES. Redundancy in the resulting sequent is significantly
reduced and the terms are rewritten to a more readable normal-form. However,
even if the simplified Herbrand sequent is completely redundancy-free, it can
still be large and, consequently, the user can still face difficulties to formulate
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the informal mathematical proof that it summarizes. Our experience [9] indi-
cates that enriching the Herbrand sequent with certain kinds of links between
its atomic sub-formulas might provide helpful information to the user. These
links would resemble the axiom links of proof nets or the connections of the
connection method, and they could be obtained by analyzing either the axioms
of the ACNF or the resolved literals in the refutation used in the simplifcation
of the Herbrand sequent. The theoretical investigation and the implementation
of such links remains for future work.

As mentioned in Section 2, CERES relies on resolution theorem provers to
refute characteristic clause sets or profiles. While only Otter was originally sup-
ported, now it is also possible to use CERES together with Prover9 and ATP. For
the future, we intend to support the TPTP/TSTP format. It is also desirable to
interface CERES with proof assistants like Isabelle, Coq, PVS and Mizar. On the
one hand, CERES would benefit from the large libraries of proofs written in the
languages of these systems, and on the other hand, these systems would benefit
from the proof transformations of CERES. The main obstacle has always been
the differences in the logical frameworks used by each of these systems and by
CERES.

Our most ambitious current goal is an extension of CERES to higher-order
logic [10]. This task encountered a few hard theoretical obstacles, such as the
difficulty of skolemizing higher-order proofs [10], as well as practical obstacles,
such as the need to change the core data-structures of CERES in order to support
higher-order formulas. This led to the decision of implementing a new version of
CERES, currently under development in the more flexible language Scala.
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