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Abstract

Human tissues continually replace dying cells with newborn cells.  However, the rate of renewal varies by  

orders of magnitudes between blood cells, which are renewed every day and neurons, for which renewal  

is non-existent or limited to specific regions of the brain.  Between those extreme are many tissues that  

turn over on a time scale of years, although no direct measurements have been done.  We present here a  

mathematical method to estimate cell turnover in slowly renewing biological systems.  Age distribution of 

DNA can be estimated from the integration of radiocarbon derived from nuclear bomb testing during the 

cold war (1955-1963).  For slowly renewing tissues, this method provides a better estimate of the average  

age of the tissue than direct estimates from the bomb curve.  Moreover, death, birth and turnover rates can 

be estimated. We highlight this method with data from human fat cells. 

Introduction

Biomedical  research  has  progressed  enormously  the  last  decades,  and  we  now  understand  many  

biological processes in minute detail at the molecular level.  Nevertheless, there are a few fundamental  

processes that have remained very difficult to study and where our knowledge is scant.  One of those is  

cell turnover in the human body.  It is quite remarkable how little is known about the age of cells in many 

regions of the adult human body.  The stability or turnover of cells in different tissues is a fundamental 

feature that may influence the response of different organs to insults and aging.

Traditional  methods  used  for  dating  cells  are  limited  in  the  information  they  provide,  or  are  not  

appropriate for human use (all available techniques for studying cell turnover are considered unsafe for 

use in humans).  As such, much of our view on cell turnover in the adult human body has been inferred 

from studies in rodents, which in most cases are only a few months old at the time of analysis.  This may  



not be an ideal model for man, who can live for a century, and can potentially have a greater need to  

replace cells over a lifespan.  

Making use of drastically altered atmospheric 14C levels due to nuclear bomb testing during the cold war, 

it is possible to retrospectively determine the birth date of a population of cells based on its DNA 14C 

content.   14C in the atmosphere reacts with oxygen and forms CO2,  which enters the biotope through 

photosynthesis.  Our consumption of plants, and of animals that live off plants, results in 14C levels in the 

human body paralleling those in the atmosphere.  Most molecules in a cell are in constant flux, with the  

unique exception of genomic DNA, which is not exchanged after a cell has gone through its last division. 

Nucleotide exchange in postmitotic cells is minimal (1).  The level of 14C integrated into genomic DNA 

thus reflects the level in the atmosphere at any given time.  In this way, 14C levels in genomic DNA can 

be used to retrospectively establish the birth date of cells in the human body (2-4).  One example is fat 

tissue in man.   Recent  work using radiocarbon dating of  fat  cells  demonstrated that  the  fat  mass  in 

humans is constantly turning over.  Neither adipocyte death nor generation was found to be altered in  

early-onset obesity, suggesting a tight regulation of fat cell number in adulthood (3).  Elucidating the high 

turnover of adipocytes by modelling 14C adipocyte data therefore identified a new therapeutic target for 

pharmacological intervention in obesity.

Mathematical model of cell turnover

In tissues with significant turnover, lost cells are continuously replaced by new cells. Atmospheric 14C is 

integrated into the DNA of newborn cells and provide a time stamp of when they were born.  Depending 

on the turnover rate, a wide distribution of birth dates can be expected in a tissue sample. The measured  

14C level of the sample is an average of all 14C DNA content weighted with the distribution of cell birth 

dates.  During development, the number of cells in many tissues is increasing while in others it is constant 



after birth.  For instance, the number  of adipocytes  increases during childhood until  early adulthood.  

During adulthood, most tissues replace lost cells with new one to preserve homeostasis, but the balance in 

renewal may change with aging.  For instance, it is possible that a reduced capacity for regeneration is 

compensated by cell hypertrophy.   Thus, a model for DNA  14C integration in new born cells must be 

specific to the development, maintenance and aging of the cell population. Here, we present a method for  

estimating turnover rates in biological systems that can have a wide range of renewal potential, during 

development and aging. We illustrate the method with 14C data from fat cells in lean and obese adults.

Because  little  is  known  about  the  mechanisms  that  regulate  the  development  and  maintenance  of 

renewing tissues, it is necessary to make some assumptions on the dynamics of birth and death.  We  

assume that cells die with a probability dt γ(t,a) during a small time interval dt. The resulting death rate, 

γ(t,a), depends on the age of the individual t (in years, t ≥ 0) and the age of the cells a (in years, 0 ≤ a ≤ t). 

The number of new cells born each year,  β(t), is composed of cells replacing a fraction (or all) of dead 

cells plus cells that are added independent of cell death. Cell number is allowed to increase, stay constant 

or decrease at different life stages.  Newborn cells are assumed to come from a stem cell pool and have  

undergone enough divisions to dilute the original stem cell DNA.  Furthermore, we assume that the DNA 

content  is  stable  over  the  cell  lifespan.   Thus,  cells  born  in  an  individual  aged  t have  a  14C level 

corresponding to the year t + tb, where tb is the birth date of the individual. 

These assumptions may be formalized into a linear partial differential equation with an age-structure:

∂ n t , a
∂ t


∂n t , a 
∂a

=−γ t , a  n t , a  . (1)

The function n(t,a) is the density of cells of age a for a subject of age t (unit of n: cells/year, units of a and 

t: year, unit of γ: 1/year).  The initial condition at t = t0 ≥ 0 is n(t0,a) = N0 δ0(a), where δ is the Dirac delta 

function (i.e. all cells at t0 have age a = 0) and N0 is the initial adipocyte number.  A boundary condition 

describes the birth of new cells from progenitor cells, n(t,0) = β(t) (unit: cells/year).  Equation 1, with the 



initial and boundary conditions, is related to the more general McKendrick-von Foerster equation used in 

population dynamics (5).

When γ and β depend on the age of the subject and γ also depends on the age of the cells,  γ=γ(t,a) and 

β=β(t), Eq. 1 has the closed form solution, for a ≤ t – t0,

n t , a =N0δ t−a−t0e
−∫0

a γ t−as, s ds
β t−ae−∫0

a γ t−as , s ds . (2)

The total cell number for an individual of age t ≥ t0 is,

N t =∫0

t−t0 n t , a da=N0e
−∫0

t−t 0 γ t0s , s ds
∫0

t−t0 β t−a e−∫0
a γ  t−a s ,s ds

da . (3)

For  simple  functional  forms  of  γ and  β,  the  integrals  can  be  evaluated  explicitly.   This  can  be  an 

advantage because numerical simulations can become heavy.  The average age of cells in an individual  

aged t is:

〈a〉=
∫0

t−t0 a n t , a  da
N t 

. (4)

It  is also possible for some mature cells to re-enter  the cell  cycle  and divide.  In this case,  cell  age 

distribution would be altered;  however cell  turnover would be unchanged.   When each dying cell  is  

replaced, N(t)=N0 and the production term must match the number of cells dying each year. Because the 

actual  cell  number  is  not  important  to  calculate  14C  levels,  it  is  convenient  to  define  the  relative 

production  b=β/N0.  For  cell  age-independent  death  rate,  death  and  relative  production  rates  can  be 

equated: b(t) = β(t)/N0=γ(t).  When the death rate is cell-age-dependent (γ(a)), the production rate depends 

on the history of cell birth and death and must satisfy a Volterra equation of type II (also called renewal  

equation (6)):

b t =γ t exp−∫0t γ  s ds∫0

t
b t−a γ a exp−∫0a γ  s ds da

. (5)



This equation is to be solved separately. Analytical solutions exist for a handful of functions γ(a); hence 

numerical integration must be used in general (6).The cell turnover rate of a tissue is only well defined 

when the cell number is constant or slowly changing, so that the number of newborn cells is equal to the  

number of dead cells in a given time period. This is a realistic assumption in healthy tissues that preserve 

homeostasis. In that case, the turnover rate is equal to the death rate,  γ. Therefore, the death rate is the 

essential parameter to estimate, along with any change in cell number during lifetime.

Estimating cell turnover from 14C data

The cell density in a tissue of an individual aged t (in years) is given by the solution of Eq. 1, n(t,a).  The 

average 14C level C of a DNA sample collected at calendar year td (which may correspond to age at death 

or age at sampling) of an individual aged t  (t = td – tb) is 

C=
∫0

t=td−tb K td−a n t , a  da
N t  .

(6)

The bomb-curve function  K is  the atmospheric  14C level,  and is  expressed in  relation to a universal 

standard and corrected for radioactive decay,  giving  ∆14C values (in ‰, Fig 1 and ref (7)). Once cell 

production is expressed as a relative production b(t), Equation 2 depends on three unknown parameters: 

γ,  b, and t0.  In contrast to forensic applications, it is supposed that birth date and date of collection (or 

death)  are  known.   These  three  parameters  must  be  inferred  from the  14C profiles  of  the  samples. 

Depending on the nature and number of samples, it is usually not possible to find robust estimates for all  

of these parameters because different dynamics of cell birth and death can correspond to the same  14C 

profile.  This is especially true when samples come from adults and yield little or no information on the  

dynamics of cell turnover during growth and development.  Thus, different scenarios must be envisaged 

that fix one or more of the parameters, leading to a robust estimate of the remaining parameters. 



This leads to the problem of selecting the scenario that best describes the data. The goodness-of-fit is 

taken as the SSE between the model prediction and the data ∑i=1

n
x i−c i 2 , where xi is the prediction 

and ci is the ∆14C level for subject i.  Models with more parameters are expected to fit the data better, so a  

criterion that penalizes models with many parameters, such as the Akaike Information Criterion may be 

used for selecting the most parsimonious model (8).  Akaike Information Criterion is AIC = log SSE + npar 

(SSE = sum of squares of the errors).  It states that each additional parameter must reduce the SSE by a 

log.  In log base 2, SSE must be halved for every additional parameter.  

The  characteristic  peak  shape  of  the  bomb  curve  is  valuable  as  a  way to  univocally identify DNA 

synthesis in pre-bomb subjects (born before 1955).  If synthesis is found to occur in pre-bomb subjects, it  

is not possible to say when it occurred.  14C levels can then correspond to two dates, one on the upward 

slope of the bomb-curve, and one on the downward part of the curve.  By analyzing many individuals  

dispersed along the bomb-peak axis, it is possible to get an estimate that is consistent between the pre-  

and post-bomb subjects (born after 1955).

Application to fat cell turnover

Analysis of 14C DNA provides an extremely sensitive method to detect cells born after a subject’s birth  

date.  As little as 1% of cells born at the peak of bomb-testing can be detected in a population of pre-

bomb cells (2).  We have recently analyzed fat samples obtained during liposuction or abdominal wall  

reconstruction from 35 adult lean and obese adults (3).  Ages ranged from 21 to 72 years.  In both pre-

bomb and post-bomb subjects,  14C levels were similar and corresponded to dates in the middle of the 

1990’s, suggesting birth of new fat cells in adults of all ages (Fig 1).  However, fat cells couldn’t be all  

born during that small time window, in adults born at different years.  Fat cells are more likely to be 

produced continuously, with sampled 14C levels representing the average of 14C content of all combined 



individual cells.  This approach allows one not only to estimate the average age of fat cells, but also their  

turnover rates. Because cells of all ages could possibly be sampled, the measured  14C depends on the 

bomb curve at all years between the birth of the individual and the collection date.  

We had little information about the fat cell dynamics in childhood and adolescence; therefore we used  

two separate data sets (3; 9) to define the course of fat cell numbers from birth to adult. The cell number  

increased during childhood and adolescence and stabilized in early adulthood, indicating that in adults, fat  

cell number is constant. Three possible scenarios were consistent with cell number data. (A) At birth few 

fat cells are present; cells are produced at a constant rate and die at a constant rate.  (B) At birth few fat  

cells are present; fat cell number rapidly grows during childhood and cell number is set afterwards, cells  

are replaced at a constant rate.  (C) Like B, but number is allowed to change after the initial expansion. 

Fitting these three scenarios lead to similar results concerning fat cells death rate estimates, indicating that  

14C samples can be used to find robust estimates of cell turnover rates.  However, other parameters t0 (age 

at which cell number expands) and b (the relative fat cell production rate) were not consistent among the 

three scenarios.  This is because few cells, if any, survive many decades, thus no 14C signature would be 

left from childhood in most of the subjects.  

It is also of interest to find turnover estimates for individual samples.  However, it is not possible to 

estimate more than one parameter in Eq. (2) for individual samples, due to over-parameterization.  Thus  

more complex (or realistic) models can only be fitted on a population. Scenario A has only one parameter  

to fit, the death rate.  The cell density (Eq. (2) with  t0=0,  N0=0 and γ constant) simplifies to  n(t,a) =  β 

exp(–γ a), a ≤ t, and 0 otherwise. Because the total cell number is proportional to β, it cancels out in Eq. 

(6) and only the death rate remains to be fitted. The production rate β can then be calculated based on the 

actual cell number at the collection date: β = γ Nmeasured/(1 – exp(–γ t)). 

Because fat cell number is constant in adults, the fat cell turnover rate is well defined and can be equated 

to the death rate. Results of fitting the death rate for two subjects, one pre-bomb and one post-bomb, are 



shown in Fig 2. The post-bomb subject was aged 27 at fat cell collection and had a fitted fat cell death  

rate of 0.104 per year, indicating that 10.4% percent of the cells are replaced each year. The pre-bomb 

subject was 70 at fat cell collection, and had a fitted fat cell death rate of 0.084 per year, indicating a 

turnover rate of 8.4% per year. The individually fitted turnover rates were not correlated with the age of 

the subjects, indicating that a constant turnover rate throughout life was a realistic assumption. 

Discussion

The method presented here is suitable for dating biological sample that turn over in years or decades. In  

addition to  adipose tissue,  the  heart  and the brain are tissues  with limited capacity for  regeneration.  

Quantifying turnover in mature tissues is important when designing therapies that may enhance normal 

regeneration. Fast renewing tissues, like blood or skin, have an age distribution that is too narrow to 

warrant modelling; the 14C measurements would correspond to the collection date (or time of death) (2). 

In non-renewing tissues, such as cortical neurons, the 14C levels correspond to the birth date of soon after 

(4). 

We focused mainly on DNA samples, since most carbon from non-DNA sources turns over quickly in 

living  cells.   However,  non-DNA  material  with  low  turnover  is  useful  in  forensic  applications  to  

determine the date of birth and could also benefit from the methods presented here.  Tooth enamel is 

formed at distinct times during childhood and there is no turnover once enamel has been formed, allowing 

precise estimation of birth dates of adults (10).  Using an approach similar to the one presented here, it  

was recently shown that the protein crystalline in the lens eye is produced almost entirely around birth  

(11), and is never degraded.
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Figure legends

Figure 1 Atmospheric ∆14C since 1930 (12). The 14C content from fat cell samples versus birth dates of 

the subjects is plotted (diamond: lean, dots: overweight, square: obese). 

Figure 2 Adipocyte turnover in a post-bomb and a pre-bomb subject. (Filled square) Subject aged 27 at 

fat cell collection, BMI=22.8 kg/m2, ∆14C=107 ‰, bomb date=1997.1, average fat cell age=7.9 years, 

average birth date=1998, turnover rate=10.4% per year, production=0.32x1010 cells/year. (Open square) 

Subject aged 70, BMI=24.4 kg/m2, ∆14C=133 ‰, bomb dates= 1959 and 1993, average fat cell age=11.77 

years, average birth date=1995.2, turnover rate=8.4% per year, production=0.44x1010 cells/year. The 

filled areas show the cell density n(t,a) for each subject (filled: post-bomb, open: pre-bomb). 
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Figure 2
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