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Abstract: We discuss a formal development for the certification of Newton’s
method. We address several issues encountered in the formal study of numerical
algorithms: developing the necessary libraries for our proofs, adapting paper
proofs to suit the features of a proof assistant, and designing new proofs based
on the existing ones to deal with optimizations of the method. We start from
Kantorovitch’s theorem that states the convergence of Newton’s method in the
case of a system of equations. To formalize this proof inside the proof assistant
Coq we first need to code the necessary concepts from multivariate analysis.
We also prove that rounding at each step in Newton’s method still yields a
convergent process with an accurate correlation between the precision of the
input and that of the result. This proof is based on Kantorovitch’s theorem
but it represents an original result. An algorithm including rounding is a more
accurate model for computations with Newton’s method in practice.

Key-words: proof assistants, formalization of mathematics, multivariate anal-
ysis, Kantorovitch’s theorem, Newton’s method with rounding



Preuves formelles pour les propriétés théoriques
de la méthode de Newton

Résumé : Ce rapport présente un développement formel pour la certification
de la méthode de Newton. On s’intéresse à plusieurs problèmes rencontrés
dans l’étude formelle des algorithmes numériques : développer les bibliothèques
nécessaires pour nos preuves, adapter des preuves papier aux caractéristiques
d’un assistant à la preuve, concevoir des nouvelles preuves basées sur les preuves
existantes pour certifier des optimisations de la méthode. Notre point de départ
est le théorème de Kantorovitch qui établit la convergence de la méthode de
Newton dans le cas d’un système d’équations. Pour formaliser ce théorème dans
l’assistant à la preuve Coq on a besoin d’abord de coder les concepts nécessaires
d’analyse multivariée. On démontre aussi qu’arrondir à chaque itération de la
méthode de Newton donne lieu à un processus qui est encore convergent, avec
une corrélation bien determinée entre la précision des données d’entrée et celle
du résultat. Un algorithme avec des arrondis est un modèle plus fidèle pour les
calculs pratiques par la méthode de Newton.

Mots-clés : assistants à la preuve, formalisation des mathématiques, analyse
multivariée, théorème de Kantorovitch, méthode de Newton avec arrondis
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1 Formal systems and numerical methods

Often, in verifying mathematical theorems in proof assistants we start with
a paper proof of some (famous) theorem and try to obtain a formal model
of the theorem inside the system. The concepts are coded in a manner that
keeps the balance between mathematical accuracy and handiness of use. This
encoding process is not always trivial as the mathematical concepts, expressed
in general in set theory, need to be translated into type theory or higher order
logic. The limitations and benefits of the formal framework need to be taken
into account. Once the concepts inside the system, we try to reproduce the
reasoning steps to get the desired proof. Automatization is often possible for
some (small) parts of the problem, depending on the field. A good example of a
field where mechanization is wide spread is algebra while calculus is less prone
to automatization. As a consequence formal developments in real or numerical
analysis are more tedious. This is a setback for proof assistants in comparison
to computer algebra system which support a wide variety of numerical methods.
However, it is sometimes the case that these systems produce erroneous output
[16, 6]. So, when a high level of correctness is required, choosing a proof assistant
for the task could be a good solution. The aim of this paper is to describe several
aspects of a formal development around a numerical algorithm. We discuss the
problems encountered, possible solutions and potential applications, in order
to allow a better understanding of what such a development entails. Among
others, we address the following issues:

◦ providing the proof assistant with the necessary concepts to support all
reasoning steps that we are interested in;

◦ formalizing a piece of mathematics stating the desired properties for our
algorithms;

◦ designing new proof based on the existing ones to offer theoretical basis
for optimizations of our algorithms.

We do a case study on Newton’s method and detail all the points above.
Widely used as an approximation method to determine the root of a given
function or, equivalently, the solution of a system of equations, Newton’s method
has good performance with respect to the speed of convergence and the stability
of the process. These performances are backed by theoretical results in numerical
analysis establishing sufficient conditions for the convergence of the method.
Among such results we have Kantorovitch’s theorem, which we chose as a basis
for our formal development. The statement of the theorem according to [8] is
as follows:

Theorem 1 (Kantorovitch). Consider a system of non-linear algebraic or tran-
scendent equations f(x) = 0, where the vector function f : Rp → Rp has con-
tinuous first and second partial derivatives in a certain domain ω, i.e. f(x) ∈
C(2)(ω). Let x0 be a point with its closed ε-neighborhood Uε(x0) = {‖x−x0‖ ≤ ε}
included in ω. If the following conditions hold:

1. the Jacobian matrix W (x) =
[
∂fi(x)
∂xj

]
has an inverse for x = x0, Γ0 =

W−1(x0) with ‖Γ0‖ ≤ A0;
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4 I. Paşca

2. ‖Γ0f(x0)‖ ≤ B0 ≤ ε
2 ;

3.
p∑

k=1

∣∣∣∣∂2fi(x)
∂xj∂xk

∣∣∣∣ ≤ C for i, j = 1, 2, ..., p and x ∈ Uε(x0);

4. the constants A0, B0, C satisfy the inequality 2pA0B0C ≤ 1.

then, for the initial approximation x0, the Newton process

xn+1 = xn −W−1(xn)f(xn) (1)

(n = 1, 2, ...) converges and the limit vector x∗ = lim
n→∞

xn is a solution of

the initial system, so that ‖x∗ − x0‖ ≤ 2B0 ≤ ε. Moreover, in the domain
{‖x− x0‖ ≤ 2B0} the solution is unique.

A quick look at the theorem reveals that a formal model of the problem needs
to include formalizations of real numbers and real analysis in one and several
dimensions. The background results in analysis need to deal with continuity,
differentiation, convergence, and so on. Properties on matrices are also used as
concepts of inverse or Jacobian matrix need to be handled.

For our work we chose the proof assistant Coq [1, 4] which provides a library
of real analysis that is developed enough to cover the concepts needed in the
proof of Kantorovitch’s theorem in the simplified case of a real function. For the
multivariate case, however, Coq does not offer a library, so we need to encode
all the necessary concepts. We provide a reusable formalization of multivariate
analysis concepts and we present the details in section 2. Section 3.1 discusses
the formalization of the Kantorovitch theorem, insisting on the relation between
paper proofs and formal proofs. In particular, we discuss an optimized version of
Newton’s method, where we perform rounding at each step. Based on the proof
of Kantorovitch’s theorem we prove in section 3.2 that this optimized version
converges to the root. The last section presents the conclusions and perspectives
of our work.

The paper also contains a special type of section called “Technical Details”
that end with “***”, in an attempt to make the reading interesting to both
experts and non-experts. These technical sections are clearly delimited so they
can be easily skipped by the reader not interested in such details. They usually
contain implementation details and issues specific to Coq and SSReflect.

2 Formalized mathematical theories for numer-
ical methods

The successful verification of numerical methods depends on having the appro-
priate mathematical theories formalized in our proof assistant. We need notions
of real analysis, linear algebra or multivariate analysis. Coq already contains
a library of real analysis as well as an implementation of algebraic structures
and matrices in the SSReflect extension of Coq. In our study of properties
for Newton’s method we need to extend the matrix library on general matrices
over a ring with specific notions on real matrices. We also need multivariate
analysis concepts. To formalize these concepts we use extensively the standard
Coq library on real numbers and real analysis and the SSReflect libraries

INRIA
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on matrices. To better understand our formalization we begin by giving a brief
description of these existing libraries, in the following section.

2.1 Existing libraries in COQ and SSReflect

2.1.1 COQ’s Standard Library Reals

The proof assistant Coq provides an axiomatic definition of the real numbers.
The formalization is based on 17 axioms which introduce the reals as a complete,
archimedean, ordered field that satisfies the least upper bound principle. This
choice of implementation has as positive effect the fact that we can handle real
numbers in a manner similar to that of math books on classical real analysis.
In particular, we can reason on cases thanks to the trichotomy axiom: for two
real numbers x, y exactly one of the following relations holds: x < y or x = y or
x > y.

The library contains a bunch of results for real analysis: sequences and series,
transcendental function, concepts of limit, continuity, differentiation, integra-
tion, calculus theorems like the mean value theorem, the fundamental theorem
of calculus etc. Details on this implementation can be found in [21].

2.1.2 SSReflect Libraries

SSReflect (Small Scale Reflection) is an extension of Coq that offers new
syntax features for the proof shell and basic libraries that make use of small
scale reflection in various respects. An extended presentation for the tactics of
SSReflect can be found in [13]. The proof of the Four Color Theorem [12]
and the on-going effort to prove Feit-Thompson theorem illustrate the power of
SSReflect. For example, the Feit Thompson theorem is of major importance
in group theory and it states that every finite group of odd order is solvable. The
initial paper proof for the Feit-Thompson theorem is 255 pages long and covers
many mathematical theories. The formalization in SSReflect is organized in
a modular way. This organization allows the libraries to be reused in various
other branches of mathematics, in spite of the fact that the main goal is a
formalization in group theory.

The basic SSReflect libraries implement types with decidable equality,
finite types, lists, finite sets, finite functions, natural numbers, countable types
(and more). They also define a hierarchy of algebraic structures: monoid, group,
abelian group, ring, unit ring, commutative unit ring, field. The SSReflect
libraries provide a formalization of matrices with elements of an arbitrary type
T. For operations on rows and columns (for example, deleting a row, swapping
two rows etc.) no additional properties are required for T. Once one starts
talking about operations on matrices like addition or multiplication, the type of
elements T has to be a ring. The library provides all the basic operations and
their properties, the notions of determinant and inverse. Details on the matrix
library can be found in [11, 3].

RR n° 7228



6 I. Paşca

2.1.3 Mixing COQ and SSReflect

To get real matrices we use the real numbers in the standard Coq library.
They can be endowed with a field structure in the sense of the SSReflect
algebraic structures. These structures can be defined on the reals in a way that
is transparent for the user and that will be explained in the following section.
Once these definitions in place, we can have real matrices and all the generic
results on matrices will be available without any further effort. We gathered
all the technical details in the following section. The user not interested in the
implementation details may completely skip this technical section.

Technical Details 1 (Coq and SSReflect). The key idea in SSReflect is
having a mechanism that provides dual views for decidable propositions. This
mechanism is called reflection and it allows us to link a decidable proposition
to a boolean, more precisely and as expected, we link the proposition to the
boolean true when the decision procedure says the proposition is true, and to
false otherwise.

The propositional version is appropriate when doing structured proofs while
the boolean view is used for computing. The user can move from one view to the
other by a simple rewrite. This framework is particularly appropriate for working
with structures equipped with a decidable equality, as various properties can be
reflected by boolean values.

We will analyze in detail the example of types with decidable equality, as
this will allow us to illustrate some features of our framework, like coercions and
canonical structures.

Equality in Coq is a syntactic equality, also called Leibniz equality. A de-
cidable equality is a binary boolean relation equivalent to the Leibniz equality.
In SSReflect, a type with decidable equality is implemented as a type sort
together with a relation eq: sort→sort→bool that reflects the standard Coq
equality on that type, that is eq x y is true exactly when x = y in the Leibniz
equality sense. Here is the definition of the structure for a type with decidable
equality. For didactic reasons we give a simplified definition. The actual SS-
Reflect definition is the same in essence, but more complex in form, due to
technical reasons that come from having a very large development and explained
in detail in [11].

Structure eqType : Type := EqType {
sort : Type;
eq : sort → sort → bool;
eqP : forall x y, reflect (x = y) (eq x y)
}.
Coercion sort : eqType � Type.

The coercion mechanism implemented in Coq allows us to say a certain type
is a subtype of another type. A coercion is a function from the subtype to
the supertype. The coercion is automatically inserted by the system. In our
example, the subtype is eqType and the supertype is Type and our coercion is
sort. Now, every time the system expects a Type but gets a eqType instead, it
will automatically insert this coercion to get a Type. A coercion is not displayed
by the pretty-printer, so its use is mostly transparent to the user. This form of
explicit subtyping allows any T : eqType to be used as a Type.

INRIA
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There are cases where we would like the system to see a certain concrete
type, say the type of natural numbers, as an eqType. This is a normal request,
as the equality on natural numbers is decidable. To achieve this we use Coq’s
Canonical Structure mechanism. We illustrate the way it works on the case of
natural numbers. In Coq natural numbers are defined as Peano integers. This
definition is inductive, that is, we give all possible constructions of a natural
number: we either have zero or we have the successor of another natural num-
ber. The type of natural numbers is called nat. Based on the definition we
can build a decidable equality predicate eqn : nat→nat→bool that reflects the
Leibniz equality.

Lemma eqnP : forall x y : nat, reflect (x = y) (eqn x y).

Now we can declare an eqType structure on our natural numbers.

Canonical Structure nat eqType := EqType eqnP.

The Canonical Structure declaration will make that every time an expression
requires an eqType, but gets a nat instead, Coq will automatically infer the type
nat eqType for the expected argument. The expression will type-check without
intervention from the user. This means the generic theorems and notations for
eqTypes can directly be applied to natural numbers.

In a similar manner to the definition for an eqType, the SSReflect libraries
define other structures. We will briefly describe some of them in what follows,
as they played a role in our development.

A choiceType is a type T with a choice function choose that returns a
canonical representative of any non-empty subset of elements of type T. By
canonical we mean that for two extensionally equal sets and two proofs that the
sets are non-empty the function will return the same representative. Natural
numbers, for example, are a choiceType as we can define a function nat choose
that starts from zero and checks all numbers until it finds an element of the
given non-empty set. The set being non-empty the function will only need a
finite number of steps to return a representative of the set. The representative
returned is the first one found and therefore canonical. This construction is more
general, any countable type can be endowed with a canonical choice function.

Finite types play a central role in the development. A finType contains the
list of all its elements and the property that in this list each element appears
exactly once. As an example in the library we have the type of natural numbers
smaller than p, called ordinal p with notation ’I p.

Functions with a finType as the definition domain are called finite functions
or finfun and they benefit from a special treatment in the library. Such a function
is represented by the list of all its values and then coerced to the corresponding
arrow type. We thus have a dual view for finfuns, as a function and as the
function’s graph. To define a finfun we use the notation {ffun aT→rT}. If the
return type rT is an eqType then the finite function type will also be an eqType as
the extensional equality on functions will reflect the Leibniz equality. Similarly,
if rT is a choiceType, then {ffun aT→rT} will also be a choiceType.

Once these basic structures are in place, the SSReflect library develops
an algebraic structure hierarchy. In version 1.2 of SSReflect the hierar-
chy contains groups, abelian groups, rings, commutative rings and fields. The
elements of these structures also have an eqType and choiceType structure. The
algebraic structures are defined using the same Structure construct as the eqType.

RR n° 7228



8 I. Paşca

This means we can use in the same fashion the Canonical Structure mechanism to
endow various types with a given algebraic structure. For example, we can make
our standard reals a field in the sense of the SSReflect algebraic structures.

SSReflect also contains a library that treats in a general fashion indexed
operations. By this, we mean we have a uniform way of writing:

n∑
i=0

xi or
∏
i∈I

vi or max
i,vi 6=w

‖vi − w‖

Formally, the general notation is:

\big[op/nil] (i ← r | P i) F

where r represents the list of indexes i for which the operation op is to be
repeated; nil is the value to be return for the empty list of indexes (usually the
neutral element for the operation, if it exists) while P is the property that the
indexes have to respect; F is the expression over which the operation is iterated.

When translating the above formulas in Coq, in the first case we write:

\big[+/0] (i < n) x i

Supposing that I and r are lists of indexes, the second formula is:

\big[*/1] (i ← I) v i

and the third:

\big[Rmax/0]\ (i ← r | v i != w) (norm (v i) − w)

We note that sums and products indexed over natural numbers or over elements
of a ring can be written with a more natural \sum or \prod notation. For
example, the first formula can alternatively be written as: \sum (i < n) x i .

The lemmas in the library of indexed operations are organized according to
the properties of the operator op. Some lemmas work for any operator, others
work only if op is a monoid law, others require an abelian monoid law and so
on. Canonical structures and coercions play an important role here also. Details
can be found in [2].

Making use of the indexed operations, a formalization of matrices with
elements of type R is given. Matrices in Mp×q(T) are represented as finite
functions {ffun ’I p * ’I q→T}. Notations are provided in order to simplify the
work with matrices, for example the matrix

A ∈Mm×n(T ), A = [aij ], i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

is given by

Definition A : ’M[T] (m,n) := \matrix (i < m, j < n) a i j.

Operations on matrices are defined when the base type has a ring structure,
so in order to get real matrices, we have to declare a ring structure on our
standard Coq real numbers, denoted R. The hierarchy of algebraic structures
is built on types with decidable equality and with a choice operator, so we
have to begin by defining an eqType and a choiceType for R. To have the eqType
structure on real numbers, we will base ourselves on the trichotomy axiom in the
standard library Reals which implies that we can reason on cases on whether

INRIA
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two reals are equal or not. But first we will go even further in our technical
details and explain how this fits in Coq’s formalism.

In Coq the type of logical propositions is Prop and it is a type with special
features. To make it clearer, in Coq we have data which are in type Type and
logical propositions on these data which are in type Prop. Data and propositions
do not live at the same level, more precisely we can use data to build another
data or a proposition but we cannot build a piece of data from a proposition, we
can only build other propositions. In particular, if we have a disjunction P∨Q
in Prop we cannot build a function that returns a certain piece of data based
on whether P or Q is satisfied. This corresponds to a disjunction that is not
necessarily decidable.

So, whenever we want to be able to distinguish two cases we use a similar
construction under Type. This construction is {P} + {Q}, where P and Q are
under type Prop but {P} + {Q} is under type Type. We can see it as a set
with one element such that we can determine if this element is P or Q. This
corresponds to a disjunction that is effectively decidable. In particular we can
build functions that return a certain data based on whether P or Q is true.

In the Reals library, the trichotomy axiom is stated using this disjunction
under Type. This means we can define a function R→R→bool that returns true
if the two numbers are equal and false if they are not. This will be the boolean
equality function in our eqType.

(* the trichotomy axiom *)

Axiom total order T : forall r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}.
(* lemma derived from the trichotomy axiom *)

Lemma Req case : forall x y: R, {x = y} + {x <> y}.
(* definition for the boolean equality function *)

Definition eqr (x y : R) : bool := match (Req case x y) with
| left ⇒ true | right ⇒ false end.

(* lemma proving the equivalence between boolean and Leibniz equality

*)

Lemma eqrP : forall x y, reflect (x = y) (eqr x y).
(* the canonical type for reals with a decidable equality *)

Canonical Structure real eqType := EqType eqrP.

In order to endow R with a choiceType structure we need additional axioms
in our logic, i.e. a version of the axiom of choice and the axiom of functional
extensionality. The latter is needed because the choice operator on R needs to
produce the same canonical element for two sets that are extensionally equal
and for two proofs that the set is non-empty. Though present in our context,
we limit the use of these axioms to this only instance.

Now we have the base properties on R needed to define the algebraic hier-
archy. We endow the real numbers with canonical structures for group, ring,
commutative ring and field. These Canonical Structure declarations make all
theorems regarding the algebraic structures directly available for the reals. The
use of canonical structures will also allow us to use freely all the existing theo-
rems on the real numbers. We will be able to have real matrices and have all
the results on SSReflect matrices available.

***

RR n° 7228



10 I. Paşca

2.2 Real Matrices

Though all results in the generic SSReflect matrix library can directly be used
for real matrices, there are still other notions, specific to real matrices that are
not part of the generic library. We note that the development on real matrices
was done to cover the concepts needed in proofs for numerical methods. It does
not treat all concepts on real matrices one would expect to have.

If R denotes the set of real numbers, the set of real matrices with m lines
and n columns is Mm×n(R). A matrix in this set is

A = [Aij ]m×n, Aij ∈ R, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

We need to generalize some basic real number concepts to matrices. This
is done in a componentwise manner. We define the absolute value function
|A| = [|Aij |]. In Coq, where Rabs is the absolute value of a real number, we get

Definition Mabs (A: ’M[R] (m, n)) := \matrix (i, j) Rabs (A i j).

Similarly, a comparison relation ω ∈ {≤, <,≥, >} for two matrices A and B is
given by A ω B ⇔ ∀ij, Aij ω Bij .

We formalize canonical norms for matrices. A canonical matrix norm ac-
cording to [8] is an operator ‖ · ‖ : Mm×n(R)→ R with the following properties

◦ ∀A, 0 ≤ ‖A‖

◦ ∀α ∈ R,∀A, ‖αA‖ ≤ |α|‖A‖

◦ ∀AB, ‖A + B‖ ≤ ‖A‖+ ‖B‖

◦ ∀AB, ‖AB‖ ≤ ‖A‖‖B‖

◦ ∀Aij, |Aij | ≤ ‖A‖

◦ ∀AB, if ∀ij, |Aij | ≤ |Bij | then ‖A‖ ≤ ‖B‖

We are interested in relating the value of the norm of the matrix to the value of
its determinant, for a square matrix of size p. The relation is the following

‖A‖ < 1⇒ det(Ep −A) 6= 0 (2)

where Ep denotes the identity square matrix of size p. In order to do this proof
we need to talk about sequences and series of matrices. Given a sequence of
matrices (Ak)k∈N

Ak =
[
a
(k)
ij

]
, (k = 1, 2, . . .)

we define the limit of this sequence componentwise.

A = lim
k→∞

Ak =
[

lim
k→∞

a
(k)
ij

]
We get the following relation between canonical matrix norms and convergence:

lim
k→∞

Ak = A⇔ lim
k→∞

‖A−Ak‖ = 0

INRIA
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Series of matrices are defined as

∞∑
k=0

Ak = lim
N→∞

N∑
k=0

Ak (3)

If the above limit exists, the series is called convergent.
Let us now detail some issues that arise when dealing with indexed sums in

Coq.

Technical Details 2 (Finite sums). The implementation of series is not com-
plicated. A series is just a limit of a sequence, where the elements of the sequence
are finite sums. We already saw in technical section 1 that SSReflect has a
library for dealing with indexed operations. Finite sums are a special case of
such operations. The notion of series of real numbers is formalized in Coq’s
standard library Reals. But in this formalization, we do not have the SSRe-
flect notion of finite sums. Instead we have a less general notion of sum: sum
of real numbers indexed over natural numbers, denoted in the code below by
sum f R0. All properties of series are proved using this formalization. However,
we would like to benefit from the formalization on indexed operations in SSRe-
flect, denoted in the code below by \sum. Based on the two formalizations
of sums, we give two definitions of convergence of matrix series, that we prove
equivalent.

(* convergence of a matrix series according to the definition 3 *)

Definition cv mat ser (Ak: nat → ’M (p, q)) (A: ’M (p, q)) :=
limit m (fun N ⇒ \sum (i < N.+1) Ak i) A.

(* limit m is the definition for the convergence of a real matrix

sequence *)

(* convergence of a matrix series as convergence on components *)

Definition cv mat ser comp (Ak: nat → ’M (p, q)) (A: ’M (p, q)) :=
forall i j, Un cv (fun N ⇒ sum f R0 (fun n => Ak n i j) N) (A i j).

(* Un cv is the standard library definition for the convergence of a

sequence of real numbers *)

In the first definition the sum is a sum of matrices, so this definition will help us
when we need to manipulate indexed sums. The second definition uses concepts
of convergence of sequences of real numbers, so this definition will help us when
we need to prove results on the convergence of series of matrices by reducing it
to convergence of series of real numbers.

***

A series of matrices is absolutely convergent if the following series is conver-
gent.

∞∑
k=1

|Ak| =

[ ∞∑
k=1

∣∣∣a(k)
ij

∣∣∣]
We get the following relation between norm and absolute convergence:

∞∑
k=1

‖Ak‖ convergent ⇒
∞∑

k=1

Ak absolutely convergent

RR n° 7228



12 I. Paşca

We note that we do not have a formalization of absolute convergence for a
series of real numbers in Coq’s standard library. We needed to prove the above
statement in the case of real numbers before generalizing it to matrices.

We are interested in the special case of series of the form

∞∑
k=1

Ak

We show that such a series converges if ‖A‖ < 1.
We consider the associated partial sum which verifies the equality:

(Ep + A + A2 + . . . + Ak)(Ep −X) = Ep −Ak+1

Passing at the limit in this identity gives

S(Ep −A) = Ep, where S =
∞∑

k=1

Ak

Therefore
det S ∗ det(Ep −A) = det Ep = 1

and we conclude
det(Ep −A) 6= 0

To summarize, we have accomplished our goal and proved equality 2.

Lemma matr inv norm: forall A, norm A < 1 → \det (1 − A) 6= 0.

All the above definitions and results are formalized using an abstract canon-
ical norm for matrices. We instantiate this abstract norm to the following max-
imum norm.

‖A‖ = max
i

∑
j

|aij | (4)

2.2.1 Related formalizations

Developments on matrices exist in several proof assistants. The quantity of
results formalized varies. Most of them implement matrices with elements from
a ring. All developments treat operations on matrices and their properties. In
Isabelle/HOL [22] implements matrices in order to deal with linear programs
and treats the special case of sparse matrices. In ACL2 we have [5] where
matrices are implemented in a way that insures computation efficiency. In HOL
Light we have [15]. In Coq there are several formalizations for matrices and
linear algebra. We cite [20] and [25] as standard Coq contributions, and [3] as
the implementation of matrices using the SSReflect extension of Coq that
we used as a basis of our development.
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2.3 Multivariate Analysis

For the purposes of our formalization of numerical methods we need concepts
from the field of multivariate analysis like, for example, functions of several
variables that are partially derivable and properties of the partial derivatives.
However, Coq’s libraries only deal with real analysis, so we need to develop
the notions from multivariate analysis ourselves. We start by formalizing real
vectors in Coq.

2.3.1 Real vectors

The choice of implementation for vectors in the Coq - SSReflect framework
seems obvious: do the same as for matrices. We can “do the same” in two ways:

◦ say that vectors are a special kind of matrices (either 1×p or p×1 matrices,
depending on whether we consider row vectors or column vectors), and use
the existing implementation on matrices,

◦ do a specific implementation for vectors, inspired by that of matrices.

We chose to do a specific implementation for vectors, as it feels like we should
be able to consider vectors apart from matrices. We might revise our choice for
future developments.

We implement a vector of length p with elements of a certain type T as
a function from the finite domain {0, 1, . . . , p − 1} to T and we call this type
vec T p. For a vector v: vec T p, we write v i for the i-th component of the vector.
It is similar to the mathematical use of having a vector v = (v0, v1, . . . , vp−1).

As specific notions for real vectors, we define operations on vectors compo-
nentwise: addition, opposite, multiplication by a scalar. Here is the example of
addition, where the notation \vec is used for building a vector.

Definition add v (u v: vec R p) := \vec (i < p) u i + v i.

We use the notations +ˆ , −ˆ and *ˆ for addition, opposite and multiplications
on vectors. Equality on vectors is equivalent to the equality on components.

Lemma vecP : forall u v: vec R p, (∀ i, u i = v i) ↔ u = v.

As operations on real vectors are defined componentwise, properties of these op-
erations are proved by simply reducing them to properties on the real numbers.
As we remarked previously, for proofs involving operations on real numbers we
benefit from tactics like ring, field and fourier provided by Coq, which automat-
ically solve a large variety of equalities and inequalities on the reals.

As vectors and matrices do not have the same type in our implementation, we
need to define how they interact, in particular we need to define multiplication
of a matrix by a vector. We suppose we have column vectors, so we have
multiplication to the right:

(Av)i =
∑

j

Aij ∗ vj

On the long term, vectors will be endowed with a vector space structure. For
the moment this structre is not available in the SSReflect libraries.

We define the notion of norm for real vectors as an operator ‖·‖ : vec R p→R
that respects:
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◦ positive definedness ∀v, 0 ≤ ‖v‖

◦ positive homogeneity ∀av, ‖av‖ ≤ |a|‖v‖

◦ triangle inequality ∀uv, ‖u + v‖ ≤ ‖u‖+ ‖v‖

We prove properties on this abstract norm, that we then instantiate to the
maximum norm

‖v‖ = max
i
|vi|

Technical Details 3 (Maximum as an indexed operation). Defining this norm
is straightforward using the library on indexed operations:

Definition norm max (v: vec R p) := \big[Rmax/0] (i < p) Rabs (v i).

Proving the good properties for the norm is done by using properties already
proved for \big. For example, a lemma stating the positivity of the norm

Lemma norm max pos : forall v, 0 ≤ norm max v.

can be easily proved by applying a generic lemma named big prop. It states that
if we have an operator (here, Rmax - the maximum of two real numbers) and a
property P(x) (here, 0 ≤ x) which is

◦ closed with respect to the operator op (here, ∀xy, 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤
Rmax x y)

◦ satisfied by the default value (here, 0 ≤ 0)

◦ satisfied by the formula for every index (here ∀i, 0 ≤ Rabs (v i) )

then the property P is also satisfied by the indexed operation (here, exactly
what we need to prove, that is 0 ≤ big[Rmax /0] (i < p) Rabs (v i) ).

Nevertheless, the use of the maximum as an indexed operation posed some
difficulties. As stated before (see technical details 1), the lemmas on indexed
operations are organized in a sort of hierarchy following the algebraic structure
given by the operator. In the case of the maximum, we have associativity
and commutativity, but we do not have a neutral element on the type of real
numbers. Since we work only with positive numbers (and the maximum on this
subset has 0 for neutral element), we would like to be able to use the lemmas
that deal with an abelian monoid structure, as we know that this is the case on
the subset we work on.

There are two possible solutions for this problem. The first is to have a new
type for positive reals. We can define the canonical structure of abelian monoid
on this new type, manipulate the indexed operation as desired and inject the
result in the original type. The second solution is to define a new operator
that gives the type the desired structure. This operator has to be equal to the
original one on the target subset (here, the positive reals). We can then move
freely between the two operators thanks to the lemmas in the indexed operations
library. We adopted this second approach, as we had a construction at hand:

max ′ x y =

{
max x y if x > 0 ∨ y > 0;
min x y if x ≤ 0 ∧ y ≤ 0

Basic lemmas on the norm are proved by moving to this equivalent operator
and using the indexed operation library.
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***

Other norms can be instantiated without difficulty. This maximum norm is
compatible with the matrix norm defined in section 2.2 (relation 4), in the sense
that

‖Av‖ ≤ ‖A‖‖v‖

We can define a distance on RP based on the norm operator.

dist Rp (u, v) = ‖u− v‖

The properties for the distance follow naturally from those of the norm to ensure
that, in our representation, Rp, equipped with the above defined distance, is a
metric space.

2.3.2 Metric spaces: convergence, limit, continuity

To fix concepts, we recall that a metric space is a set M with a function dist :
M ×M → R that satisfies the following:

◦ ∀xy, 0 ≤ dist (x, y) and dist (x, y)↔ x = y

◦ ∀xy,dist (x, y) = dist (y, x) (symmetric)

◦ ∀xyz,dist (x, z) ≤ dist (x, y) + dist (y, z) (triangle inequality)

In a metric space (M, dist), a sequence (Xn)n∈N ⊆ M is called convergent
to the limit l and we note lim

n→∞
Xn = l if:

∀ε ∈ R, 0 < ε⇒ ∃N ∈ N such that ∀n ∈ N, N ≤ n⇒ dist (Xn, l) < ε

This is straightforwardly translated in Coq

Definition conv (M: Metric Space) (Xn: nat → M) (l: M) :=
forall eps: R, 0 < eps → exists N: nat, (forall n:nat, N ≤ n → dist (Xn n) l <

eps).

We also define what it means for the sequence (Xn)n∈N to satisfy Cauchy’s
criterion:

∀ε ∈ R, 0 < ε⇒ ∃N ∈ N such that ∀m,n ∈ N, N ≤ m,N ≤ n⇒ dist (Xm, Xn) < ε)

We formally show that in all metric spaces, the limit of a sequence is unique
and a convergent sequence satisfies Cauchy’s criterion.

A metric space where all Cauchy sequences are convergent is called a com-
plete metric space. We prove completeness in the case of the metric space Rp.
We also prove that convergence in Rp according to the above definition is equiv-
alent to the convergence on components.

lim
n→∞

Xn = l⇔ ∀i ∈ {0, . . . , p− 1}, lim
n→∞

(Xn)i = li

In similar terms we talk about limits of functions between metric spaces. If
we have two metric spaces (M, distM ) and (M ′, distM ′), we say that the limit
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of a function f : M →M ′ at a point x0 ∈M is l ∈M ′ in the following manner:

∀ε > 0,∃α > 0,∀x ∈M, 0 < distM (x, x0) < α⇒ distM ′(f(x), l) < ε (5)

We also define what it means for a function f : M → M ′ to be continuous
at a point x0: the limit in x0 is equal to the value of the function at x0.

∀ε > 0,∃α > 0,∀x ∈M,distM (x, x0) < α⇒ distM ′(f(x), f(x0)) < ε

In the special case of Rp our development contains basic results like: the
limit of the sum of two functions is the sum of the two limits, the limit in Rp

is unique, relations between convergence and continuity in Rp, the limit of a
function is a limit on components.

2.3.3 Derivatives

We begin our study of derivatives by implementing partial derivatives for func-
tions from Rp to R. We say a function f is partially derivable at a point a with
respect to the i-th component if the following limit exists:

lim
t→0

f(a + t · ei)− f(a)
t

where ei is the i-th vector of the canonical base, that is the vector with all zeros

and a one in the i-th position. The value of this limit is denoted
∂f(a)
∂xi

and

is called the partial derivative of f in a with respect to variable xi. This is
equivalent to having a function where we fixed all other variables except for xi

and we derive this real function.
The implementation of partial derivatives follows the implementation of

derivatives in the Coq standard library.

Technical Details 4 (Implementation of derivatives). We define the partial
derivative of a function in three steps. We first express the property“the function
f is partially derivable at a point a with respect to the i-th component and
the value of the partial derivative is dp” by using the concept of limit on real
functions.

Definition part deriv pt 1 (f: vec R p → R)(a: vec R p)(i: ’I p)(dp: R) : Prop:=
limit (fun t ⇒ (f (a +ˆ t *ˆ (base v i)) − f a) / t) 0 dp.

Then, we define a real number with the above property.

Definition dbl pt 1 (f: vec R p → R)(i: ’I p)(a: vec R p):=
{dp | part deriv pt 1 f a i dp}.

And we obtain the real number that is the value of the partial derivative by
taking the first projection of the above data structure.

Definition dp 1 f i a (pr: dbl pt 1 f i a) := projT1 pr.

By using the function dp 1, every time we have a proof that a function is partially
derivable we can get the value of the partial derivative.
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In the same manner we define partial derivatives for functions vec R p → vec R p.
Second order partial derivatives are defined as the derivative of the first order

derivative, so the definition takes in argument a proof that the first order partial
derivatives are partially derivable.

Definition part deriv pt 1 2 f a i j (pr1: forall v, dbl pt 1 f i v) dp2 :=
part deriv pt 1 (fun v ⇒ dp 1 f i v (pr1 v)) a j dp2.

We can get the value of the second order derivative using the same three step
construction as above.

***

We show basic properties of the derivation operator like linearity. We also
relate the different notions between them and to derivation in one dimension.
For instance, a function that has second order partial derivatives will trivially
have first order partial derivatives; the partial derivative of a vectorial function
is the vector of the partial derivatives of the component functions. An elegant
example of a “paper” proof is the following:

f(x1, . . . , xp) − f(y1, . . . , yp) = f(x1, . . . , xp)− f(y1, x2, . . . , xp) +
+ f(y1, x2, . . . , xp)− f(y1, y2, x3, . . . , xp) + . . . +
+ f(y1, . . . , yp−1, xp)− f(y1, . . . , yp) =

=
p∑

i=1

(xi − yi)
∂f(y1, . . . , yi−1, ci, xi+1, . . . , xp)

∂xi

It is also an example of the implicit or intuitive reasoning a human reader
makes to replace the . . . or to realize that the indexes i − 1, i + 1 are only
used where they make sense. Another implicit view is interpreting the difference
f(x1, . . . , xp)−f(y1, x2, . . . , xp) of a vector function varying in the first argument
as a real function. All these are non-trivial reasoning steps for a mechanized
system.

The most involved result we needed for our development is Taylor’s formula
for functions of class C(2). The statement and the proof are as follow:

Lemma 1 (Taylor second degree). Let f : Rp → R be twice partially derivable
with continuous first and second partial derivatives, then for all a ∈ Rp and v ∈

Rp there exists c ∈ (a, a+v) such that f(a + v) = f(a) +
p∑

i=1

∂f(a)
∂xi

vi +
1
2!

p∑
i,j=1

∂2f(c)
∂xi∂xj

vivj.

Proof. Consider
g : [0, 1]→ R, g(t) = f(a + tv)

then g is twice derivable on [0, 1] and

g′(t) =
p∑

i=1

∂f(a + tv)
∂xi

vi (6)

g′′(t) =
p∑

i,j=1

∂2f(a + tv)
∂xi∂xj

vivj (7)
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From the Taylor formula in one dimension we get that there exists η ∈ (0, 1)
so that

g(1) = g(0) + g′(0) +
1
2!

g′′(η)

which gives us the desired result for c = a + tη ∈ (a, a + v).

The proof of this theorem is based on the proof of the Taylor formula in one
dimension, which we also formalized. Also, an important issue for this proof
is to show some relations between various concepts of differentiability, i.e. to
prove equalities (6) and (7).

We also associate to a function

f : Rp → Rp, f(X) = f(x1, . . . , xp) = (f1(x1, . . . , xp), . . . , fp(x1, . . . , xp))

a matrix called the Jacobian and given by

Jf (X) = Jf (x1, x2, . . . , xp) =



∂f1

∂x1
(X)

∂f1

∂x2
(X) . . .

∂f1

∂xp
(X)

∂f2

∂x1
(X)

∂f2

∂x2
(X) . . .

∂f2

∂xp
(X)

. . . . . . . . . . . .

∂fp

∂x1
(X)

∂fp

∂x2
(X) . . .

∂fp

∂xp
(X)


2.3.4 Related formalizations

The only proof assistant that already has a formalization of multivariate anal-
ysis is HOL Light [15]. In this formalization, vectors are also implemented as
functions from a finite type to real numbers. The topics covered include linear al-
gebra: operators, matrices, determinants; topology: open, closed, compact, con-
vex sets; sequences, continuity, differentiability; basic calculus theorems: mean
value theorem, inverse function theorem.

3 Newton’s Method

Newton’s method is one of the well known methods from numerical analysis for
finding successively better approximations for the roots of a function f . Given
a staring point x0 we compute the sequence of approximations in the following
manner:

xn+1 = xn −
f(xn)
f ′(xn)

Let’s look at an example:

f(x) = x3 − 7
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Figure 1: Newton’s method for f(x) = x3 − 7

The root of f is 3
√

7 ≈ 1.9129. Let’s start the search for the root using Newton’s
method at

x0 = 5.7

for the first five approximations we get:

5.7, 3.871816969, 2.736860604, 2.136083331, 1.935431626, 1.913191749

It seems that the sequence converges indeed to the root of f . To better see what
is going on, look at Figure 1.

The formula for Newton’s method can be deduced from the first terms of
the Taylor series of the function f at a point x.

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0) + . . .

Keeping only the first order terms we get:

f(x) ≈ f(x0) + f ′(x0)(x− x0) (8)

From equation 8 we get precisely the equation of the tangent line to the curve
at point (x0, f(x0))

y = f(x0) + f ′(x0)(x− x0)

This tangent line intersects the x− axis at point (x1, 0) given by

0 = f(x0) + f ′(x0)(x1 − x0)⇔

x1 = x0 −
f(x0)
f ′(x0)

For a well chosen x0, the computed x1 is a better approximation of the root of f .
Again, the graph gives us an intuitive idea that this is the case, for our example.
We can repeat the process from x1 in order to get finer approximations.

However, it is not always the case that the new point will be closer to the
root than the old one. Consider for example the function:

f(x) = 1− x2
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Figure 2: Newton’s method oscillates for f(x) = x3 − 2x + 2 and x0 = 0

If we start the iteration at x0 = 0 we get

x1 = 0− f(0)
f ′(0)

= 0− 1
0

which is undefined.
We look at a second example:

f(x) = x3 − 2x + 2

with starting point x0 = 0. Then we have

x1 = 0− f(0)
f ′(0)

= 0− 2
−2

= 1

x2 = 1− f(1)
f ′(1)

= 1− 1
−1

= 0

We get an oscillating sequence of 0 and 1 without converging to the root, as
illustrated in Figure 2.
For one last example we take

f(x) = 3
√

x

and the initial approximation x0 = 1. We compute the general formula for
Newton’s sequence

xn+1 = xn −
xn

1
3

1
3xn

− 2
3

= xn − 3xn = −2xn

The root of the function is 0, but the terms of the sequence will get further and
further away from the root

x0 = 1, x1 = −2, x2 = 4, x3 = −8, x4 = 16, . . .

These examples show that Newton’s method is not always convergent. Using
this method with inappropriate functions and initial values can give undesired
results. In order to get the expected behavior the function and the initial point
need to satisfy some conditions that we will discuss in detail in section 3.1.
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Newton’s method can be generalized to find approximations for roots of a
function

f : Rp → Rp

In this case we have

f(X) = (f1(X), . . . , fp(X)), X = (x1, . . . , xp)

Finding a root of f means solving the following system of equations:
f1(x1, x2, . . . , xp) = 0
f2(x1, x2, . . . , xp) = 0
. . .

fp(x1, x2, . . . , xp) = 0

To express Newton’s method in this case, we need an equivalent of the derivative
in several dimensions. This is the Jacobian matrix defined as defined in section
2.3.3. Then Newton’s method becomes:

Xn+1 = Xn − Jf (Xn)−1
f(Xn)

For Newton’s method in higher dimensions the same issues arise as in the one
dimensional case. Though the method is used to determine roots of functions,
it is sometimes the case that the sequence does not converge. The convergence
of the sequence is determined by properties of the function and the initial point.
Several studies by Willers, Stéinine, Ostrowski, Kantorovitch and others are
concerned with establishing sufficient conditions for the convergence of Newton’s
method. We are interested in Kantorovitch’s theorem. We gave the statement
in the case of a function of several variables in section 1 (theorem 1). We will
now present the details of the proof and some related results. We start with the
case of a real function.

3.1 Kantorovitch’s theorem in the case of a real function

We present here Kantorovitch’s theorem and some related results in the case of a
function with one variable. This one dimensional case is a simplified model of the
problem. The interest of treating it separately is to allow a better understanding
for the structure of the proof. The one dimensional case reveals the key points of
the proof as well as the places where the reasoning in the paper proof is difficult
to pass on a machine.

Theorem 2 (Convergence). Consider an equation f(x) = 0, where f : (a, b)→
R , a, b ∈ R f(x) ∈ C(1)((a, b)). Let x0 be a point contained in (a, b) with
its closed ε-neighborhood Uε(x0) = {|x − x0| ≤ ε} ⊂ (a, b). If the following
conditions hold:

1. f ′(x0) 6= 0 and
∣∣∣∣ 1
f ′(x0)

∣∣∣∣ ≤ A0;

2.
∣∣∣∣ f(x0)
f ′(x0)

∣∣∣∣ ≤ B0 ≤
ε

2
;

3. ∀x, y ∈ (a, b), |f ′(x)− f ′(y)| ≤ C|x− y|
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4. the constants A0, B0, C satisfy the inequality µ0 = 2A0B0C ≤ 1.

then, for an initial approximation x0, the Newton process

xn+1 = xn −
f(xn)
f ′(xn)

, n = 0, 1, 2, . . . (9)

converges and lim
n→∞

xn = x∗ is a solution of the initial system, so that |x∗−x0| ≤
2B0 ≤ ε.

Theorem 3 (Uniqueness). Under the conditions of Theorem 2 the root x∗ of
the function f is unique in the interval [x0 − 2B0, x0 + 2B0].

Theorem 4 (Speed of convergence). Under the conditions of Theorem 2 the
speed of the convergence of Newton’s method is given by

|xn − x∗| ≤ 1
2n−1

µ2n−1
0 B0

Theorem 5 (Local stability). If the conditions of Theorem 2 are satisfied and
if, additionally, 0 < µ0 < 1 and [x0 − 2

µ0
B0 , x0 + 2

µ0
B0] ⊂ (a, b), then for

any initial approximation x′0 that satisfies |x′0 − x0| ≤
1− µ0

2µ0
B0 the associated

Newton’s process converges to the root x∗.

The theorem of convergence of Newton’s method shows that this method
is indeed appropriate for determining the root of the function. The unicity of
the solution in a certain domain is used in practice for isolating the roots of
the function. The result on the speed of convergence means we know a bound
for the distance between a given element of the sequence and the root of the
function. This distance represents the precision at which an element of the
sequence approximates the root. In practice this theorem is used to determine
the number of iterations needed in order to achieve a certain precision for the
solution. The result on the stability of the method helps with efficiency issues
as it allows the use of an approximation instead of the exact value as we shall
see in section 3.2.

We do not present here the proofs of the theorems, we just give a few elements
of these proofs that will help understand how paper proofs relate to formal proofs
and how formalized proofs can help discover new proofs. For detailed proofs we
refer the reader to [8]. The outline of the proof for theorem 2 as presented in
[8] is as follows:

◦ prove a collection of properties for each element of the Newton sequence,
more precisely, show that hypotheses 1 - 4 are verified, with different
constants, for every element of the sequence ;

◦ infer that Newton’s sequence is a Cauchy sequence and, by the complete-
ness of R, a convergent sequence;

◦ prove that the limit of the sequence is a root of the given function.

The proof introduces the auxiliary sequences {An}n∈N, {Bn}n∈N and {µn}n∈N:

An = 2An−1 (10)
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Bn = An−1B
2
n−1C =

1
2
µn−1Bn−1 (11)

µn := 2AnBnC = µ2
n−1 (12)

For each element of the Newton sequence, we are able to verify properties that
are similar to those for x0. Reasoning by induction we get the following:

Uε(x0) ⊃ U ε

2
(x(1)) ⊃ . . . ⊃ U ε

2n

(xn) ⊃ . . . (13)

furthermore

f ′(xn) 6= 0 and
∣∣∣∣ 1
f ′(xn)

∣∣∣∣ ≤ An (14)

∣∣∣∣ f(xn)
f ′(xn)

∣∣∣∣ ≤ Bn ≤
ε

2n+1
(15)

µn ≤ 1 (16)

Notice that hypothesis 3 is a property of the function and it does not depend
on the elements of Newton’s sequence.

From (13) we can infer that xn is a Cauchy sequence:

xn+m ∈ U ε

2n

(xn)⇒ ‖xn+m − xn‖ ≤
ε

2n

The latter quantity can be made arbitrary small for n > N and m ∈ N, which is
equivalent to Cauchy’s criterion. We use the result that R is a complete metric
space to deduce that the sequence converges. By taking the limit in (9) we get
that the limit of the sequence is a root of function f .

To prove the uniqueness of the solution, we suppose that there exists another
solution of the equation and prove that it is also the limit of the sequence. By
uniqueness of this limit we have the desired result.

For Theorem 5 (local stability) we prove that the new initial approxima-
tion x′0 satisfies similar hypotheses as those for x0. The new constants are

A′ =
4

3 + µ0
A0 and B′ =

3 + µ0

4µ0
B0. This implies µ′ = 2A′B′C = 1 and we

can verify that

◦ f ′(x′0) 6= 0 and
∣∣∣∣ 1
f ′(x′0)

∣∣∣∣ ≤ A′

◦
∣∣∣∣ f(x′0)
f ′(x′0)

∣∣∣∣ ≤ B′

◦ µ′ ≤ 1

We are thus in the hypotheses of Theorem 2 and by applying this theorem we
conclude that the process converges to the same root x∗.

Notice, however, that for the new constants we get µ′ = 1. If we do a Newton
iteration, we would get the new µ′′ = µ′

2 = 1 (cf. equation (12)) and we would
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not be able to do an approximation again, because Theorem 5 requires µ′′ < 1.

To correct this, we impose a finer approximation |x0 − x′0| ≤
(1− µ0)

4µ0
B0. This

new approximation yields the following formulas for the constants:

A′ =
8

7 + µ0
A0 (17)

B′ =
µ2

0 + 46µ0 + 17
8(7 + µ0)µ0

B0 (18)

this implies

µ′ =
µ2

0 + 46µ0 + 17
(7 + µ0)2

< 1 (19)

We summarize these results in:

Corollary 1. If the conditions of Theorem 2 are satisfied and if, additionally,
0 < µ0 < 1 and [x0 − 2

µ0
B0 , x0 + 2

µ0
B0] ⊂ (a, b), then for any initial approx-

imation x′0 that satisfies |x′0 − x0| ≤
1− µ0

4µ0
B0 the associated Newton’s process

converges to the root x∗.

3.2 Newton’s method with rounding

In our description of Newton’s method up to here we assumed that the com-
putations are made with “true” real numbers. By this we mean that no round-
ing is performed during the computation. However, in actual applications the
method is implemented on floating point numbers or on some other machine
representable subset of real numbers. So rounding is performed at each step
of Newton’s method. The method we are actually performing is not Newton’s
method as described before, but a method that looks like:

t0 = rnd0(x0)

tn+1 = rndn+1(tn −
f(tn)
f ′(tn)

)

where rndn is the rounding performed at step n in the classical Newton’s
method.

It is reasonable to ask ourselves “Do the convergence results on the classical
Newton’s method remain true when using rounding in the computation? If so,
under which conditions?” As empirical data suggests, Newton’s method with
rounding will still converge, but under stronger conditions. With the theorems
presented so far, we have all the necessary tools to state and prove a theorem
on the behavior of Newton’s method with rounding at each step. The result
presented in what follows is based on theorems 2 - 5 but it is an original result.
We control the rounding at each step so the precision is just good enough to
ensure the convergence. This result is particularly interesting for computations
in arbitrary or multiple precision, as it relates the number of iterations with
the precision of the input and that of the result. This means that for the first
iterations we need a lower precision, as we are not close to the root. We will
later increase the precision of our intermediate values with the desired precision
for the result.
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Theorem 6 (Convergence with rounding). We consider a function f : (a, b)→
R and an initial approximation x0 satisfying the conditions in theorem 2.
We also consider a function rnd : N × R → R that models the approximation
we will make at each step in the perturbed Newton sequence:

t0 = x0 and tk+1 = rndk+1

(
tk −

f(tk)
f ′(tk)

)
If

1. ∀k∀x, x ∈ (a, b)⇒ rndk(x) ∈ (a, b)

2.
1
2
≤ µ0 < 1

3. [x0 − 3B0, x0 + 3B0] ⊂ (a, b)

4. ∀k∀x, |x− rndk(x)| ≤ 1
3k

R0, where R0 =
1− µ2

0

8µ0
B0

then

a. the sequence {tk}k∈N converges and lim
k→∞

tk = x∗where x∗ is the root of the

function f given by theorem 2

b. ∀k, |x∗ − tk| ≤
1

2k−1
B0

The first hypothesis makes sure that the new value will also be in the range
of the function. The second and third hypotheses come from the use of the sta-
bility property of the Newton sequence (see Corollary 1). The fourth hypothesis
controls the approximation we are allowed to make at each iteration. The con-
clusion gives us the convergence of the process to the same limit as Newton’s
method without approximations. Also we give an estimate of the distance from
the computed value to the root at each step.

Proof. Our proof is based on those for theorems 2 - 5 and corollary 1. To give
the intuition behind the proof, we decompose Newton’s perturbed process tn as
follows:

i. set t0 := x0

ii. do a Newton iteration to get x1 := t0 −
f(t0)
f ′(t0)

iii. do an approximation of the result to get t1 := rnd(x1)

iv. set t0 := t1 and go to step ii

Now let’s look at these steps individually:

◦ At step i we start with the initial x0 that satisfies the conditions in theorem
2. This means that Newton’s method from this initial point converges to
the root x∗ (see theorem 2).
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◦ At step ii we consider a Newton sequence starting with x1. This sequence
is the same as the sequence at step i except that we “forget” the first
element of the sequence and start with the second. It is trivial that this
sequence converges to the root x∗. We note that (see proof of theorem
2) we can associate the constants A1, B1 to the initial iteration of this
sequence and get the corresponding hypotheses from theorem 2.

◦ At step iii we consider Newton’s sequence starting from t1. This initial
point is just an approximation of the initial point of the previously con-
sidered sequence. From Corollary 1 we get the convergence of the new
sequence to the same root x∗. Moreover, the proof of Corollary 1 gives
us the constants A′, B′ associated to the initial point that also satisfy the
hypotheses of theorem 2. This means we can start the process over again.

If we take x0 and then all the initial iterations of the sequences formed at step
iii we get back our perturbed Newton’s sequence. But decomposing the problem
as we did gives the intuition of why this sequence should converge. However,
just having a set of sequences that all converge to the same root does not suffice
to prove that the sequence formed with all initial iterations of these sequences
will also converge to the same root. The reason is simple, the approximation
at step iii could bring us back to the initial point x0 which would still yield a
convergent Newton’s sequence, but which would not make the new element of
the perturbed sequence any closer to the root than the previous one. To get the
convergence of the perturbed sequence we need to control the approximation
we make. Hypothesis 4 suffices to ensure the convergence of the new process.
For the proof we use the idea from theorem 2 and associate to each element
of the perturbed sequence tk the constants A′k, B′

k, µ′k. The behaviour of these
associated constants help us prove the results we need.

To make the intuitive explanation more formal we consider the sequence of
sequences of real numbers {Yk}k∈N defined as follows:

Y n
0 = xn is the original Newton’s sequence;

Y1 is given by
Y 0

1 = rnd1(x1);

Y n+1
1 = Y n

1 −
f(Y n

1 )
f ′(Y n

1 )
is the Newton’s sequence associated to the initial

iteration Y 0
1 ;

we continue in the same manner and for an arbitrary k we define Yk+1 as follows
Y 0

k+1 = rndk+1(Y 1
k );

Y n+1
k+1 = Y n

k+1 −
f(Y n

k+1)
f ′(Y n

k+1)
.

We notice that taking the first element in each of these sequences forms our
perturbed Newton’s process:

Y 0
0 = x0 = t0 and

Y 0
k+1 = rndk+1

(
Y 0

k −
f(Y 0

k )
f ′(Y 0

k )

)
= rndk+1

(
tk −

f(tk)
f ′(tk)

)
= tk+1

We want to show that for each k, Y 0
k is at a certain distance form the root

x∗, which ensures the convergence of the perturbed Newton sequence at the
desired speed. We start by explaining what happens when we do one step with
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the perturbed Newton’s sequence. We go from t0 to t1 or, in the vocabulary we
introduced in order to explain the proof), we go from Y 0

0 to Y 0
1 , by following

looking at what happens at each if the steps i -iii.

◦ We start with sequence {Y n
0 }n∈N. Since it coincides with the initial se-

quence, the properties from theorem 2 are trivially satisfied. For the initial
point Y 0

0 we have the associated constants A0, B0, µ0. For uniform nota-
tion we rename these constants A′0 = A0, B

′
0 = B0, µ

′
0 = µ0. By applying

theorem 2 we get that
|x∗ − Y 0

0 | ≤ 2B′
0

◦ We consider the sequence Y
n

0 = Y n+1
0 (that is, the previously considered

sequence where we start from the second element). This sequence also
satisfies the conditions of theorem 2 where ew have as initial point Y

0

0 = Y 1
0

and the associated constants A0 = 2A′0, B0 = A′0B
′
0
2
C, µ0 = (µ′0)

2. The
laws for these constants are deduced from relations 10, 11 and 12 in section
3.1. We get that

|x∗ − Y
0

0| = |x∗ − Y 1
0 | ≤ 2B0 = 2(A′0B

′
0
2
C)

◦ Now we consider {Y n
1 }n∈N. The initial point of this sequence is Y 0

1 =
rnd1(Y

0

0). We are in a situation where we have a converging sequence
( {Y n

0}n∈N) and we introduce an approximation in the initial iteration.
Such situation is described by corollary 1 in section 3.1. We verify that in
our case, the hypotheses of corollary 1 are indeed satisfied. This consists
in showing:

0 < µ0 < 1[
Y

0

0 −
2
µ0

B0 , Y
0

0 +
2
µ0

B0

]
⊂ (a, b)∣∣∣ rnd1(Y

0

0)− Y
0

0

∣∣∣ ≤ 1− µ0

4µ0

B0

The proof of these properties uses rather basic manupulations of the quan-
tities involved.

By applying corollary 1 we obtain the constants A′1, B
′
1, µ

′
1 associated to

the point Y 0
1 according to relations (17) and (18) in section 3.1

A′1 =
8

7 + µ0

A0 =
8

7 + µ0

(2A′0)

B′
1 =

µ0
2 + 46µ0 + 17
8(7 + µ0)µ0

B0 =
µ0

2 + 46µ0 + 17
8(7 + µ0)µ0

(A′0B
′
0
2
C)

µ′1 = 2A′1B
′
1C =

µ2
0 + 46µ0 + 17

(7 + µ0)2
=

µ′
2
0

2
+ 46µ′

2
0 + 17

(7 + µ′20)2

We find ourselves again in the conditions of theorem 2 and we can deduce
that

|x∗ − Y 0
1 | ≤ 2B′

1
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We are also able to show that

B′
1 ≤

1
2
B′

0

We managed to deduce for Y 0
1 the same kind of properties as for Y 0

0 with
different associated constants. This means we are in the appropriate conditions
to start this process again for {Y n

2 }n∈N, {Y n
3 }n∈N, etc. We reason by induction

on k. For each Y 0
k we have the associated constants:

A′0 = A0 and A′k+1 =
8

7 + µk

(2A′k)

B′
0 = B0 and B′

k+1 =
µk

2 + 46µk + 17
8(7 + µk)µk

(A′nB′
k
2
C)

µ′k+1 = 2A′k+1B
′
k+1C =

µ2
k + 46µk + 17

(7 + µk)2
=

µ′
2
k

2
+ 46µ′

2
k + 17

(7 + µ′2k)2

where
µk = 2(2A′k)(A′kB′

k
2
C)C = (2A′kB′

kC)2

We need some auxiliary results to ensure that Corollary 1 is applied in the
appropriate conditions each time we make a rounding. These results are as
follow:

◦ 0 <
1
2
≤ µ0 = µ′0 ≤ µ′n ≤ µ′n+1 ≤ . . . < 1

◦
∣∣Y 0

n+1 − Y 0
n

∣∣ ≤ 1
2n

B0 +
1
3n

R0

◦
[
Y

0

n −
2
µn

Bn , Y
0

n +
2
µn

Bn

]
⊆ [Y 0

0 − 3B0 , Y 0
0 + 3B0] ⊂ (a, b)

We do not discuss all the details as they are elementary reasoning steps concern-
ing inequalities, second degree equations or geometric series. All these results
have been formalized in Coq to ensure that no steps are overlooked.

Using the same reasoning steps as for Y 0
1 , we get that

|Y 0
k − x∗| ≤ 2B′

k

B′
k ≤

1
2k

B0

These two relations trivially imply the convergence of the perturbed sequence
to the root x∗ at the desired speed, thus concluding our proof.

3.3 Implementation in COQ for the real case

In this section we will show how we formalized the theorems from the previous
section inside the Coq proof assistant. We first discuss the issues raised by
working with derivatives inside a proof assistant.
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3.3.1 Derivation

Let f : R → R be a derivable function on (a, b). “On paper” we can write

the corresponding Newton’s sequence xn+1 = xn −
f(xn)
f ′(xn)

, without worrying

whether the term xn is in the interval (a, b) where the function is derivable. The
Coq formalization of derivatives requires that when we talk about the derivative
of a function in a point, we provide a proof that the function is derivable at that
point. The goal is to ensure that derivatives are properly used. In the case if
Newton’s sequence, for writing the definition of the sequence in Coq we would
have to provide a proof that f is derivable in xn. We can prove this for every
n, but we need to define the sequence before being able to do this proof.

We worked around this impediment by defining a total function f ′ to use in
the definition of Newton’s sequence. We then imposed that on the interval (a, b)
f ′ is equal to the derivative of f . This is equivalent to using Hilbert’s epsilon
operator. We are now able to define our sequence and at the same time we are
prevented from using properties of the derivative in a point before proving the
function is derivable there.

3.3.2 Formal proofs

The proofs consist in basically reproducing the reasoning presented in section
3.1 inside the proof assistant Coq. Most of the real analysis needed in the proof
was already available in Coq’s standard library. Only simple lemmas were
needed in addition. When translating paper proofs on a machine we sometimes
need to adapt the structure of the proof to the features of the formal system.
For Kantorovitch’s theorem, in the paper proof we have the sequences {An}n∈N,
{Bn}n∈N and {µn}n∈N (see section 3.1) that are defined in an ad-hoc manner
during the proof of the theorem. In the proof assistant Coq we need to define
them separately, before starting the proof of the theorem. This allows the user
to better understand their importance and use similar sequences in proving new
results like theorem 6.

3.4 Moving to several dimensions

The formalization of multivariate analysis concepts presented in section 2.3 was
done to cover the background mathematics necessary for the proof of Kan-
torovitch’s theorem. The structure of the proof in several dimensions is the
same as in one dimension (see section 3.1). The formalization done for the real
case is a good guide in our development as the hypothesis and lemmas needed
are just a generalization of the ones for the real case.

For example, the properties of the absolute value generalize to those of the
vector and matrix norm, as the absolute value is a norm for the real numbers.
The inverse of a real number finds an equivalent in the inverse of a matrix, so a
result like

|1− t| ≤ 1
2
⇒ t 6= 0

generalizes to

‖Ep −A‖ ≤ 1
2
⇒ det A 6= 0.
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This adaptation is sometimes far from trivial as we saw for the latter example
which has been detailed in section 2.2. For Kantorovitch’s theorem, however,
the most difficult work of generalization concerns concepts and results from
multivariate analysis that have been covered in sections 2.2, 2.3.

4 Conclusion

We presented a complete formal study of theoretical properties of Newton’s
method, which covers general theories involved in the proofs, well-known results
on the method as well as new results for a modified version of Newton’s method,
for computations in finite precision. The entire formal development is available
online: http://www-sop.inria.fr/marelle/Ioana.Pasca/code

A preliminary version of the formalization on multivariate analysis and the
Kantorovitch’s theorem has been presented by the author in [24]. At that time
the formalization of multivariate analysis was not complete. The paper [18]
shows how theorem 6 can be used in the context of verification of exact real
number computations.

Our development is carried out inside the proof assistant Coq and the SS-
Reflect extension of Coq. However, some issues discussed here may apply to
other proof assistants. For example, implementations of multivariate analysis
are not available in proof assistants with the exception of HOL Light. But, most
proof assistants do have a real analysis library, comparable to that of Coq and
that can serve as a basis for multivariate analysis. For the interested reader we
point out the following work on real analysis: in Isabelle [9], in PVS [7], in HOL
[14], in ACL2 [10]. Once embarked on the formalization of multivariate analysis
we need to carefully choose a representation of vectors well suited for the type
system we work in. Derivatives are also delicate to handle in a proof assistant,
because we will always need to prove that a function is derivable in a point be-
fore talking about the derivative at that point. Multivariate analysis cannot be
approached without talking about matrices. Here also, proof assistants provide
more or less complex libraries (see section 2.2.1).

For the reader interested in the implementation details of our formalization
we provide special technical sections. These include explanations for Coq fea-
tures, description for Coq and SSReflect libraries and implementation choices
in the described development.

We also present an original result concerning the convergence of Newton’s
method with rounding at each step in theorem 6. This proof of convergence
has an interest from a proof engineering point of view. We were able to come
up with the proof because we had formalized theorems 2 - 5 inside a proof
assistant. Such a formalization forces the user to understand the structure of
the proof on one hand and to handle details with care on the other. Thus, an
assisted proof is usually more structured and more detailed than a paper proof
(especially in domains where automatic techniques are difficult to implement,
like real analysis). A proof assistant is also helpful with syntactic aspects like
properly constructing the induction hypothesis and doing the bookkeeping to
make sure all needed details are taken into consideration.

To the best of the author’s knowledge, the result and proof of Theorem 6
are new, though the author is not an expert in numerical analysis. Using only
a predetermined precision for our computation makes it that our formalization
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can be seen as an (imperfect) model of computation in multiple or arbitrary
precision, thus validating Newton’s method in such a context.

Since we are talking about a numerical method, it seems natural to have com-
putations with Newton’s method. Real number computations can be performed
inside proof assistants by using exact real arithmetic libraries like [17, 23, 19].
Some results around exact computation with Newton’s method are discussed by
Julien and the author in [18], where Theorem 6 played a crucial role, as New-
ton’s method with rounding at each step is a lot more efficient. In the future
we could also investigate the use of Theorem 6 in the validation of computation
with Newton’s method on floating point numbers.
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