
HAL Id: hal-00546849
https://hal.archives-ouvertes.fr/hal-00546849

Preprint submitted on 14 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the reachability problem in fragments of the
Pi-calculus

Luis Pino

To cite this version:

Luis Pino. Analysis of the reachability problem in fragments of the Pi-calculus. 2010. �hal-00546849�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50030936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00546849
https://hal.archives-ouvertes.fr

Undergraduate Thesis Report

Analysis of the reachability problem in fragments of the

π-calculus

Luis Fernando Pino Duque

del Valle
Universidad

Universidad del Valle
Facultad de Ingenieŕıa

Escuela de Ingenieŕıa de Sistemas y Computación

Santiago de Cali
2010

Undergraduate Thesis Report

Analysis of the reachability problem in fragments of the

π-calculus

Luis Fernando Pino Duque

Trabajo de Grado para optar por
el titulo de Ingeniero de Sistemas

Supervisor

Juan Francisco Dı́az Frias, Ph.D.
Profesor

Escuela de Ingenieŕıa de Sistemas y Computación
Universidad del Valle

Co-Supervisor

Frank D. Valencia, Ph.D.
Cient́ıfico Investigador

Laboratoire d’Informatique (LIX)
École Polytechnique de Paris

Universidad del Valle

Facultad de Ingenieŕıa
Escuela de Ingenieŕıa de Sistemas y Computación

Santiago de Cali
2010

Nota de Aceptación

Juan Francisco Dı́az Frias
Director del Proyecto

Jurado

Jurado

Santiago de Cali,

Abstract

The π-calculus is one of the most important formalisms for analyzing and modelling
concurrent systems. It is a simple but powerful tool for specifying and checking
several properties in this kind of systems. An interesting property of any system
is the ability to reach some special state where it has a particular behavior. In
security systems this is extremely important, since we would like that a system does
not reach a state where a secret becomes observable to potential attackers.

This work studies the reachability problem in fragments of the π-calculus and
explores some expressiveness results beyond this problem. We prove the relation
between local names and sequences of actions in CCS! processes. Using this result
and the decidability of barbs from [BGZ09] we prove that the reachability problem
for some fragments of π-calculus is decidable. We also provide an algorithmic ap-
proach for solving this problem using the theory of well-structured transition systems
[FS01], in consequence we are able to verify this property in infinite state systems
with a finite number of steps. Finally, we provide a small interpreter for CCS!, useful
as an initial practical approach for checking properties in real life systems specified
by this calculus.

i

Contents

1 Introduction 2
1.1 Problem Description . 3
1.2 Objectives . 4

1.2.1 Main Objective . 4
1.2.2 Specific Objectives . 4

1.3 Justification . 4
1.4 Background . 5

1.4.1 Technical Background . 5
1.4.2 Project Context . 15

1.5 Contributions . 16

2 Local Names vs. Observable Actions 17
2.1 A Special Family of Processes: Trios 17

2.1.1 Formal Definition . 17
2.1.2 Action Dependency in Trios 18

2.2 Exploring the Limits of Local Names 19
2.2.1 Logarithmic Local Names for Independent Actions 19
2.2.2 Constant Local Names and Unbounded Independent Actions . 21
2.2.3 Two Local Names for Three Independent Actions 23

2.3 The Reachability Problem . 25
2.3.1 Optimizing the Use of Local Names 25
2.3.2 From barbs to reachability . 31

3 Computing Reachability 33
3.1 Background . 33

3.1.1 Well-Structured Transition Systems (WSTS) 33
3.1.2 WSTS and CCS! . 34
3.1.3 Decidability of barb . 36

3.2 Solving Reachability . 39
3.2.1 A procedure for reachability problem 39
3.2.2 Analyzing the complexity . 41

ii

CONTENTS

4 CCS! Stepper 42
4.1 Grammar and General Description 42
4.2 Tests and Examples . 43

5 Concluding Remarks 45
5.1 Summary . 45
5.2 Future Work . 46

iii

List of Figures

2.1 Three trios of the form α.a.β . 24
2.2 One trio containing l̄2 (Case A, α.l̄2.β) 24
2.3 One trio containing l̄2 (Case B, α.β.l̄2) 24
2.4 Order of execution or a trio dependency tree 28
2.5 Representation of the tree in trios, subtree representing α.β.γ̄ 28
2.6 Tree representation for the properties 30
2.7 General minimum tree for akb . 30

4.1 Grammar for CCS! stepper . 43
4.2 Examples of the CCS! stepper . 44

1

Chapter 1

Introduction

In today’s world, technology is one of the most important cores for the development
of the society. This role has made access to high-tech devices increasingly frequent.
Elements like Web, wireless networks, high capacity laptops, mobile devices, among
others, have allowed advance towards information globalization, but carrying with
it new challenges and problems that need to be solved for assuring a reliable, correct
and secure service.

Computer science offers a framework in which information technology can be
formalized, allowing establishing conditions where they work correctly. There are
many factors that affect the correctness of such technologies, one of the most recent
and challenging is concurrency, and this consists in many processes making use of a
system in a simultaneous way. It is here where an area of computer science named
concurrency theory goes into action.

In this theory, process calculi are distinguished, its intention is to model and
reason about concurrent systems. Such calculi are capable to express systems for-
mally, hence it is possible to argue about them for obtaining correct results. There
are many examples such as CCS1, π-calculus2, Spi-calculus (π-calculus for argu-
ing about security), among others, they have been specialized for solving specific
problems since all of them count on with a modeling approach and an associated
expressiveness (a measure of how powerful the calculus is). This analysis is focused
on a fragment of the π-calculus that is fundamental in concurrency theory.

This project aims at analyzing the reachability problem in fragments of the π-
calculus, such analysis will allow determining if a state of a system can be reached.
It also aims at providing an algorithm resulting from the previous step, and for

1Calculus of Communicating Systems more information in:
http://en.wikipedia.org/wiki/Calculus_of_communicating_systems

2 More information in: http://en.wikipedia.org/wiki/Pi-calculus

2

http://en.wikipedia.org/wiki/Calculus_of_communicating_systems
http://en.wikipedia.org/wiki/Pi-calculus

1.1. PROBLEM DESCRIPTION

practical effects, another analysis focused on the complexity of such algorithm.

1.1 Problem Description

Concurrency theory investigates how to analyze those systems where many proc-
esses act in a simultaneous way, and arguing about them for obtaining conclusions
about correctness, security, reliability and other important aspects.

Process calculi are used for this purpose, because they allow making process
modeling in concurrent systems, and depending of its specialization they are able
to express, until certain point, a series of actions that can be object of study for a
subsequent reasoning.

The π-calculus is one of the most influential calculi in concurrency theory, its
simplicity and powerful operators make it an excellent tool for modeling concurrent
systems. It also allows expressing mobile behavior and it is widely used around the
world for analyzing several kinds of systems. This project focuses in this calculus
due to its importance and by the impact of the results which could be easily used
worldwide.

Nowadays, the notion of security has become one of the most important topics in
research. This is because we have very complex systems and they represent a giant
pillar in every second of our daily life. Moreover, in most cases the information must
be managed carefully and privacy (among other aspects) is hugely valuable. Then,
making a system safe means that it cannot reach a state in which private informa-
tion can be revealed to an external agent that should not know such information.

By these reasons, we can say that establishing which are the states that make
the system to be in danger are very important for arguing about its security. This
problem is called reachability problem, and it is a central topic in security research.

Therefore, the problem is to determine whether a specific action β can be reached
in some execution of the system. Such system is specified using the summation-free
zero-adic fragment of the π-calculus (CCS!). This project will provide a decidability
analysis of this problem by proving (or refusing) the strict relationship between the
actions needed to reach such state and the use of local names.

The next step will be to bring the theory into practice, by giving an algorithm
that can determine (given a process P and an action β) whether such action can
be reached by using the information proved previously. For practical purposes, the

3

1.2. OBJECTIVES

complexity of that algorithm is very important, and then it will conclude the anal-
ysis proposed in this project.

1.2 Objectives

1.2.1 Main Objective

To analyze the reachability problem in the CCS!.

1.2.2 Specific Objectives

• To determine the decidability of the reachability problem for the CCS!.

• To propose an algorithm for determining the reachability of an action given a
process written in the CCS!.

• To analyze the complexity of the proposed algorithm.

1.3 Justification

For long time, sequential systems have been the center of computer science studies,
but these approaches have not been enough for a growing world that demands more
complex systems everyday. In that sense, concurrent systems are present in our
daily activities, from our cells to social networks. In the late 20th and 21st century
the core of our society is based on information systems that carry out all kind of
tasks.

Following this idea, analyzing concurrent systems must be a central activity in
computer science. Here is where the π-calculus goes into scene, because it is an
excellent tool for modeling concurrent and mobile systems, for this reason it is one
the most influential process calculus in concurrency theory.

Another important thing is that system’s security is a growing problem that
has always been present in computer science, but in the last decade has become a
very important topic in research. The reason of its importance lies in the increasing
complexity of systems, then it is difficult to determine the “danger” states and to
predict the behavior of them. That is why it is important to have theoretical tools
that allow facing this problem.

The importance of this project lies in the reinforcement of the π-calculus by giv-
ing an analysis that could be very important for modeling and evaluating systems.

4

1.4. BACKGROUND

The main advantage will be given in security analysis which is a essential topic for
computer science research.

As an additional benefit, all the results obtained here can be linked with the work
made by Aranda[Ara09] in his Ph.D. thesis about the expressiveness in π-calculus.
That work has inspired the fundamental aspects of this project, then our analysis
will allow proving other interesting things about expressiveness due to its relation
with such work.

1.4 Background

1.4.1 Technical Background

Process Calculi

The process calculi are a diverse family of related approaches to formally modeling
concurrent systems. Process calculi provide a tool for the high-level description of
interactions, communications, and synchronizations between a collection of indepen-
dent agents or processes.

There are many different process calculi in the literature mainly agreeing in their
emphasis upon algebra. The main representatives are CCS[Mil89], CSP[Hoa85] and
the process algebra ACP[BK85, BW90]. The distinctions among these calculi arise
from issues such as the process constructions considered (i.e., the language of proc-
esses), the methods used for giving meaning to process terms (i.e. the semantics),
and the methods to reason about process behavior (e.g., process equivalences or
process logics). Some other issues addressed in the theory of these calculi are their
expressive power, and analysis of their behavioral equivalences. We will describe
some of the issues named previously.

The π-calculus

Syntax. Names are the most primitive entities in the π-calculus. We presuppose
a countable set N of (port, links or channel) names , ranged over by x, y, For
each name x, we assume a co-name x thought of as complementary, so we decree
that x = x. We use ~x to denote a finite sequence of names x1x2 . . . xn. The other
entity in the π-calculus is a process. Processes are built from names as follows.

Definition 1.4.1. (Syntax) The processes, the summations and the prefixes in π-

5

1.4. BACKGROUND

calculus are given respectively by:

P := M (νx)P P | P !P

M := 0 π.P M + M ′

π := x(y) xy τ

First we explain the summations and the prefixes and then the processes. The
process (summation) 0 does nothing. xy.P and x(y).P represent the output and
input process respectively, xy.P is a process which can output a datum y on chan-
nel x and then it behaves like P , xy is called a guard or (output) prefix . x(y).P
is a process which can perform an input action on channel x and then it behaves
like P{z/y}, the process which has replaced every occurrence of the name y, by the
datum z received, {z/y} is a substitution of z by y, x(y) is called a guard or (input)
prefix . τ.P can evolve invisibly to P . τ can be thought of as expressing an internal
action of a process, τ is called a guard or (unobservable) prefix . the sum (or choice)
P + Q represents the process which can has the capabilities of either P or Q but
not both. Once a capability of P (Q) has been performed, Q (respectively, P) is
disregarded.

In P | Q, the parallel composition of P and Q, P and Q can proceed inde-
pendently or can synchronise via shared names. In (νx)P , the name x is declared
private to P , i.e. initially, components of P can use x tinteract with one another
but not with other processes, the scope of x could change as a result of interaction
between processes as will be seen later. Finally, the replication !P can be thought
of as unboundedly many P ’s in parallel P | P | P | . . ., replication is the means to
express infinite behaviour. Notice that the operands in a sum must themselves be
summations. Hence it says that the π-calculus considers guarded-choice.

In each of x(y).P and (νy)P , the occurrence of y is binding with scope P . An
occurrence of a name in a process is bound if it is under the scope of a binding
occurrence of the name. An occurrence of a name is free if it is not bound. Given
Q we define its bound names bn(Q) as the set of names with a bound occurrence in
Q, and its free names fn(Q) as the set of names with a non-bound occurrence in Q,
hence n(Q) = fn(Q) ∪ bn(Q) is the set of names of Q.

As consequence of the interchange of names between processes an unintended
capture of names by binders could arise, to avoid it, the following definition of
α-convertability is useful.

Definition 1.4.2. (α-convertability) [SW01]

6

1.4. BACKGROUND

1. If the name w does not occur in the process P , then P{w/z} is the process
obtained by replacing each occurence of z in P by w.

2. A change of bound names in a process P is the replacement of a subterm
x(z).P of P by x(w).Q{w/z}, or the replacement of a subterm (νz)Q of P by
(νw)Q{w/z}, where in each case w does not occur in Q.

3. Processes P and Q are α-convertible, P = Q, if Q can be obtained from P by
a finite number of changes of bound names.

Hence we adopt two well-known conventions:

Convention 1.4.1. [SW01] Processes that are α-convertible are identified.

Convention 1.4.2. [SW01] When considering a collection of processes and substi-
tutions, we assume that the bound names of the processes are chosen to be different
from their free names and from the names of the substitutions.

Semantics. The semantics of the language described above made precise by a
labelled transition system. A transition P

α
−→ Q says that P can perform an action

α and evolve into Q. The set of actions used in the transition system is composed
by x̄y, xy, x̄(y), τ . x̄y, a free output , sends the name y on the name x, xy, an input ,
receives the name y on the name x, x̄(y), a bound output , sends a fresh name on x
and τ is an internal action .

Definition 1.4.3. (Actions) The actions, which are ranged over by α, are given by:

α := x̄y xy x̄(y) τ (1.1)

Act refers to the set of actions. The set of labels, ranged over by l and l′, is L which
is composed of all non-internal actions.

Functions fn(), bn() and n() are extended to cope with labels as follows:

bn(xy) = ∅ bn(x̄y) = ∅ bn(x̄(y)) = {y} bn(τ) = ∅
fn(xy) = {x, y} fn(x̄y) = {x, y} fn(x̄(y)) = {x} fn(τ) = ∅

The subject , subj() , and object , obj() , of these actions is defined as:
subj(xy) = subj(x̄y) = subj(x̄(y)) = x, obj(xy) = obj(x̄y) = obj(x̄(y)) = y,
subj(τ) = obj(τ) = ∅.

Definition 1.4.4. (Semantics) The labelled transition relation
α

−→ is given by the
rules in Table 1.1. Omited from Table 1.1 are the symmetric forms of Sum-L, Par-L,
Com-L and Close-L. Let us define the relation

α
=⇒ , with s = α1. . . . αn ∈ Act∗, as

(
τ

−→)∗
α1−→ (

τ
−→)∗ . . . (

τ
−→)∗

αn−→ (
τ

−→)∗. =⇒ is the reflexive and transitive closure

of
τ

−→.
τ̂

=⇒ is =⇒ and
β̂

=⇒ is
β

=⇒.

7

1.4. BACKGROUND

Some comments on the rules: the side-condition in Rule Par-L rule avoids the
capture of a name by the extrusion of the scope of another name. The Open rule
expresses extrusion of the scope of a name, this action allows the passing of a name
beyond its original scope, its side-condition avoids the execution of an action whose
subject is a bound-name as it should not interact with other processes out of the
scope of the name. Rule Close-L reflects the interaction between processes in which
the left-process has transmitted a bound name to the right-process, thus the scope
of the restricted name is extended to include the process which receives it.

Input x(y).P
xz
−→ P{z/y} where x, y ∈ N

Output x̄y.P
x̄y
−→ P Tau τ.P

τ
−→ P

Sum-L
P

α
−→ P ′

P + Q
α

−→ P ′

Open
P

x̄y
−→ P ′

(νy)P
x̄(y)
−→ P ′

x 6= y Res
P

α
−→ P ′

(νy)P
α

−→ (νy)P ′
y 6∈ n(α)

Par-L
P

α
−→ P ′

P | Q
α

−→ P ′ | Q
bn(α) ∩ fn(Q) = ∅

Com-L
P

x̄y
−→ P ′, Q

xy
−→ Q′

P | Q
τ

−→ P ′ | Q′
Close-L

P
x̄(y)
−→ P ′, Q

xy
−→ Q′

P | Q
τ

−→ (νy)(P ′ | Q′)

Rep-Act
P

α
−→ P ′

!P
α

−→ P ′ | !P

Rep-Comm
P

x̄y
−→ P ′, P

xy
−→ P ′′

!P
τ

−→ (P ′ | P ′′) | !P

Rep-Close
P

x̄(z)
−→ P ′, P

xz
−→ P ′′

!P
τ

−→ ((νz)(P ′ | P ′′)) | !P
z /∈ fn(P)

Table 1.1: Operational semantics for the π-calculus.

Remark 1.4.1. We abbreviate, for any names x, y, the guards x(y) and x̄y by x
and x̄, respectively, where y, is a dummy name: in these cases the datum which can
be received or sent is irrelevant

Notation 1.4.1. Throughout this work, we use (νa1 . . . an)P as a short hand for
(νa1) . . . (νan)P . We often omit the “0” in α.0.

8

1.4. BACKGROUND

Now we define ≡ which shall be useful in the project although it is not included
in the semantics:

Definition 1.4.5. Let ≡ be the smallest congruence over processes satisfying α-
equivalence, the commutative monoid laws for composition with 0 as identity, the
replication law !P ≡ P |!P , the restriction laws (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P
and the extrusion law: (νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P).

The Calculus of Communicating Systems

Undoubtedly CCS [Mil89], a calculus for synchronous communication, remains as a
standard representative of process calculi. In fact, many foundational ideas in the
theory of concurrency have sprung from this calculus. In the following we shall con-
sider two variants of CCS according to its mechanism to model infinite behaviour.
Hence, first we show the Finite fragment of CCS and then we introduce the two
“recursive” extensions.

Finite CCS. The finite CCS processes can be obtained as a restriction of the
finite processes of the π-calculus, i.e those π processes without occurrence of a term
of the form !P , by requiring all inputs and outputs to have empty subjects only.
Intuitively, this means that in CCS there is no sending/receiving of links but syn-
chronisation on them.

In CCS, the actions are names, co-names and τ and therefore, we shall use l, l′, . . .
to range over names and co-names, where L is the set of names and co-names. The
set of actions Act , ranged over by α and β, extends L with the symbol τ.

The syntax of finite CCS processes is the following:

Definition 1.4.6. (Syntax) Processes in finite CCS are given respectively by:

P := M (νx)P P | P !P

M := 0 π.P M + M ′

π := x x τ

Definition 1.4.7. (Semantics) The labelled transition relation
α

−→ is given by the
rules in Table 1.2. Omitted from Table 1.2 are the symmetric forms of Par-L, Com-L
and Close-L.

There are two variants of CCS which extend the above syntax to express infinite
behaviour in a different way. We describe them next.

9

1.4. BACKGROUND

Input x.P
x

−→ P

Output x̄.P
x̄

−→ P Tau τ.P
τ

−→ P

Sum-L
P

α
−→ P ′

P + Q
α

−→ P ′
Res

P
α

−→ P ′

(νy)P
α

−→ (νy)P ′
y 6∈ n(α)

Par-L
P

α
−→ P ′

P | Q
α

−→ P ′ | Q
Com-L

P
x̄

−→ P ′, Q
x

−→ Q′

P | Q
τ

−→ P ′ | Q′

Table 1.2: Operational semantics for the finite CCS.

Replication CCS!: As said before, replication is the way of expressing infinite
behaviour which has been used in the π-calculus and the Aπ-calculus. It has also
studied in the context of CCS in [BGZ09, GSV04]. For replication the syntax of
finite processes (Definition 1.4.6) is extended as follows:

P, Q, . . . := . . . !P (1.2)

CCS! is the restriction of the π-calculus seen by requiring all inputs and outputs
to have empty subjects only. The operational rules for CCS! are those in Table 1.2
plus the following rules:

Rep-Act P
α

−→ P ′

!P
α

−→ P ′ | !P
Rep-Comm P

x̄
−→ P ′ P

x
−→ P ′′

!P
τ

−→ P ′ | P ′′ | !P

Table 1.3: Transition Rules for Replication in CCS!

The study of local names in CCS! is central in our work, we introduce the concept
of maximum nesting of local names:

Definition 1.4.8. The maximal number of nesting of local names |P |ν can be in-
ductively given as follows:

|(ν x)P |ν = 1 + |P |ν |P | Q|ν = max(|P |ν , |Q|ν)

|α.P |ν = |!P |ν = |P |ν |0|ν = 0

10

1.4. BACKGROUND

We also need the concept of weak barb in CCS!:

Definition 1.4.9 (Weak Barb). A process P has a barb x denoted by P ⇓ x iff
P →∗ α

−→ and x ∈ α.

Parametric Definitions: CCS and CCSp: A typical way of specifying infinite
behaviour is by using parametric definitions [Mil99]. In this case we extend the
syntax of finite processes (Definition 1.4.6) as follows:

P, Q, . . . := . . . A(y1, . . . , yn) (1.3)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We assume

that every such an identifier has a unique, possibly recursive, definition A(x1, . . . , xn)
def
=

PA where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn)
behaves as its body PA with each yi replacing the formal parameter xi. For each

A(x1, . . . , xn)
def
= PA, we require fn(PA) ⊆ {x1, . . . , xn}.

Following [GSV04], we use CCSp to denote the calculus with parametric defini-
tions with the above syntactic restrictions.

Remark 1.4.2. As shown in [GSV04], however, CCSp is equivalent w.r.t. strong
bisimilarity to the standard CCS. We shall then take the liberty of using the terms
CCS and CCSp to denote the calculus with parametric definitions as done in [Mil99].

The rules for CCSp are those in Table 1.2 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn]

α
−→ P ′

A(y1, . . . , yn)
α

−→ P ′
if A(x1, . . . , xn)

def
= PA (1.4)

As usual P [y1 . . . yn/x1 . . . xn] results from replacing every free occurrence of xi with
yi renaming bound names in P wherever needed to avoid capture.

Notions and equivalences

A central concept is the notion of encoding : A map from the terms of a π-calculus
variant (e.g., CCSp) into the terms of another (e.g., CCS!). The existence of encod-
ings that satisfy certain properties is typically used as a measure of expressiveness
(see [CCP06, Gor07, Gor06, CM03, CC01, Pal03]).

Bisimilarity

Definition 1.4.10 (Reduction Bisimilarity). A reduction simulation is a binary
relation R satisfying the following: (P, Q) ∈ R implies that:

11

1.4. BACKGROUND

• if P
τ

−→ P ′ then ∃Q′ : Q
τ

−→ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a reduction bisimulation iff both R and its converse R−1

are reduction simulations. We say that P and Q are reduction bisimilar, written
P ∼r Q iff (P, Q) ∈ R for some reduction bisimulation R.

Definition 1.4.11 (Strong Bisimilarity). A strong simulation is a binary relation
R satisfying the following: (P, Q) ∈ R implies that:

• if P
α

−→ P ′ then ∃Q′ : Q
α

−→ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a strong bisimulation iff both R and its converse R−1 are
strong simulations. We say that P and Q are strongly bisimilar, written P ∼ Q iff
(P, Q) ∈ R for some strong bisimulation R.

Definition 1.4.12 (Weak Bisimilarity). A (weak) simulation is a binary relation R
satisfying the following: (P, Q) ∈ R implies that:

• if P
s

=⇒ P ′ where s ∈ L∗ then ∃Q′ : Q
s

=⇒ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a bisimulation iff both R and its converse R−1 are simulations.
We say that P and Q are (weakly) bisimilar, written P ≈ Q iff (P, Q) ∈ R for some
bisimulation R.

Language and failures equivalences

We shall use the notion of language and failures in order to measure the expres-
sive power of the calculi. Language notion is particularly suitable for this work,
because the comparison involves different computability models.

Following [BBK93], we say that a process generates a sequence of non-silent
actions s if it can perform the actions of s in a finite maximal sequence of transitions.
More precisely:

Definition 1.4.13 (Sequence and language generation). The process P generates a
sequence s ∈ L∗ if and only if there exists Q such that P

s
=⇒ Q and Q 6

α
−→ for any

α ∈ Act . Define the language of (or generated by) a process P , L(P), as the set of
all sequences P generates. We say that P and Q are language equivalent , written
P ∼L Q , iff L(P) = L(Q).

The above definition basically states that a sequence is generated when no tran-
sition rules can be applied. It is clearly related to the notion of language generation
of models of computation. Namely, formal grammars where a sequence is generated
when no rewriting rules can be applied.

We recall the notion of failure following [Mil89]. We first need the following
notion:

12

1.4. BACKGROUND

Definition 1.4.14. We say that P is stable iff P 6
τ

−→.

Intuitively we say that a pair 〈e, L〉, with e ∈ L∗ and L ⊆ L, is a failure of P if
P can perform e and thereby reach a state in which no further action (including τ)
is possible if the environment will only allow actions in L.

Definition 1.4.15 (Failures). A pair 〈e, L〉, where e ∈ L∗ and L ⊆ L, is a failure

of P iff there is P ′ such that: (1) P
e

=⇒ P ′, (2) P ′ 6
l

−→ for all l ∈ L, and (3) P ′ is
stable. Define Failures(P) as the set of failures of a process P . We say that P and
Q are failures equivalent , written P ∼F Q iff Failures(P) = Failures(Q).

State of the Art

This project aims at analyzing the reachability problem in CCS!, hence it is impor-
tant to highlight other similar theories developed for the most representative process
calculi, like CCS and π-calculus. Moreover, it is important to know which tools us-
ing this theories have been developed. In the following section, those aspects are
going to be presented.

Scientific Background We will present a short abstract of three works that are
related with our project

• On the expressivity of infinite and local behavior in fragments of the
π-calculus[Ara09]: This Ph.D. thesis is an expressiveness study for fragments
of the π-calculus. The main results of this dissertation includes a character-
ization of CCS! in the Chomsky Hierarchy, i.e., the author propose a way to
generate formal languages using CCS! processes. Besides, they prove the re-
lationship between context-free grammars and the CCS! processes by showing
that not all the context-free grammars can be generated by those processes
(preserving termination). As stated before, the work proposed here is based
on the results from such study, since the relation between the formal lan-
guages, the language generation and the reachability problem is direct. Then,
our results will help to prove other important aspects on the expressiveness of
π-calculus.

• On the decidability of the control reachability problem in the asyn-
chronous π-calculus[AM02]: This work studies an analog problem, it con-
sists basically that given a process in asynchronous π-calculus (with some
special constraints) they need to determine if such process can reach a spe-
cial configuration. The main difference lies in the calculus, since they use an
strictly asynchronous formalism then their results do not apply directly in our
problem.

13

1.4. BACKGROUND

• On the expressive power of recursion, replication and iteration in
process calculi[BGZ09]: This report provides a wide analysis about three
mechanisms for giving infinite behavior in process calculi, namely they study
the expressiveness of recursion, iteration and replication. The authors provide
an hierarchy between the three mechanisms, they give an encoding from re-
cursion to replication, and replication to iteration. They also study four basic
issues, termination (all computations of a given process are finite), convergence
(the existence of a finite computation), barb (the possibility of performing an
action after a sequences of synchronizations) and weak bisimulation (check
whether two processes are weak bisimilar). In this work, we shall use the
decidability of barb in the replication case.

Technological Background In this section, we present two practical tools related
to process calculi

• The Edinburgh Concurrency Workbench (CWB):3 This workbench is
an automated tool which caters for the manipulation and analysis of concurrent
systems. In particular, the CWB allows for various equivalence, preorder and
model checking using a variety of different process semantics. For example,
with the CWB it is possible to:

– define behaviors given either in an extended version of CCS or in SCCS,
and perform various analyses on these behaviors, such as analyzing the
state space of a given process, or checking various semantic equivalences
and preorders;

– define propositions in a powerful modal logic and check whether a given
process satisfies a specification formulated in this logic;

– play Stirling-style model-checking games to understand why a process
does or does not satisfy a formula;

– derive automatically logical formulae which distinguish nonequivalent
processes;

– interactively simulate the behavior of an agent, thus guiding it through
its state space in a controlled fashion.

• The Mobility Workbench (MWB):4 MWB is a similar to the previous
tool, but its application is focused on π-calculus instead of CCS. In an anal-
ogous way this workbench is used to model concurrent systems and it allows
to reason about equivalences, behaviors, among other functionalities.

3http://homepages.inf.ed.ac.uk/perdita/cwb/summary.html
4http://www.it.uu.se/research/group/mobility/mwb

14

http://homepages.inf.ed.ac.uk/perdita/cwb/summary.html
http://www.it.uu.se/research/group/mobility/mwb

1.4. BACKGROUND

1.4.2 Project Context

This project is part of a much bigger project named FORCES5. It is a Colombian-
French project funded by the program of “Equipes Associees” of INRIA6. The teams
involved in this research collaboration are COMÈTE7 (INRIA), the Music Repre-
sentation Research Group (IRCAM)8 and AVISPA Research Group9 (Universidad
del Valle in agreement with Universidad Javeriana at Cali, Colombia -which the
researcher is member-) (Colciencias). The main goal is to provide more robust for-
malisms for analyzing the emergent systems that our teams have been modeling
during recent years: I.e., Security Protocols, Biological Systems and Multimedia
Semantic Interaction.

As it can be seen, the application of process calculus such as π-calculus is impor-
tant in different areas. This project will help for developing and implementing new
tools based in this calculus, since determining if an action can be made is central
for many models in different areas. The main advantage will be given in security
analysis which is a very important topic nowadays.

Then, the results will reinforce the work made in FORCES and also they will
give a new result in concurrency theory. An additional advantage of this project
is to consolidate relationship between AVISPA and École Polytechnique at Paris,
through teacher Frank Valencia (Project Co-Supervisor), since this project feeds the
interests that have been built-up jointly.

5FORmalisms from Concurrency for Emergent Systems. More info at:
http://www.lix.polytechnique.fr/comete/Forces/Welcome.html

6Institut national de recherche en informatique et automatique. More info at:
http://www.inria.fr/

7http://www.lix.polytechnique.fr/comete/
8Institut de Recherche et Coordination Acoustique/Musique. More info at:

http://www.ircam.fr/
9http://cic.puj.edu.co/wiki/doku.php?id=grupos:avispa:avispa

15

http://www.lix.polytechnique.fr/comete/Forces/Welcome.html
http://www.inria.fr/
http://www.lix.polytechnique.fr/comete/
http://www.ircam.fr/
http://cic.puj.edu.co/wiki/doku.php?id=grupos:avispa:avispa

1.5. CONTRIBUTIONS

1.5 Contributions

The main contributions of our work are listed below:

1. We provide an accurate analysis for the relation between the local names and
the observable actions by showing an encoding that reveals the logarithmic
relation between them.

2. We give an impossiblility result concerning with the use of a fixed amount of
local names in a process. In consequence, we cannot impose a delay of an
action progressively growing using a constant amount of nested restrictions.

3. We show a special case of the relation between nested restrictions and observ-
able actions, where there is no process with two nested restrictions which can
delay the execution of an action by three previous actions.

4. We prove the direct relation between nested local names and sequence of ob-
servable actions.

5. We present a transformation of the reachability problem to barbs. In conse-
quence, we prove the decidability of the reachability problem for CCS!.

6. We provide an algorithmic approach for solving the reachability problem and
its respective computational complexity.

7. We present a small interpreter for CCS!. It receives a process written in CCS!

and returns its possible evolutions according to the operational semantics.

16

Chapter 2

Local Names vs. Observable
Actions

In this chapter we describe the influence of the local names on the amount of ob-
servable actions that a process can perform before reaching a specific state. First,
we shall introduce the notion of a special family of CCS! processes called trios and
its relationship with the dependency of actions. We then show how to use this kind
of processes to analyze the relation between local names and observable actions.
Then, we prove the limit of the local names when trying to perform observable ac-
tions before reaching a special state. We after relate the decidability of barbs with
reachability problem and finally we use this relation and our result to determine the
decidability of the reachability problem.

2.1 A Special Family of Processes: Trios

Trios-Processes [Ara09] is a special family of CCS! processes with a simple but
powerful structure which conserves the behavior of CCS! processes. Its structure
will allow us to analyze more easily the dependency between actions.

2.1.1 Formal Definition

Intuitively, trios processes are a subset of arbitrary CCS! processes composed only
by “trios” (sequences of three actions). Formally we have:

Definition 2.1.1 (Trios Process). We shall say that a CCS! process T is a trios-
process iff all prefixes in T are trios; i.e., they all have the form α.β.γ and satisfy
the following: If α 6= τ then α is a name bound in T , and similarly if γ 6= τ then γ
is a co-name bound in T . For instance (νl)(τ.τ.l | l.a.τ) is a trios-process. We will
view a trio l.β.l as linkable node with incoming link l from another trio, outgoing
link l to another trio, and contents β.

17

2.1. A SPECIAL FAMILY OF PROCESSES: TRIOS

Interestingly, the family of trios-processes can capture the behaviour of arbitrary
CCS! processes via the following encoding:

Definition 2.1.2. Given a CCS! process P , JP K is the trios-process (ν l)(τ.τ.l | JP Kl)
where JP Kl, with l 6∈ n(P), is inductively defined as follows:

J0Kl = 0

Jα.P Kl = (ν l′)(l.α.l′ | JP Kl′) where l′ 6∈ n(P)

JP | QKl = (ν l′, l′′)(l.l′.l′′ | JP Kl′ | JQKl′′) where l′, l′′ 6∈ n(P) ∪ n(Q)

J!P Kl = (ν l′)(!l.l′.l | !JP Kl′) where l′ 6∈ n(P)
J(ν x)P Kl = (ν x)JP Kl

Notice that the trios-process Jα.P Kl encodes a process α.P much like a linked list.
Intuitively, the trio l.α.l′ has an outgoing link l to its continuation JP Kl′ and incom-
ing link l from some previous trio. The other cases can be explained analogously.
Clearly the encoding introduces additional actions but they are all silent—i.e., they
are synchronisations on the bound names l, l′ and l′′.

Unfortunately the above encoding is not invariant w.r.t. language equivalence
because the replicated trio in J!P Kl introduces divergence. E.g, L((νx)!x) = {ε} but
L(J(νx)!xK) = ∅. It has, however, a pleasant invariant property: weak bisimilarity,
≈.

Proposition 2.1.1. For every CCS! process P , P ≈ JP K where JP K is the trios-
process constructed from P as in Definition 2.1.2.

2.1.2 Action Dependency in Trios

Intuitively, the reachability problem consists in checking whether a process can per-
form a specific action at some point in its evolution. Then we are specially interested
in the sequences that a process can perform before such action, since we shall use
the relationship between these sequences and the structure of the process in order
to obtain an useful measure for determining reachability. Now we shall present the
influence of the dependencies in a trios process.

For analyzing the influence of dependencies, let s = a.b.c and s′ = a10b be se-
quences of actions. Now take a trios-process P and see it as a linked list, it is easy to
check that if P

s
=⇒ then the there must be a “link” between a and b, and similarly

between b and c, since the observable actions can only be in the center of a trio (as

data in a linked list). On the other hand, take a process Q s.t. Q
s′

=⇒, this case
is different from s′, since there is no order between the a’s thus what you can only
infer from the structure of the process is that you need a special link after perform-
ing a10, and the independence of the a’s implies that they can be performed anytime.

18

2.2. EXPLORING THE LIMITS OF LOCAL NAMES

This intuitive description gives us a powerful insight at analyzing the sequences
that a trios-process can perform. From this fact we can say that the case when you
need a maximum amount of “links” is when there is a complete dependency among
actions. Therefore, when the links are used in the worst way, the result is a relation
1-1 between observable actions and local names. This is not the case when there
exist independent actions.

In the next section we will focus mainly on the behavior of trios-processes with
independent sequences in order to find the best way of exploiting local names, and
then figuring out the limits of the possible sequences that a process can perform
given an amount of local names.

2.2 Exploring the Limits of Local Names

In this section we shall show the limits of the local names when we need to build
a process which performs a set of actions before reaching a specific state. Using
trios-processes, we will be able to show the optimal way of using the local names.
Later, we shall prove that using a fixed number of local names will not allow to have
an unbounded amount of actions, i.e., at some point we will obtain an undesirable
behavior. Finally, we shall show a specific case of this limit.

2.2.1 Logarithmic Local Names for Independent Actions

As said before, we will focus in minimizing the use of local names in order to find
the relation between local names and sequence of observable actions. The intuitive
idea is to build a trios-process T which performs a sequence of independent actions
s = an then β = b using as least local names as possible.

We propose a logarithmic amount of local names with respect to n. Let vn ∈ N

the number of local names used; tn ∈ N the number of resulting trios, f(i, n) ∈ N×N

a function (used for convenience) that takes the half of tn, i times;
∏

i P denotes the
parallel composition of P , i times; and form now on, we will use li to denote local
names in the process.

vn = dlog2 ne + 1 tn = 2Vn f(i, n) = 2(vn−i)

Then, we construct T in four parts. In the first part (P1), every a is encoded
in a trios-process of the form τ.a.l̄1. The second part (P2) is used when n is not a
power of 2, then we need to fill the output actions that left to complete an amount
of l̄1 that must be a power of 2 (This will be used for making one reception for
two variables in a progressive way). The third part (P3) consists in the reception of
every output name l̄1 and every trio finish with an acknowledge l̄2. For the first n

19

2.2. EXPLORING THE LIMITS OF LOCAL NAMES

trios (which output in l̄1) we need the same amount of receptions, then this process
is made successively, thus the amount of new trios is reduced to the half until we
get just one trio which outputs in the channel (l̄vn

). The last part (P4) consists in
the last reception that represents the acknowledge of all the a’s previously specified,
hence the b can be executed for having anb.

P1 =
∏

n

τ.a.l̄1 (2.1)

P2 =
∏

f(1,n)−n

τ.τ.l̄1 (2.2)

P3 =

vn
∏

i=2

∏

f(i,n)

li−1.li−1.l̄i (2.3)

P4 = lvn
.b.τ (2.4)

T = P1 | P2 | P3 | P4

For illustrating the process proposed above, let us show the process that results
for a4b, n = 4.

v4 = dlog2 4e + 1 = 3 t4 = 2v4 = 8

f(i, n) = 2(vn−i) f(1, 4) = 4, f(2, 4) = 2, f(3, 4) = 1

P1 =
∏

4

τ.a.l̄1 = τ.a.l̄1 | τ.a.l̄1 | τ.a.l̄1 | τ.a.l̄1 (2.5)

P2 =
∏

f(1,4)−4

τ.τ.l̄1 =
∏

0

τ.τ.l̄1 = 0 (2.6)

P3 =

3
∏

i=2

∏

f(i,4)

li−1.li−1.l̄i =
∏

f(2,4)

l1.l1.l̄2 |
∏

f(3,4)

l2.l2.l̄3 (2.7)

=
∏

2

l1.l1.l̄2 |
∏

1

l2.l2.l̄3 (2.8)

= l1.l1.l̄2 | l1.l1.l̄2 | l2.l2.l̄3 (2.9)

P4 = l3.b.τ (2.10)

Q = P1 | P2 | P3 | P4 (2.11)

= (τ.a.l̄1 | τ.a.l̄1 | τ.a.l̄1 | τ.a.l̄1) | (l1.l1.l̄2 | l1.l1.l̄2 | l2.l2.l̄3) | l3.b.τ (2.12)

20

2.2. EXPLORING THE LIMITS OF LOCAL NAMES

This construction uses a logarithmic amount of local names with respect to the
amount of observable actions. From now on, we shall show that this is the best way of
using local variables in order obtain the longest sequence of independent observable
actions before reaching a subprocess which is able to perform a particular action (in
this case b).

2.2.2 Constant Local Names and Unbounded Independent
Actions

In order to prove that the previous encoding uses the local names in an optimal
way, first we will proceed by proving that using a fixed number of local names (less
than logarithmic) we cannot build processes which delay an action unboundedly,
i.e., there is no amount of local names s.t. we can unboundedly construct processes
where the action (we are analyzing) can only be executed after a growing number
of observable actions.

Moreover, we want to prove that a constant number of local names constrains
the expressiveness of the calculus, we shall show that if we only use a fixed number
of local variables then there is a limit for the processes that we can build. We will
begin by providing some results about sets and its relation with infinite sequences.
Then, we will introduce a lemma that proves the limits of using fixed local names.

Remark 2.2.1. We are interested in infinite sequences using natural numbers as
elements, then from now on the alphabet for constructing the sequences will be the
natural numbers. Besides, we will use x ∈ s to indicate that the number x is in the
sequence s (as a symbol taken from the alphabet).

This kind of sequences will be very useful for analyzing the infinite behavior
when we try to generate an infinite amount of processes with fixed local names. The
next result is from sets, but it will be helpful when we relate it to infinite sequences.

Theorem 2.2.1. [Apo67] (The Well-Ordering Principle) Every non-empty set
of positive integers contains a smallest element.

Now we will state the relationship between a set and and an infinite sequence,
basically such sequences can be seen as a set with the same elements but without
repeated elements and order. The set might not be infinite, but it is irrelevant for
our purposes. In consequence, we can make a relation between the result of the
“well-ordering principle” in sets and infinite sequences of naturals as a corollary.

Corollary 1. Every non-empty infinite sequence of naturals contains a smallest
element.

21

2.2. EXPLORING THE LIMITS OF LOCAL NAMES

We have related the results from sets to infinite sequences of naturals, now we
introduce a convention for the smallest value in a sequence and the definition of
“delay” an specific action.

Definition 2.2.1. Let s be a non-empty infinite sequence, we use min(s) to denote
a function that takes an infinite of naturals and gives the smallest value in s and it
exists by 1.

Definition 2.2.2 (Delay). A process P delays β with a minimum number of k

actions defined over a finite alphabet Σ iff P
s.β
=⇒ where s = a1 . . . ak and there is no

k′ where k′ < k and P
s′.β
=⇒ with s′ = b1 . . . bk′, and s, s′ ∈ Σ∗. From now on, Pk,β,Σ

denotes a process P which produces β with a minimum number of k actions defined
over a finite alphabet Σ.

Now we can present the general result about fixed local names, we will prove a
lemma that states that if we only have a specific amount of local variables then we
are not able to build every process Pk,β,Σ with k ≥ 0.

This impossibility is based in the idea that if there are finite local variables,
then all processes can only be constructed using a finite amount of possible trios, as
consequence every process can be seen as a tuple since we can count the ocurrences
of the trios and save such values in the tuple.

The result is an infinite sequence of tuples and we can order it to find two
subsequent processes (say Pi,β,Σ and Pj,β,Σ) which are supposed to have a minimum
delay for the β action (i and j actions respectively), but this order means that the
“greater” process Pj,β,Σ can do the same things as the “smaller” Pi,β,Σ then we can
conclude that Pj,β,Σ could finish before than planned (after i actions) leaving us in
a contradiction. After introducing intuition, the lemma is formally stated.

Lemma 1. Let S be defined as {Pk,β,Σ ∈ Trios | k ≥ 0}, there is no nν s.t for every
P ∈ S then |bn(P)| ≤ nν.

Proof. Suppose by means of contradiction that there exists nν such that for ev-
ery P ∈ S then |bn(P)| ≤ nν . The number of possible trios N is finite since
actions (alphabet, local names and τ) are finite. Hence, we have the finite set
LT = {t1, t2, ..., tj , ..., tN} where every tj is a trio and LT represent all possible trios.

If the trios are finite then every Pk,β,Σ can be written in a normal form Pk,β,Σ =
(ν−→x)

∏

i αi.βi.γi where every αi.βi.γi ∈ LT . It is important to notice that Pk,β,Σ

represents the family of processes with a delay of k actions for β, but we are only
interested in the minimum process of such family (ommiting unnecesary trios).

22

2.2. EXPLORING THE LIMITS OF LOCAL NAMES

Every Pk,β,Σ can be seen as a tuple pk = (tk1, t
k
2, ..., t

k
j , ..., t

k
N) where tkj represents

the amount of tj present in Pk,β,Σ. Hence, S can be represented as an infinite se-
quence I = p1.p2 . . . pk . . ., the idea is to find a subsequence of I (say I ′) that is
nondecreasing ordered with respect to every field (ti where 1 ≤ i ≤ N). This can
be done by taking the projection of every field as an infinite sequence and filter it
to obtain a nondecreasing order.

Let L = T1.T2 . . . be an infinite sequence of tuples, Li = T i
1.T

i
2 . . . be the pro-

jection of the field i in every tuple of the sequence and N the number of fields (as
much as possible trios). Then we have the family of functions f i : (π)ω → (π)ω and
F : (π)ω → (π)ω, these functions must satisfy the following equations:

F (L) = fN ◦ . . . ◦ f 1(L)

f i(L) = Tj .f
i(L′)

where T i
j = min(Li) and L = T1 . . . Tj .L

′

Therefore, I ′
ord = F (I) is an infinite and nondecreasing ordered subsequence

of I. From I ′
ord, we can take two subsequent elements say pi = (ti1, t

i
2, ..., t

i
N) and

pj = (tj1, t
j
2, ..., t

j
N) where for every tim ≤ tjm (1 ≤ m ≤ N) and i < j.

By hypothesis there exist a sequence s′ = α1 . . . αi such that Pi,β,Σ
s′.β
=⇒, and

for every sequence s if Pi,β,Σ
s

=⇒ then Pj,β,Σ
s

=⇒ since for every trio t = α.β.γ if

t ∈ Pi,β,Σ then t ∈ Pj,β,Σ. Hence, Pj,β,Σ
s′.β
=⇒ but Pj,β,Σ was supposed to delay β with

j actions minimum, leaving us in a contradiction. As a result, the set S cannot be
obtained with a fixed number of local variables.

In conclusion, we cannot get the set S since in some point a process will have a
lesser delay than supposed. This result shows that we can give an specific behavior
to a process depending in the amount of variables that we have, since in some point
we will be limited to express a different behavior if we have already used all the
process that are available. Therefore, if we can control the number of local variables
then we can have more expressiveness since could have more processes that can be
built.

2.2.3 Two Local Names for Three Independent Actions

The previous result proved the limit of fixed local names, now we present a particular
case where we try to build a process which is able to delay b with a3 minimum. This
is a proof by cases where we show that there is no possible combination of trios in
order to obtained the desired behavior.

23

2.2. EXPLORING THE LIMITS OF LOCAL NAMES

α Case β Case
τ Ok τ Could not be executed
l1 1 l̄1 Ok
l2 2 l̄2 Generates ab

Figure 2.1: Three trios of the form α.a.β

α Case
τ Generates b
l1 Generates ab
l2 3

Figure 2.2: One trio containing l̄2 (Case A, α.l̄2.β)

Theorem 2.2.2. There is no CCS! trios-process P with two nested local variables l1
and l2 that delays the execution of an action b with a3 independent actions at least.

Proof. We want to prove that there is no CCS! trios-process which execute the b
action after 3 independent a’s. We will proceed by contradiction, then suppose that
exists a trios-process T that delays b with a3.

Suppose that we can build a trios-process T that can only output the sequence
a3b where b depends from the three a’s and they are independent among themselves.
Consider two nested local names (l1, l2), then T has to be composed by the following
trios:

1. There must be a final trio of the form l2.b.τ , where l2 will be synchronized
with an l̄2 action when the three a’s have been executed.

2. On the other side, there must be three trios of the form α.a.β. Where α ∈
{τ, l1, l2} and β ∈ {τ, l̄1, l̄2}, thus let us consider the values of α and β by cases.
See figures 2.1, 2.2 and 2.3.

α β Case α β Case α β Case
τ τ Generates b l1 τ Generates ab l2 τ 3

l1 Generates ab l1 Generates a2b l1 3
l2 4 l2 4 l2 3
l̄1 5 l̄1 5 l̄1 3
l̄2 Generates b l̄2 Generates b l̄2 3

Figure 2.3: One trio containing l̄2 (Case B, α.β.l̄2)

24

2.3. THE REACHABILITY PROBLEM

Case 1 (t1 = l1.a.β) By definition the three a’s are independent, then we do not
need to prefix any a thus we can replace l1 by τ .

Case 2 (t2 = l2.a.β) We will prove that none initial trio can have the form
l2.a.β. By definition there exist a trio tf = l2.b.τ and there must be a l̄2 that allows
the execution of t2. In the moment that we can execute t2 we can also execute tf
and ommit one a. Then b can be executed before than planned, a contradiction.

Case 3 (t3 = l2.α.β) We will prove that none intermediate trio can have the
form l2.α.β. Suppose by means of contradiction that such trio exists and will be
synchronized with tf = l2.b.τ . By definition α = l̄2 or β = l̄2 and by hypothesis t3 is
the “last” trio before tf and after the a3. Now t3 contains a l2 then there must be
another trio containing a l̄2 for synchronizing with this action, but this action can
also be synchronized with tf and it would be the “last” trio before tf , leaving us in
a contradiction.

Case 4 (t4 = α.l2.l̄2) We will prove that none intermediate trio can have the
form α.l2.l̄2. By definition there exist al least one trio τ.a.l̄1 and α ∈ {τ, l1, l2}. If
α = l2 we are in case 2, else if α = τ we can execute it then we will obtain l2.l̄2
analog to case 2 and if α = l1 we can execute τ.a.l̄1 and the result is also l2.l̄2 analog
to case 2.

Case 5 (t5 = α.l̄1.l̄2) We will prove that none intermediate trio can have the
form α.l̄1.l̄2. By definition α ∈ {τ, l1} and there exist al least one trio τ.a.l̄1. If α = τ
then we can execute it and the result is l̄1.l̄2, else if α = l1 we can execute τ.a.l̄1 and
the result is also l̄1.l̄2. Besides, there exist another trio τ.a.l̄1 then there must be a
trio that contains l1 that will be synchronized with it, but this action can also be
synchronized with l̄1.l̄2 and after that we can execute l2.b.τ . As consequence, we can
execute ab or a2b (depending of α), then b can be performed before than planned, a
contradiction.

2.3 The Reachability Problem

2.3.1 Optimizing the Use of Local Names

In this section we shall show our main result that relates the amount of nested local
variables and the amount of observable actions that can be performed before reach-
ing a state. This relation will be based on the representation of a trios process as a
binary tree.

25

2.3. THE REACHABILITY PROBLEM

First we introduce the notion of dependency and its relation with trios process
by a convenient structure that we call trio dependency tree. This tree is basically a
binary tree adapted to represent trios processes, they have some useful properties
that will allow us to show the limits of the local variables. Finally we prove the
relation between the amount of local variables and the observable actions by show-
ing that the best tree that can be built has a logaritmic height with respect to the
number of independent actions you want to perform.

Let us define the notion of dependency for actions and trios, and a notion of
multi-set for trios processes. Intuitively, an action β depends on another action α
(in a process P) if P could not had performed β without performing α first.

Definition 2.3.1 (Causal Dependency). Let P be a CCS! process, s be a sequence
of actions, α and β be actions. We say that β depends on α if there exists s s.t.

P
s.β
=⇒ and α ∈ s (and directly depends if s = α). If an action β does not depend

on any action we say that is independent, this means that β can be performed by P
anytime.

Remark 2.3.1 (Multi-Set of Trios). We will use SP for representing the multi-set
of trios built from a trios process P . The idea is that any trios process P can be
seen as a parallel composition of trios, then we can take P as a multi-set of trios.
More formally, any trios-process P can be transformed into P ′ = (ν−→x) α1.β1.γ1 |
. . . | αm.βm.γm and from P ′ we can build SP = {α1.β1.γ1, . . . , αm.βm.γm} a multi-set
of trios. Notice that if P contains a replicated trio !t then we can take its expansion
in order to perform β (the action we want to analyze). This multi-set can be built if
we only consider processes without restriction under the scope of replication !(νx),
then from now on we restrict our calculus to CCS−!ν

! .

We are interested in finding the possible dependencies of an specific action β,
such action must be in a trio of the form α.β.γ hence we focus on analyzing the
dependencies from α. For this analysis we introduce the trio dependency trees, the
idea is to take a trios process and see it as a binary tree induced by the dependencies
present on the process related to α. We define three general rules for building a tree
given a trios process.

Every rule takes a multi-set of trios SP and a tree T then check if there exists
a trio t = α1.α2.α3 ∈ SP such that some co-action of α1, α2, or α3 is a leaf of T .
Depending on the position of αi in t it may discard some names. Intuitively, the
rules simulate a possible execution of the dependencies in the process P , then it will
check if a leaf l can be synchronized and check whether that l is being guarded by
something else.

26

2.3. THE REACHABILITY PROBLEM

Notice that there are several ways for taking the dependencies due to the order
in which the rules are applied, since there are many ways of executing the actions
in a trios process. These rules reflect any possible execution of a process, i.e., if you
take a trios process and apply these rules then you can build any possible execution
of observable actions in the process.

More precisely, each rule takes a pair (T, SP) and evolves to (T ′, SP ′) where
T ′ has the same nodes as T but there is a leaf of T that in T ′ has two children
and a trio is removed from SP to obtain SP ′ . This new node is built from a trio
t = α1.α2.α3 ∈ P just by checking if the co-action of α1, α2 or α3 is a leaf of T .
In every case, we compare a leaf with the actions present in a trio t ∈ SP by the
first, second or third action respectively. If t is used for the synchronization then we
remove a copy of t from SP and we can apply the rules again. The next definition
states formally the notion of trio dependency tree.

Definition 2.3.2 (Trio-Dependency Tree). Let P be a trios process, then a trio-
dependency tree T(P,t) is a binary tree which represents the dependencies of a trio
t = α.β.γ in a multi-set of trios SP . Let T(t,t) be a tree with one node labeled γ̄ and
children labeled α and β, then (T(t,t), SP) →∗ (T(P,t), SP ′) 6→ where →∗ is the closure
of → given by the following rules:

Rule1

T(Q,t) = γ and α.β.γ̄ ∈ SR

(T(Q,t), SR) → (
γ

α β
, SR − {α.β.γ̄})

Rule2

T(Q,t) = β and α.β̄.γ ∈ SR

(T(Q,t), SR) → (β

τ α
, SR − {α.β̄.γ})

Rule3

T(Q,t) = α and ᾱ.β.γ ∈ SR

(T(Q,t), SR) → (α

τ τ
, SR − {ᾱ.β.γ})

From T(P,t) then L(T(P,t)) are the leaves of T(P,t). If l is the root of a tree T(P,t)

then P
s

=⇒
l̄

−→ where s is a permutation of L(T(P,t)) (leaves of T(P,t)).

27

2.3. THE REACHABILITY PROBLEM

A

7

B

5

C

6

D

3

E

4

F

1

G

2

H

1

I

2

Figure 2.4: Order of execution or a trio dependency tree

γ

α β

Figure 2.5: Representation of the tree in trios, subtree representing α.β.γ̄

These rules can be applied non-deterministically then from a multi-set of trios
SP and a trio t ∈ SP we can build different trees depending on the order that the
rules are applied. The final tree represents the actions that must be performed for
reaching t in SP . First, the leaves are the actions that must be done and the nodes
represent synchronizations that must be performed.

This combination will allow P to reach t, the order of execution is divided in
two groups leaves and nodes (see figure 2.4). The left leaves l can be performed
anytime as observable actions (unless it is τ) and right leaves must wait for its
brother to be performed. The left nodes needs to be preceeded by its children to
be synchronized and right nodes must also wait for its brother. Therefore, every
node and leaf must be consumed to reach the root of a given trio-dependency tree T .

Moreover, if we want to read a trio-dependency tree T as a trios process P then
we just take every node γ with children α and β and put a trio α.β.γ̄ in P (see
figure 2.5). It is important to notice that if we have a leaf labeled with a local name
at the end of the computation, then when this leaf is reached then the process will
be blocked.

With these definitions we can introduce the result about the expresiveness of
the local variables in a CCS! process. Intuitively, there exists a direct relation
between the number of local names and the amount observable actions that can
be done before releasing an specific action (say β). This relation is based in the
representation of the trios in a trio dependency tree and we prove that the best

28

2.3. THE REACHABILITY PROBLEM

way for building this kind of tree with the least amount of variables is by using a
logaritmic amount of nested local names with respect to the observable actions. We
state the lemma formally.

Lemma 2. Let Σ be a finite alphabet, k ∈ N, β ∈ Σ and P ∈ CCS−!ν
! . The

minimum |P |ν that P needs to delay β with k independent actions (definition 2.2.2)
is dlog2 ke + 1.

Proof. Without loss of generality we will use β = b and the sequence of k indepen-
dent actions ak where every a is independent. We proceed by stating the minimum
trios that P must contain such that P delays b with k actions.

The final action must be b, then we need at least one trio tf = l1.b.τ . Here l1
guards the execution of b before ak and the continuation can be τ since it does not
affect the result.

There must be at least k trios containing a, then we have ti = αi.a.γi with
0 ≤ i ≤ k. Every α can be τ since the actions are independent then they can be
performed anytime. Every γ must be a co-name we need to make a synchronization
for ensuring the execution of every a. With the above conditions, we can state that
every minimal (using the least possible local names) process Q that that delays b
with ak actions must contain the trios ti and tf .

Since b is the last action, then the synchronizing action l̄1 should be available
after the synchronization of γ actions. Therefore, l̄1 must be guarded by other ac-
tions that allows this behavior. Then P must have (at least) a structure such that
the name that guards b (l1 in this case) is the last synchronization (if there are τ
actions after b we can ommit them).

We can build a trio dependency tree where we need that l1 be the root (the other
trios must be guarding it) and we need at least k leaves contianing a’s. Remember
that observable actions like a must be right leaves since they cannot be in the first
position of a trio. Then we need k nodes, every one with left child τ and right child
a, hence the minimum tree must have at least dlog2 ke+1 height for containing such
quantity of leaves.

Moreover, if we take any node of this tree l then none descendant of it can be l
nor l̄, since they could reach the root of the tree ommiting some leaves and reducing
the delay expected. There are three cases illustrated in the figure 2.6. All of them
can ommit leaves in order to reach the root.

Now suppose by means of contradiction that the minimum tree T(Q,tf) contains
repeated descendants (name or co-name) and the process Q associated to the tree

29

2.3. THE REACHABILITY PROBLEM

l′

l

ai . . . aj

l

ak . . .am

(a) Repeated
name in descen-
dants

l′

l

ai . . . aj

l̄

ak . . .am

(b) Repeated
co-name in
descendants

l′

l

ai . . . aj l̄

ak . . .am

(c) Repeated co-
name in a lower
level

Figure 2.6: Tree representation for the properties

k ≤ 1

k ≤ 2

k ≤ 4

...
...

...
. . .

. . .

. . .

k ≤ 2m−2

k ≤ 2m−1

k ≤ 2m−1 m ≥ dlog2 ke + 1

l1

l2 l2

l3 l3 l3 l3

lm−1

lm lm

lm−1

lm lm

Figure 2.7: General minimum tree for akb

has delays b with miminum ak actions. If TQ has one repeated name in its descen-

dants then Q
aib

=⇒ where i < k, a contradiction.

Therefore if we want a tree TP such that h(TP) = dlog2 ke + 1 and P delays b
with ak actions then every path from the root to a leaf s = l1.l2 . . . lk+1 must have
a different name for every step, hence we need at least dlog2 ke + 1 local names to
obtain a process P such that P delays b with minimum ak actions.

30

2.3. THE REACHABILITY PROBLEM

In summary, the result obtained directly relates the number of nested local names
in a process and the sequences it can perform before an action. Intuitively, there is
a limit on the size of the sequences related to the execution of some action in the
process, and such limit says that (in th best case) we can use n local names to delay
an action by 2n independent actions at most. Using the encoding from arbitrary
process to trios, the previous result also applies since it preserves weak bisimulation.

As a result, we have that given a CCS−!ν
! process there is a bound on the de-

lay we can apply to an action. Therefore, if we overpass this limit, it means that
there exists another sequence that can execute the action before and this sequence
is strictly related with the number of nested local names. In conclusion, this result
gives us an insight on the expressiveness given by the local names and its relation
with observable actions.

2.3.2 From barbs to reachability

In this section we will use the decidability result for barbs from [BGZ09] and the
relation between local names and sequences, in order to give the proof of the decid-
ability of reachability for CCS−!ν

! .

We need to establish the relation between barbs and reachability. Basically, the
reachability problem consists in checking whether an action can be performed by a
process after a sequence of observable actions, then we can put a process in parallel
that has a sequence of co-actions for every element in the sequence of observables
and an “acknowledge” channel at the end.

In the resulting process, every observable action in the original can be trans-
formed into a synchronization with the co-actions in the new one. Hence, we can
check that the sequence was succesfully executed if all the co-actions were consumed
and the “acknowledge” was released, and actually it is a barb for the whole process.
After this evolution, the action we are analyzing must be performed after a (possible
empty) synchronizations, then becoming also in a barb.

Following this idea, we can now state formally the relation between barbs and
reachability.

Lemma 3. Let P and Q be a CCS! processes, s be a sequence of actions and n ∈ N.

P
s.β
=⇒ iff (P | Q) ⇓x̄⇓β where s = α1 . . . αn, Q = ᾱ1 . . . ᾱn.x̄ and x 6∈ fn(P).

Proof. (⇒) If P
s.β
=⇒ then (P | Q) ⇓x̄⇓β.

By hypothesis P
s.β
=⇒ then ∃P1 . . . Pn s.t. P

α1=⇒ P1 . . .
αn=⇒ Pn

β
=⇒ there-

31

2.3. THE REACHABILITY PROBLEM

fore P ⇓α1 , . . ., Pn−1 ⇓αn
and Pn ⇓β. On the other hand, let us consider

Q = ᾱ1 . . . ᾱn.x̄ then by definition Q
ᾱ1−→ Q1

ᾱ2−→ . . .
ᾱn−→ Qn

x̄
−→ therefore

Q ⇓ᾱ1, . . ., Qn ⇓x̄.Finally if we take the process (P | Q) then (P | Q) →∗

(P1 | Q1) . . . →∗ (Pn | Qn) ⇓x̄⇓β, we can conclude that (P | Q) ⇓x̄⇓β.

(⇐) If (P | Q) ⇓x̄⇓β then P
s.β
=⇒.

By hypothesis (P | Q) →∗ (Pn | Qn)
x̄

−→⇓β. From the initial assumptions we

can say that since β 6∈ n(Qn) then Pn
β

=⇒ and x 6∈ fn(Pn) then Qn
x̄

=⇒. Now

using the definition of Q we have that Q
ᾱ1−→ Q1

ᾱ2−→ . . .
ᾱn−→ Qn

x̄
−→. In order

to reach x̄ as a barb then Q must perform ᾱ1 . . . ᾱn with internal actions, then

∃P1 . . . Pn s.t. P
α1=⇒ P1 . . .

αn=⇒ Pn
β

=⇒. Finally we can conclude that P
s.β
=⇒.

The previous lemma tranforms the reachability problem into a barbs problem,
now we will combine our previous result with this reduction in order to obtain the
decidability of the reachability problem. Intuitively, the reachability was reduced
to a problem of checking whether given a sequence and an action then the process
has two special barbs, with our previous results we know that this sequences are
bounded on the number of nested local names. Therefore, we only need to check all
the possible sequences until the size limit (finite amount of sequences) and check if
the process has a barb with any of them. Formally we have:

Theorem 2.3.1 (Decidability of Reachability Problem). Let P be a CCS−!ν
! process,

Σ be a finite alphabet. The problem of deciding whether P
s.β
=⇒ where s is a sequence

over Σ∗ and β ∈ Σ is decidable.

Proof. From lemma 3 P
s.β
=⇒ iff (P | Q) ⇓x̄⇓β where s = α1 . . . αn, Q = ᾱ1 . . . ᾱn.x̄

and x 6∈ fn(P). Besides, from [BGZ09] we know that checking (P | Q) ⇓x̄⇓β for any

sequence s is decidable. From lemma 2 if P
s.β
=⇒ then |s| is bounded on |P |ν then the

possible s are limited to those with |s| ≤ 2|P |ν giving us a finite possible sequences
S. Then the reachability depends on checking for every s ∈ S if (P | Q) ⇓x̄⇓β, with

finite S and decidable barb then P
s.β
=⇒ is decidable.

As the main result, we have that checking whether an action can be reached by
a process (with possible infinite behavior) is decidable.

32

Chapter 3

Computing Reachability

In this chapter we shall present an algorithmic approach for solving the reachablity
problem. As seen previously, this problem is reduced to checking some special
barbs in a given process then we need to introduce the basic concepts behind the
decidability of barb. First, we shall present the concept of well-structured transition
system (WSTS) which is central in the barb problem. Later, we shall use the relation
between CCS! and WSTS from [BGZ09] in order to present the solution proposed for
the reachability problem. Finally, we will provide the solution for the reachability
problem and its respective complexity analysis.

3.1 Background

In this section we will give an algorithm for determining the reachablity of an action
in a given CCS! process. First, we will introduce the notion of well-structured
transition systems, an useful tool for analyzing infinite state systems. Then, we
shall show the result from [BGZ09] for barb decidability based on well-structured
transition systems. With this notions, we will propose an algorithm for solving
reachability problem. Finally, we will give a brief analysis of the complexity of the
algorithm. (The background presented here was taken from [BGZ09])

3.1.1 Well-Structured Transition Systems (WSTS)

The following results and definitions are from [FS01]. Recall that a quasi-order (or,
equivalently, preorder) is a reflexive and transitive relation.

Definition 3.1.1. A well-quasi-order (wqo) is a quasi-order ≤ over a set X such
that, for any infinite sequence x0, x1, x2, . . . in X, there exist indexes i < j such that
xi ≤ xj.

Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an
infinite increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .). Thus well-

33

3.1. BACKGROUND

quasi-orders exclude the possibility of having infinite strictly decreasing sequences.

We also need a formal definition for (infinitely branching) transition systems.
This can be given as follows. Here and in the following →+ (resp. →∗) denotes the
transitive (resp. the reflexive and transitive) closure of the relation →.

Definition 3.1.2 (Transition System). A transition system is a structure TS =
(S,→), where S is a set of states and →⊆ S × S is a set of transitions. We define
Succ(s) as the set {s′ ∈ S | s → s′} of immediate successors of S. We say that TS
is finitely branching if, for each s ∈ S, Succ(s) is finite. We also define Pred(s) as
the set {s′ ∈ S | s′ → s} of immediate predecessors of s, while Pred∗(s) denotes the
set {s′ ∈ S | s′ →∗ s} (of predecessors of s).

The functions Succ, Pred and Pred∗ will be used also on sets by assuming that
in this case they are defined by the point-wise extension of the above definitions. The
key tool to decide several properties of computations is the notion of well-structured
transition system. This is a transition systems equipped with a well-quasi-order on
states which is (upward) compatible with the transition relation. Here we will use
a strong version of compatibility, hence the following definition.

Definition 3.1.3 (Well-structured transition system with strong compatibility). A
well-structured transition system (WSTS) with strong compatibility is a transition
system TS = (S,→), equipped with a quasi-order ≤ on S, such that the two following
conditions hold:

1. ≤ is a well-quasi order;

2. ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all
transitions s1 → s2, there exists a state t2 such that t1 → t2 and s2 ≤ t2.

3.1.2 WSTS and CCS!

In [BGZ09] they prove that CCS! is a well-structured transition system. We will use
their notions for solving the reachability problem, thus we shall introduce most of
the concepts behind. First, they define a well-quasi-order over CCS! processes and
this definition uses the following congruence:

Definition 3.1.4. We define ≡w as the least congruence relation satisfying the
following axioms:

P | Q ≡wQ | P

P | (Q | R) ≡w(P | Q) | R

P | 0 ≡w P

34

3.1. BACKGROUND

Then, they define a well-quasi-order over CCS! processes. Intuitively P � Q
holds if Q can be obtained, up to ≡w, from P by adding some parallel processes
while preserving the nesting structure given by restrictions.

Definition 3.1.5. Let P, Q ∈ CCS!. We write P � Q iff there exist n, x1, . . . , xn,
P ′, R, P1, . . . , Pn, Q1, . . . , Qn such that P ≡w P ′ |

∏n
i=1(νxi)Pi, Q ≡w P ′ | R |

∏n
i=1(νxi)Qi, and Pi � Qi for i = 1, . . . , n.

Now we will present some definitions from [BGZ09] relating well-structured tran-
sition systems and CCS!. First, they need a notation for indicating all the sequential
and bang subprocesses of a given process. They also define a special set of subpro-
cesses using this notation.

Definition 3.1.6. Let P ∈ CCS!. The set Sub(P) containing all the sequential and
bang subprocesses of P is defined inductively as follows:

Sub(α.P) ={α.P} ∪ Sub(P)

Sub(P + Q) ={P + Q} ∪ Sub(P) ∪ Sub(Q)

Sub(P | Q) =Sub(P) ∪ Sub(Q)

Sub((νx)P) =Sub(P)

Sub(!P) ={!P} ∪ Sub(P)

With PP,n they denote the set of all those CCS! processes whose nesting level of
restrictions is not greater than n and such that their sequential subprocesses, bang
subprocesses and bound names are contained in the corresponding elements of P .
More precisely they propose the following definition.

Definition 3.1.7 (PP,n). Let n be a natural number and P a process. We define
PP,n as follows:

PP,n = {Q ∈ CCS! | Sub(Q) ⊆ Sub(P) ∧ bn(Q) ⊆ bn(P) ∧ |Q|ν ≤ n}

The above definition will be used in the solution of the reachability problem.
The following proposition is important for relating the definition of WSTS and the
barb decidability.

Proposition 3.1.1. Let P ∈ CCS! and Deriv(P) = {Q | P →∗ Q}. Then Deriv(P) ⊆
PP,|P |ν

Using these definitions, they prove that � is a well-quasi-order.

Theorem 3.1.1. Let P ∈ CCS! and n ≥ 0. The relation � is a well-quasi-order
over PP,n.

In order to prove that CCS! is a WSTS, they also prove that � is compatible
with →.

35

3.1. BACKGROUND

Theorem 3.1.2. Let P, Q, P ′ ∈ CCS!. If P
α

−→ P ′ and P � Q then there exists Q′

such that Q
α

−→ Q′ and P ′ � Q′.

With the previous definitions, they define a WSTS with the reduction relation
and the well-quasi-order above defined.

Theorem 3.1.3. Let P ∈ CCS!. Then the transition system (Deriv(P),→,�)
is a finitely branching well-structured transition system with strong compatibility,
decidable � and computable Succ.

3.1.3 Decidability of barb

In [BGZ09] they prove the decidability of the barb in CCS!. Given a process, de-
termine if it can perform, possibly after some internal moves, an observable action
on a given channel. This result is based on WSTS, hence we need other definitions
from this theory [FS01].

Recall that given a quasi-order ≤ over X, an upward-closed set is a subset I ⊆ X
such that the following holds: ∀x, y ∈ X : (x ∈ I∧x ≤ y) ⇒ y ∈ I. Given x ∈ X, we
define its upward closure as ↑ x = {y ∈ X | x ≤ y}. This notion can be extended
to sets in the obvious way: given a set Y ⊆ X we define its upward closure as
↑ Y =

⋃

y∈Y ↑ y.

Definition 3.1.8 (Finite basis). A finite basis of an upward-closed set I is a finite
set B such that I =

⋃

x∈B ↑ x.

In this case the notion of basis is particularly important when considering the
basis of the predecessor of a state in a transition system. The main interest is on
effective pred-basis as defined below.

Definition 3.1.9 (Effective Pred-basis). A well-structured transition system has
effective pred-basis if there exists an algorithm such that, for any any state s ∈ S, it
returns the set pb(s) which is a finite basis of ↑ Pred(↑ s).

The following proposition is a special case of Proposition 3.5 in [FS01].

Proposition 3.1.2. Let TS = (S,→,≤) be a finitely branching, well-structured
transition system with strong compatibility, decidable ≤ and effective pred-basis. It
is possible to compute a finite basis of Pred∗(I) for any upward-closed set I given
via a finite basis.

In [BGZ09] they use this proposition for proving the decidability of barbs in
CCS!. They are based on the idea the next idea:

36

3.1. BACKGROUND

Clearly a process can perform an action α (in any number of steps) if such proc-
ess is a predecessor of a process which can perform α immediately (i.e. in one step).
If one can show that the set S consisting of those processes which can immediately
perform α is upward closed, previous result allows us to compute effectively a fi-
nite pred-basis of Pred∗(S) and therefore to decide whether a process Q belongs to
Pred∗(S): To this aim, in fact, it is suficient to decide whether in the (finite) basis
there exist a process which is smaller than Q (this is possible because the quasi-order
≤ is decidable). [BGZ09]

From now on, we will use the WSTS for CCS! defined previously (but using
PP,|P |ν instead of Deriv(P), since Deriv(P) ⊆ PP,|P |ν). Now we shall present the
definition of the effective pred-basis for (PP,|P |ν ,→,�) from [BGZ09].

They start by defining the set of processes Nowα(P) that can immediately per-
form the labeled action α and which are constructed by using sequential and bang
subprocesses of P (in the sense made precise by Definition 3.1.7).

Definition 3.1.10. Let P ∈ CCS!. The set of processes Nowα(P) is defined as
{Q ∈ PP,|P |ν | Q

α
−→}.

Next they show that this set is upward-closed.

Proposition 3.1.3. Let P ∈ CCS!. Then Nowα(P) =↑ Nowα(P) holds.

They provide a finite basis for the previously defined set. It is based on the fact
that the set of sequential and bang subprocesses of a process is finite.

Definition 3.1.11. Let P ∈ CCS!. The set fbNowα(P) is defined as follows:

fbNowα(P) = {(νx1 . . . xm)Q | Q ∈ Sub(P), m ≤ |P |ν,

x1 . . . xm ⊆ bn(P), Q
α

−→, n(α) 6∈ {x1, . . . , xm}}

Proposition 3.1.4. Let P ∈ CCS! and α 6= τ . Then the set fbNowα(P) is a finite
basis of Nowα(P)

Using the above definitions, they define the pred-basis as follows:

Definition 3.1.12. Let P ∈ CCS!. Given a process Q ∈ PP,|P |ν , we define

basicα ={Q|R | R ∈ fbNowα(P)}∪

{R ∈ Sub(P) | ∃R′ : R
α

−→ R′ ∧ Q � R′}∪

synchbasicα(Q)

37

3.1. BACKGROUND

where:

synchbasicτ (Q) = {Q1|Q2 | Q1 ∈ Sub(P) ∧ Q2 ∈ fbNowα(P)∧

∃Q′
1 : Q1

ᾱ
−→ Q′

1 ∧ Q � Q′
1}

synchbasicα(Q) = ∅ if α 6= τ

The pred-basis pbα(Q) of a process Q w.r.t α is defined by induction on the structure
of the process as follows:

pbα(0) =basicα(0)

pbα(α′.Q) =basicα(α′.Q)

pbα(Q1 + Q2) =basicα(Q1 + Q2)

pbα((νx)Q) =basicα((νx)Q′)∪

{(νx)Q′ | Q′ ∈ pbα(Q) ∧ x 6= n(α)}

pbα(Q1|Q2) =basicα(Q1|Q2)∪

{Q′
1|Q2 | Q′

1 ∈ pbα(Q1)}∪

{Q1|Q
′
2 | Q′

2 ∈ pbα(Q2)}∪

syncα(Q1, Q2)

pbα(!Q) =basicα(!Q)

syncτ(Q1, Q2) ={Q′
1|Q

′
2 | ∃α ∈ n(P) : Q′

1 ∈ pbα(Q1) ∧ Q′
2 ∈ pbᾱ(Q′

2)}

syncα(Q1, Q2) =∅ if α 6= τ

With this definition, they provide the following result:

Lemma 4. Let P ∈ CCS! and Q ∈ PP,|P |ν . Then pbτ (Q) is a computable finite basis
of ↑ Pred(↑ Q).

From this lemma it is strictly forward the following theorem

Theorem 3.1.4. Let P ∈ CCS!. Then the transition system (PP,|P |ν ,→,�) is a
well-structured transition system with strong compatibility, decidable � and effective
pred-basis.

Finally they present the decidability of barb. This result will be very useful for
solving the reachability problem.

Proposition 3.1.5. Let P ∈ CCS!. P ⇓x iff P ∈ Pred∗(Nowx(P)) or P ∈
Pred∗(Nowx̄(P)).

Corollary 2. Let P ∈ CCS!. Then P ⇓x is decidable.

38

3.2. SOLVING REACHABILITY

The last result is based on the idea that the barb can be expressed as the set of
processes which can perform α immediately (say Nowα(P)) and the set of prede-
cessors (say Pred∗) of them (using reduction relation). From previous results, the
set Nowα is upward closed and has a finite basis, hence it is possible to compute an
finite pred-basis (a basis for the possible predecessors). Therefore, we only need to
compare the original process with the elements in the basis, and check whether it is
“bigger” (w.r.t �) than one of them in order to answer if it has the barb.

3.2 Solving Reachability

We can now present the algorithm for solving the reachability problem. As stated
previously, asking if an action can be reached by a process is transformed in asking
if the process has two special barbs, the first one is the acknowledge of a sequence
of observable actions and the other is the action itself. In the same way, if we plan
to describe a procedure which solve this problem, we need to consider the solution
for the barb problem. Therefore, we will base our algorithm in the previous relation
between barbs and WSTS in order to solve the reachability problem.

3.2.1 A procedure for reachability problem

From previous results, the reachability problem can be transformed in a barb prob-
lem for a set of sequences (built based on the structure of the process). Then, for
solving this problem it is sufficient with checking these two special barbs with every
sequence in the set. The first barb consists in asking whether the initial process
is a predecessor (up to reduction) of a process which can perform the acknowledge
action immediately.

Applying the procedure for decidability of barb, we will get a basis for this proc-
ess and instead of stopping here, we can take this set to ask for the second barb
in the same way. Finally we will obtain a (finite) pred-basis (a bit more complex
than just one barb) and then we can check whether our process is related (w.r.t
well-quasi-order) to any of the elements of the basis. If it is related, then the action
is reachable, otherwise it is not.

After introducing the idea, we define a function that checks whether a process
has a barb x and then checks if the resulting process (after performing this barb)
has another barb y.

Definition 3.2.1. Let P be a CCS! process, x and y actions. We define the function

39

3.2. SOLVING REACHABILITY

Barb(P, x, y) as follows:

Barb(P, x, y) =

{

true if P ∈ Pred∗(Nowx(Pred∗(Nowy(P))));
false otherwise .

From 3 we know that, given a process P ∈ CCS!, then P
s.β
=⇒ iff (P | Q) ⇓x̄⇓β

where s = α1 . . . αn, Q = ᾱ1 . . . ᾱn.x̄ and x 6∈ fn(P). Then we give a function for
this purpose, given a process, an action, and a set of sequences, checks whether any
of this resulting processes have the barbs x̄ and β.

Definition 3.2.2. Let P ∈ CCS!, Σ a finite alphabet, α ∈ Σ, and S a set of
sequences over Σ. We define the function Reach(P, β, S) as follows:

Reach(P, β, S) =















Barb((P | ᾱ1 . . . ᾱn.x̄), x̄, β) if s = α1 . . . αn, s ∈ S
∨ Reach(P, β, S − {s})

false if S = ∅.

The above function allow us to provide a decision procedure for determining the
reachability of an action in a process. We apply this function to the set of possible
sequences that is related with the nesting restrictions. This set contains all the
possible sequences (over the finite alphabet) with size less than the limit provided
by 2. The following theorem relates our previous definition with the reachability
problem.

Theorem 3.2.1. Let P ∈ CCS−!ν
! , Σ a finite alphabet, β ∈ Σ, and S a set of

sequences over Σ. Then Reach(P, β, S) returns true iff there exists s ∈ S such that

P
s.β
=⇒, where S = {s | s ∈ Σ∗ ∧ |s| ≤ 2|P |ν}.

Proof. From 3 P
s.β
=⇒ iff (P | Q) ⇓x̄⇓β where s = α1 . . . αn, Q = ᾱ1 . . . ᾱn.x̄ and

x 6∈ fn(P). Now, from 2 we know that (in the best case) we can use n nested
local names to get a delay of 2n independent actions, then it is sufficient to check
if (P | Q) ⇓x̄⇓β with sequences of size 2|P |ν at most. By construction, all of these
sequences are considered in S.

Next, we need to check for every sequence s ∈ S if (P | Q) ⇓x̄⇓β. Following
the same process for checking barbs, the function Reach(P, β, S) check (for all s ∈

S) whether R
def
= P | Q has the barbs x̄ and β. This is done by the function

Barb(R, x̄, β), by checking if R belongs to the set Pred∗(Nowx̄(Pred∗(Nowβ(P)))).
We are able to compute this set since Nowβ(R) is upward-closed 3.1.3 and then it is
possible to compute a (finite) pred-basis 3.1.2 for it and then checking if the original
process is a predecessor of a process which can perform β. Using this result, we can

40

3.2. SOLVING REACHABILITY

apply the same principle (over the finite basis) in order to compute the next barb
x̄. Finally, we only need to compare if the process R is bigger (w.r.t �) than one of
the elements of the basis. Then we answer whether R has these two barbs and such
procedure is repeated for every sequence in the set giving us the final result.

Following the same idea used in [BGZ09] for deciding a barb in a CCS! process,
we gave a function for checking whether an action can be performed by a process
after a sequence of observable actions.

3.2.2 Analyzing the complexity

The complexity of this procedure depends basically on the amount of nested local
names in a given process P , since it determines the size and the amount of sequences
that we need to test in order to give a solution. It depends also on the structure of
the process, since we need to compute some special sets defined by WSTS.

Therefore, the complexity of this function is divided in two parts. The first part
consists on the amount of sequences, this value basically depends on the size of the
alphabet c = |Σ| (possible actions for the sequences) and the limit l given by the
nested restrictions |P |ν which is exponential w.r.t to |P |ν, then l = 2|P |ν in the worst
case (sequences of independent actions). In the case of sequences with size 2|P |ν we

have |Σ|2
|P |ν

possibilities, since we have |Σ| for every position in the sequence. This
analysis is applied with size going from 1 to 2|P |ν and the result is the sum of them.
Hence, the amount of sequences |S| is given by the following expression:

2|P |ν
∑

i=1

|Σ|i

The second part is based on the theory of well-structured transition systems.
There are no complexity analysis (so far) for this methods, we cannot say much
about them. It is important to notice, that infinite-state systems can be specified
by this calculus and even that, we give a finite (huge) number of steps for solving
the problem.

If we put the two parts together then we have to apply a method from WSTS
for every possible sequence. We know how many possibilities we have, but we do
not know exactly the complexity of the methods form WSTS. Nevertheless, this
algorithm becomes too complex in real life only taking into account the amount of
sequences that need to be checked.

41

Chapter 4

CCS! Stepper

In this chapter we will present a small interpreter for CCS!. It takes a process writ-
ten in CCS! as input and returns the possible evolution according to the operational
semantics from 1.2 and 1.3. It has been implemented using the mozart program-
ming system1 employing the advantages of the records in Oz. We shall describe
some implementation details about the interpreter and finally we shall show some
examples. This work can be the start point for a CCS! workbench like the Edinburgh
Concurrency Workbench (CWB)2 or the Mobility Workbench (MWB)3, where it is
possible to specify systems in the calculus and verify certain properties, and then
explore, from the practical point of view, the application of this formalism to real
life.

4.1 Grammar and General Description

In this section we shall describe some implementation details about the CCS! step-
per. First we shall describe the grammar used, we have 〈id〉, 〈act〉 and 〈ccsProc〉.
The 〈id〉 is an string with an initial letter and a (possible empty) of alphanumeric
values, examples 〈id〉: “a”, “a45bjbj”, “P1”. The 〈act〉 is the action that we will use
inside a process, from CCS! we have that it could be an action, co-action or internal
synchronization τ . We represent the co-action with the ∼ symbol in Oz, and with
“$tau” the internal action.

Finally we have the 〈ccsProc〉 which represents a CCS! process, zero is the null
process 0; pre(“a” zero) represents the process a.0; new(“x” zero) is the process
(νx)0; the 〈ccsProc〉 par(0 0) is the process 0 | 0 and finally rep(0) represents the
process !0. Formally we have the grammar of figure 4.1.

1More info at: http://www.mozart-oz.org/
2http://homepages.inf.ed.ac.uk/perdita/cwb/summary.html
3http://www.it.uu.se/research/group/mobility/mwb

42

http://www.mozart-oz.org/
http://homepages.inf.ed.ac.uk/perdita/cwb/summary.html
http://www.it.uu.se/research/group/mobility/mwb

4.2. TESTS AND EXAMPLES

〈id〉 ::={[a − z][A − Z]}+{[a − z][A − Z][0 − 9]}∗

〈act〉 ::=〈id〉

| ∼ 〈id〉

| $tau

〈ccsProc〉 ::= zero

| pre(〈act〉〈ccsProc〉)

| new(〈act〉〈ccsProc〉)

| par(〈ccsProc〉〈ccsProc〉)

| rep(〈ccsProc〉)

Figure 4.1: Grammar for CCS! stepper

Using this grammar we build a small interpreter that takes a CCS! process and
returns its possible evolution, and it also point out which is needed to be performed
in order to reach some process. For this purpose, we use another rule called 〈step〉
composed by an action and a process, then represents the evolution of a process by
such action.

〈step〉 ::= step(act:〈act〉 newProc:〈ccsProc〉)

The interpreter will take a process and return a set of steps representing the
process in which the input can be transformed using the operational semantics for
CCS!. Since we are specially interested in trios-proceses, we also provide a function
(ProcessToTrio) that takes a CCS! and performs the encoding from 2.1.1. This
transformation can be exploited for attacking the reachability problem, but due to
the complexity it becomes useless to implement the naive algorithm. Nevertheless,
this can be an initial practical approach that could be optimized for real life as
future work.

4.2 Tests and Examples

For performing the tests we use the function TestEval that takes a process written
with grammar of figure 4.1. The answer is a record called Test, it has three fields
p, realResult, and nicePrint where p is the input process, realResult is a set of
steps that the process can perform and nicePrint contains the same that realRe-
sult but with a legible text format.

43

4.2. TESTS AND EXAMPLES

%% P = a.0 | (a.0 | ~a.0)

P5 = par(pre("a" zero) par(pre("a" zero) pre("~a" zero)))

{TestEval P}

% result P:

test(p:’(a.0 | (a.0 | ~a.0))’

nicePrint:[step(act:a newProc:’(0 | (a.0 | ~a.0))’)

step(act:a newProc:’(a.0 | (0 | ~a.0))’)

step(act:’~a’ newProc:’(a.0 | (a.0 | 0))’)

step(act:’$tau’ newProc:’(a.0 | (0 | 0))’)

step(act:’$tau’ newProc:’(0 | (a.0 | 0))’)]

realResult:[step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))])

%% Q = !a.0 | ~a.0

Q = rep(par(pre("a" zero) pre("~a" zero)))

{TestEval Q}

% result Q:

% test(p:’!((a.0 | ~a.0))’

nicePrint:[step(act:a newProc:’((0 | ~a.0) | !((a.0 | ~a.0)))’)

step(act:’~a’ newProc:’((a.0 | 0) | !((a.0 | ~a.0)))’)

step(act:’$tau’ newProc:’((0 | 0) | !((a.0 | ~a.0)))’)

step(act:’$tau’

newProc:’(((0 | ~a.0) | (a.0 | 0)) | !((a.0 | ~a.0)))’)

step(act:’$tau’

newProc:’(((a.0 | 0) | (0 | ~a.0)) | !((a.0 | ~a.0)))’)]

realResult:[step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))

step(act:,,,|,,, newProc:par(,,,))])

Figure 4.2: Examples of the CCS! stepper

The rule 〈testProc〉 is as follows:

〈testProc〉 ::= test(p:〈ccsProc〉 p:〈step〉∗ nicePrint:〈step〉∗)

We provide some examples in the figure 4.2.

44

Chapter 5

Concluding Remarks

5.1 Summary

In chapter 2 we provide an accurate analysis for the relation between the local names
and the observable actions by showing an encoding that reveals the logarithmic re-
lation between them. Using this fact, we give an impossiblility result concerning
with the use of a fixed amount of local names in a process. Therefore, we cannot
impose a delay of an action progressively growing using a constant amount of nested
restrictions.

In order to give an insight for the general proof, we show an special case of the
relation between nested restrictions and observable actions, where there is no proc-
ess with two nested restrictions which can delay the execution of an action by three
previous actions. Using this results, we prove the direct relation between nested
local names and sequence of observable actions.

As one of the main results, given n nested restrictions then the maximum delay
for an action that can be imposed is 2n. Finally, we present a transformation of the
reachability problem to barb problem from [BGZ09]. In conclusion, we can relate
the amount of sequences with the decidability of barbs in order to prove the decid-
ability of the reachability problem for CCS!.

In chapter 3 we provide an algorithmic approach for solving the reachability
problem and its respective computational complexity. The resulting algorithm is
much more complex than exponential order, but if we consider that we are dealing
with infinite state systems then we are giving a finite number of steps for checking
a property in an infinite state space.

In chapter 4 we present a small interpreter for CCS!. It receives a process written

45

5.2. FUTURE WORK

in CCS! and returns its possible evolutions. This interpreter can be the beggining
of a complex system for checking properties in infinite state systems.

5.2 Future Work

The results presented in this work may have three main extensions. First, we need
to explore the relation between local names and observable actions when having
the full calculus, i.e, there is name generation. We think that this should not
affect the result since !(νx) does not raise the nesting value (depth) but the local
names could grow in width, thus this variant could be explored. Second, we need to
look for an algorithmic approach closer to real life since the complexity of the first
approach is too expensive, hence it is not practical for real systems. Finally, the CCS!

stepper could be extended in order to obtain a CCS! workbench for specification and
verification of concurrent systems.

46

Bibliography

[AM02] R. Amadio and C. Meyssonnier. On decidability of the control reachability
problem in the asynchronous π−calculus. Nordic Journal of Computing,
9(2), 2002.

[Apo67] T. M Apostol. One-Variable Calculus, with an Introduction to Linear
Algebra, volume 1 of Calculus. 2nd edition, 1967.

[Ara09] Jesus Aranda. On the Expressivity of Infinite and Local Behaviour in
Fragments of the π-calculus. PhD thesis, Ecole Polytechnique at Paris,
Universidad del Valle, 2009.

[BBK93] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Decidability of
bisimulation equivalence for processes generating context-free languages.
J.ACM., 40(3):653–682, 1993.

[BGZ09] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. On the expres-
sive power of recursion, replication and iteration in process calculi. to
appear in Mathematical Structures in Computer Science, 2009.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science (TCS), 37:77–121, 1985.

[BW90] Jos. C. M. Baeten and W. Peter Weiland. Process Algebra. Cambridge
University Press, 1990.

[CC01] D. Cacciagrano and F. Corradini. On synchronous and asynchronous com-
munication paradigms. In Antonio Restivo, Simona Ronchi Della Rocca,
and Luca Roversi, editors, ICTCS, volume 2202 of Lecture Notes in Com-
puter Science, pages 256–268. Springer, 2001.

[CCP06] D. Cacciagrano, F. Corradini, and C. Palamidessi. Separation of synchro-
nous and asynchronous communication via testing. Electr. Notes Theor.
Comput. Sci., 154(3):95–108, 2006.

[CM03] Marco Carbone and Sergio Maffeis. On the expressive power of polyadic
synchronisation in pi-calculus. Nord. J. Comput., 10(2):70–98, 2003.

47

BIBLIOGRAPHY

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

[Gor06] D. Gorla. On the relative expressive power of asynchronous communica-
tion primitives. In Luca Aceto and Anna Ingólfsdóttir, editors, FoSSaCS,
volume 3921 of Lecture Notes in Computer Science, pages 47–62. Springer,
2006.

[Gor07] D. Gorla. Synchrony vs asynchrony in communication primitives. Electr.
Notes Theor. Comput. Sci., 175(3):87–108, 2007.

[GSV04] P. Giambiagi, G. Schneider, and F. D. Valencia. On the expressiveness of
infinite behavior and name scoping in process calculi. In Igor Walukiewicz,
editor, FoSSaCS, volume 2987 of Lecture Notes in Computer Science.
Springer, 2004.

[Hoa85] C. A. R. Hoare. Communications Sequential Processes. Prentice-Hall,
Englewood Cliffs (NJ), USA, 1985.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cam-
bridge University Press, 1999.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the synchro-
nous and asynchronous pi-calculi. Mathematical Structures in Computer
Science, 13(5):685–719, 2003.

[SW01] D. Sangiorgi and D. Walker. The π−calculus: A Theory of Mobile Proc-
esses. Cambridge University Press, 2001.

48

	Introduction
	Problem Description
	Objectives
	Main Objective
	Specific Objectives

	Justification
	Background
	Technical Background
	Project Context

	Contributions

	Local Names vs. Observable Actions
	A Special Family of Processes: Trios
	Formal Definition
	Action Dependency in Trios

	Exploring the Limits of Local Names
	Logarithmic Local Names for Independent Actions
	Constant Local Names and Unbounded Independent Actions
	Two Local Names for Three Independent Actions

	The Reachability Problem
	Optimizing the Use of Local Names
	From barbs to reachability

	Computing Reachability
	Background
	Well-Structured Transition Systems (WSTS)
	WSTS and CCS!
	Decidability of barb

	Solving Reachability
	A procedure for reachability problem
	Analyzing the complexity

	CCS! Stepper
	Grammar and General Description
	Tests and Examples

	Concluding Remarks
	Summary
	Future Work

