Optimal Estimation of Matching Constraints

- 1 Motivation & general approach
- Parametrization of matching constraints
- 3 Direct vs. reduced fitting
- 4 Numerical methods
- 5 Robustification
- 6 Summary

Why Study Matching Constraint Estimation?

- 1 They are *practically useful*, both for correspondence and reconstruction
- 2 They are *algebraically complicated*, so the best algorithm is not obvious
 - a good testing ground for new ideas . . .
- 3 There are *many variants*
 - different constraint & feature types, camera models
 - special forms for degenerate motions and scene geometries
 - ⇒ Try a systematic approach rather than an *ad hoc* case-by-case one

Model selection

- For practical reliability, it is essential to use an appropriate model
- *Model selection* methods fit several models, choose the best
 - ⇒ many fits are to *inappropriate models* (strongly biased, degenerate)
 - ⇒ the fitting algorithm must be efficient and reliable, even in difficult cases

Questions to Study

- 1 How much difference does an accurate statistical error model make?
- 2 Which types of *constraint parametrization* are the most reliable?
- 3 Which *numerical method* offers the best stability/speed/simplicity?

The answers are most interesting for *nearly degenerate* cases, as these are the most difficult to handle reliably.

Design of Library

1. Modular Architecture

- Separate modules for
- 1 matching geometry type & parametrization
- 2 feature type, parametrization & error model
- 3 linear algebra implementation
- 4 loop controller (step damping, convergence tests)

Stable Gauss-Newton Approach

- 1 Work with residual error vectors e(x) and Jacobians $\frac{de}{dx}$
 - not gradient and Hessian of squared error

$$rac{\mathbf{d}(|\mathbf{e}|^2)}{\mathbf{d}\mathbf{x}} = \mathbf{e}^{\scriptscriptstyle op}rac{\mathbf{d}\mathbf{e}}{\mathbf{d}\mathbf{x}}, \;\; rac{\mathbf{d}\mathbf{e}}{\mathbf{d}\mathbf{x}}^{\scriptscriptstyle op}rac{\mathbf{d}\mathbf{e}}{\mathbf{d}\mathbf{x}}$$

- ullet e.g. simplest residual is ${f e}=x-{f x}$ for observations ${f x}$
- 2 Discard 2nd derivatives, e.g. $e^{\top} \frac{d^2e}{dx^2}$
- $\fbox{3}$ For stability use QR decomposition, not normal equations + Cholesky

Advantages of Gauss-Newton

- ⊕ Simple to use no 2nd derivatives required
- + Stable *linear least squares methods* can be used for step prediction
- Convergence may be slow if problem has both large residual and strong nonlinearity but in vision, residuals are usually small

Parametrization of Matching Geometry

- The underlying geometry of matching constraints is parametrized by *nontrivial* algebraic varieties there are *no* single, simple, minimal parametrizations
- e.g. epipolar geometry pprox the variety of all homographic mappings between line pencils in two images

There are (at least) three ways to parametrize varieties:

- 1 Implicit constraints on some higher dimensional space
- 2 Overlapping *local coordinate patches*
- 3 Redundant parametrizations with internal gauge freedoms

Constrained Parametrizations

- 1 Embed the variety in a larger (e.g. linear, tensor) space
- 2 Find consistency conditions that characterize the embedding

Matching Tensors are the most familiar embeddings

- coefficients of *multilinear feature matching relations*
- e.g. the fundamental matrix $m{F}$
- Other useful embeddings of matching geometry may exist . . .
- Typical consistency conditions:
 - fundamental matrix: $\det(\mathbf{F}) = 0$
- trifocal tensor: $\frac{\mathbf{d}^3}{\mathbf{d}x^3}\det(\boldsymbol{G}\cdot\boldsymbol{x})=\boldsymbol{\theta}$ plus others . . .

Advantages of Constrained Parametrizations

- + Very natural when matching geometry is derived from image data
- + "Linear methods" give (inconsistent!) initial estimates
- Reconstruction problem how to go from tensor to other properties of matching geometry
- The consistency conditions rapidly become complicated and non-obvious
 - Demazure for essential matrix
 - Faugeras-Papadopoulo for the trifocal tensor
- Constraint redundancy is common: #generators > codimension

Local Coordinates / Minimal Parametrizations

Express the geometry in terms of a *minimal set of independent parameters*

• *e.g.* describe some components of a matching tensor as *nonlinear functions* of the others (or of some other parameters)

$$ullet$$
 c.f. Z. Zhang's $m{F}=\left(egin{array}{ccc} a&b&c\\d&e&f\\ua+vd&ub+ve&uc+vf \end{array}
ight)$ guarantees $\det(m{F})=0$

Advantages of Minimal Parametrizations

- Simple unconstrained optimization methods can be used
- They are usually *highly anisotropic*
- they don't respect symmetries of the underlying geometry so they are messy to implement, and hard to optimize over
- They are usually only valid locally
- many coordinate patches may be needed to cover the variety, plus code to manage inter-patch transitions
- They must usually be found by algebraic elimination using the constraints
 - numerically ill-conditioned, and rapidly becomes intractable

It is usually preferable to eliminate variables *numerically* using the constraint Jacobians — *i.e.* constrained optimization

Redundant Parametrizations / Gauge Freedom

In many geometric problems, the simplest approach requires an *arbitrary choice* of coordinate system

Common examples:

- 1 3D coordinate frames in reconstruction, projection-based matching constraint parametrizations
- 2 Homogeneous-projective scale factors $m{F}
 ightarrow \lambda m{F}$
- 3 Homographic parametrizations of epipolar and trifocal geometry

$$m{F} \simeq egin{bmatrix} m{e} \end{bmatrix}_{\!\!\! imes} m{H} \quad ext{with freedom} \quad m{H}
ightarrow m{H} + m{e} \, m{a} \quad ext{for any } m{a}$$
 $m{G} \simeq m{e}' \otimes m{H}'' - m{H}' \otimes m{e}'' \quad ext{with freedom} \quad inom{H''}{H''}
ightarrow m{H}'' + m{e}'' \quad m{a}^{ op}$

Gauge Freedoms

Gauge Freedoms are internal symmetries associated with a free choice of internal "coordinates"

- Gauge just means (internal) coordinate system
- There is an associated **symmetry group** and its **representations**
- Expressions derived in gauged coordinates reflect the symmetries
- A familiar example: ordinary 3D Cartesian coordinates
 - the gauge group is the rigid motions
 - the gauged representations are Cartesian tensors

Advantages of Gauged Parametrizations

- + Very natural when the matching geometry is derived from the 3D one
- Close to the geometry, so it is easy to derive further properties from them
- Numerically much stabler than minimal parametrizations
- One coordinate system covers the whole variety
- Symmetry implies rank degeneracy special numerical methods are needed
- They may be slow as there are additional, redundant variables

Handling Gauge Freedom Numerically

Gauge motions don't change the residual, so there is nothing to say what they should be

- If left undamped, *large gauge fluctuations* can destabilize the system
 - e.g. Hessians are exactly rank deficient in the gauge directions
- Control fluctuations by **gauge fixing conditions** or **free gauge** methods
- C.f. 'Free Bundle' methods in photogrammetry

1. Gauge Fixing Conditions

- Remove the degeneracy by adding *artificial constraints*
 - e.g. Hartley's gauges $\mathbf{P}_1 = (\mathbf{I}_{3\times 3} \mid \mathbf{0}), \ \mathbf{e} \cdot \mathbf{H} = \mathbf{0}$
- Constrained optimization is (usually) needed
- Poorly chosen constraints can increase ill-conditioning

2. 'Free Gauge' Methods

- 1 Leave the gauge "free to drift" but take care not to push it too hard!
 - rank deficient least squares methods (basic or min. norm solutions)
 - Householder reduction projects motion orthogonally to gauge directions
- 2 Monitor the gauge and reset it "by hand" as necessary (e.g. each iteration)

Constrained Optimization

Constraints arise from

- **1** Matching relations on features, e.g. $\mathbf{x}^{\mathsf{T}} \mathbf{F} \mathbf{x} = 0$
- **2** Consistency conditions on matching tensors, e.g. $det(\mathbf{F}) = 0$
- **3** Gauge fixing conditions, e.g. $e \cdot H = 0$, $||F||^2 = 1$

Approaches to Constrained Optimization

- 1 Eliminate variables numerically using constraint Jacobian
- 2 Introduce Lagrange multipliers and solve for these too
 - for dense systems, 2 is simpler but 1 is usually faster and stabler
 - each has many variants: linear algebra method, operation ordering, . . .

Difficulties

- The linear algebra gets complicated, especially for sparse problems
- A lack of efficient, reliable search control heuristics
- Constraint redundancy

Constraint Redundancy

Many algebraic varieties have #generators > codimension

- Examples
- 1 the trifocal point constraint $[x']_{\times}(G \cdot x)[x'']_{\times}$ has rank 3 for valid trifocal tensors, 4 otherwise
- 2 the trifocal consistency constraint $\frac{\mathbf{d}^3}{\mathbf{d}x^3}\det(\boldsymbol{G}\cdot\boldsymbol{x})$ has rank 8 for valid tensors, 10 otherwise
- It seems difficult to handle such localized redundancies numerically
- ullet Currently, I assume known codimension r, project out the strongest r constraints and enforce only these

Abstract Geometric Fitting Problem

1. Model-Feature Constraints

There are

- 1 Unknown true underlying 'features' x_i
- 2 An unknown *true underlying 'model'* u
- 3 Exactly satisfied model-feature consistency constraints

$$\mathbf{c}_i(\mathbf{x}_i,\mathbf{u}) = \mathbf{0}$$

- E.g. for epipolar geometry
 - a 'feature' is a pair of corresponding points $(oldsymbol{x}_i,oldsymbol{x}_i')$
 - the 'model' \mathbf{u} is the fundamental matrix F
 - the 'model-feature constraint' is the epipolar constraint ${m x}_i^{\scriptscriptstyle {
 m T}} {m F} {m x}_i' = 0$

2. Error Model

1 There is an additive **posterior statistical error metric** linking the underlying features to observations and other prior information

$$ho_i(\mathbf{x}_i) \ = \
ho_i(\mathbf{x}_i| ext{observations} \ i)$$

- e.g. (robustified, bias corrected) posterior log likelihood
- $oxed{2}$ There may also be a **model-space prior** $ho_{
 m prior}({f u})$
- ullet For epipolar geometry, given observed points $(\underline{x},\underline{x}')$, we could take

$$\rho(\mathbf{x}, \mathbf{x}') = \rho\left(\|\mathbf{x} - \underline{\mathbf{x}}\|^2 + \|\mathbf{x}' - \underline{\mathbf{x}}'\|^2\right)$$

where $\rho(\cdot)$ is some robustifier

3. Model Parametrization

The model ${f u}$ may have a *nontrivial parametrization*

- 1 internal constraints $\mathbf{k}(\mathbf{u}) = \mathbf{0}$
- 3 internal gauge freedoms

E.g. for the fundamental matrix we can choose

either constraint
$$\det(\mathbf{F}) = 0$$

or gauge freedom
$$m{F} \simeq [\, {f e}\,]_{\!\scriptscriptstyle imes} m{H}$$

4. Estimation Method

• We want to find **point estimates** of the model $\mathbf u$ and (maybe) the underlying features $\mathbf x_i$, which **minimize the total error** subject to all of the constraints

$$\hat{\mathbf{u}}, \hat{\mathbf{x}}_i) \ \equiv \ rg \min \left(
ho_{ extstyle prior}(\mathbf{u}) + \sum_i
ho_i(\mathbf{x}_i) \ \middle| \ \mathbf{c}_i(\mathbf{x}_i, \mathbf{u}) = \mathbf{0}, \mathbf{k}(\mathbf{u}) = \mathbf{0}
ight)$$

• $(\hat{\mathbf{u}}, \hat{\mathbf{x}}_i)$ are **optimal self-consistent estimates** of the underlying model and features $(\mathbf{u}, \mathbf{x}_i)$

Fitting by Reduction to Model Space

- The traditional approach to geometric fitting is reduction
- 1 Use *local approximations* based at the observations $\underline{\mathbf{x}}_i$ to derive an effective model-space cost function $\sum_i \rho_i(\mathbf{u}|\,\underline{\mathbf{x}}_i)$
- 2 Numerically optimize over u (subject to any constraints, etc, on it)

Advantages

- The optimization is (nominally) over relatively few variables u
- igoplus The cost function $ho(\mathbf{u})$ is complicated and only correct to 1st order
- $igoplus ext{If } \dim(\mathbf{c}) > 1$, even the approximation has to be evaluated numerically

Estimating the Reduced Cost

The reduced error $ho_i(\mathbf{u}|\mathbf{x}_i)$ is given by **Gradient Weighted Least Squares**

either Project each observation Mahalanobis-orthogonally onto the estimated local constraint surface, and work out the error ρ_i there

or Find the covariance in \mathbf{c}_i due to $\underline{\mathbf{x}}_i$, and work out $\chi^2 pprox \mathbf{c}^ op \mathrm{Cov}(\mathbf{c})^{-1}\mathbf{c}$

$$\chi^2 pprox \mathbf{c}^{\mathsf{T}} \mathrm{Cov}(\mathbf{c})^{-1} \mathbf{c}$$

In either case, to first order

$$\rho(\mathbf{u}) = \sum_{i} \mathbf{c}_{i}^{\top} \left(\frac{\mathbf{d} \mathbf{c}_{i}}{\mathbf{d} \mathbf{x}_{i}} \left(\frac{\mathbf{d}^{2} \rho_{i}}{\mathbf{d} \mathbf{x}_{i}^{2}} \right)^{-1} \frac{\mathbf{d} \mathbf{c}_{i}}{\mathbf{d} \mathbf{x}_{i}}^{\top} \right)^{-1} \mathbf{c}_{i} \quad \Big|_{(\underline{\mathbf{x}}_{i}, \mathbf{u})}$$

• e.g. for the epipolar constraint

$$\rho(\mathbf{u}) = \sum_{i} \frac{(\underline{\boldsymbol{x}}_{i}^{\top} \boldsymbol{F} \underline{\boldsymbol{x}}_{i}')^{2}}{\underline{\boldsymbol{x}}_{i}^{\top} \boldsymbol{F} \operatorname{Cov}(\underline{\boldsymbol{x}}_{i}') \boldsymbol{F}^{\top} \underline{\boldsymbol{x}}_{i} + \underline{\boldsymbol{x}}_{i}'^{\top} \boldsymbol{F}^{\top} \operatorname{Cov}(\underline{\boldsymbol{x}}_{i}) \boldsymbol{F} \underline{\boldsymbol{x}}_{i}'}$$

• If c_i is linear in u and the dependence of the Jacobians on u is ignored, $\rho(u)$ is a simple quadratic in u which can be worked out once and for all

Direct Geometric Fitting

Fit the model by *direct constrained numerical optimization* over the natural variables $(\mathbf{u},\mathbf{x}_i)$

- Simple to use, even for complex problems
 - only the 'natural' error and constraint Jacobians are required
- + Gives exact, optimal results
- lacktriangledown Generates useful estimates of true underlying features \mathbf{x}_i
- Requires a **sparse constrained optimization** routine

The only difference between the direct and reduced methods is that the reduced one throws away the easily calculated feature updates dx_i

Direct Geometric Fitting — QR Method

Robustification

- Use standard statistical fitting (e.g. max. likelihood) to a model of the total observed data distribution — i.e. including both inliers and outliers
- Use numerical optimization, with initialization e.g. by consensus search
- All distribution parameters can (in principle) be estimated
 - e.g. covariances, outlier percentages

Implementation

• Assume a *central* robust cost function $\rho_i(\mathbf{x}_i) = \rho(\|\mathbf{e}_i(\mathbf{x}_i)\|^2)$

$$\rho_i(\mathbf{x}_i) = \rho(\|\mathbf{e}_i(\mathbf{x}_i)\|^2)$$

- $\mathbf{e}_i(\cdot)$ is a normalized residual error vector
- $\rho(\cdot)$ is a **robust cost function**

$$ullet$$
 e.g. an outlier polluted Normal distribution $ho = -\log \Bigl(lpha + eta \cdot e^{-\|\mathbf{e}\|^2/2} \Bigr)$

Numerical Problems caused by Robustification

- 1 Nonconvex cost function regularization may be needed to guarantee positivity. This can slow convergence
- to partially compensate, correct Jacobians for **2nd order curvature** of robustifier $\rho(\cdot)$ a rank 1 correction along e
- 2 The robust error surface is *very flat for outliers* this can cause poor numerical condition & scaling problems
- apply the robust suppression as late in the numerical chain as possible, *i.e.* when the feature contributes to the model's cost function

Summary

- A generic, modular library for *matching constraint estimation*
- Aims to be *efficient* and *stable*, even in *near-degenerate cases*
- Will be used to compare different
 - feature error models
 - constraint parametrizations
 - numerical resolution methods
- Central numerical method is direct geometric fitting

http://www.inrialpes.fr/movi/people/Triggs/home.html