
Optimal Estimation of Matching Constraints

1 Motivation & general approach

2 Parametrization of matching constraints

3 Direct vs. reduced fitting

4 Numerical methods

5 Robustification

6 Summary

brought to you by 
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by IN
R

IA
 a C

C
S

D
 electronic archive server

https://core.ac.uk/display/50029586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Why Study Matching Constraint Estimation?

1 They are practically useful , both for correspondence and reconstruction

2 They are algebraically complicated , so the best algorithm is not obvious

— a good testing ground for new ideas : : :
3 There are many variants

— different constraint & feature types, camera models

— special forms for degenerate motions and scene geometries) Try a systematic approach rather than an ad hoc case-by-case one



Model selection� For practical reliability, it is essential to use an appropriate model� Model selection methods fit several models, choose the best) many fits are to inappropriate models (strongly biased, degenerate)) the fitting algorithm must be efficient and reliable, even in difficult cases



Questions to Study

1 How much difference does an accurate statistical error model make ?

2 Which types of constraint parametrization are the most reliable ?

3 Which numerical method offers the best stability/speed/simplicity ?

The answers are most interesting for nearly degenerate cases, as these are the

most difficult to handle reliably.



Design of Library

1. Modular Architecture� Separate modules for

1 matching geometry type & parametrization

2 feature type, parametrization & error model

3 linear algebra implementation

4 loop controller (step damping, convergence tests)



Stable Gauss-Newton Approach

1 Work with residual error vectors e(x) and Jacobians

dedx
— not gradient and Hessian of squared error

d(jej2)dx = e> dedx ; dedx> dedx� e.g. simplest residual is e = x � x for observations x

2 Discard 2nd derivatives, e.g. e> d2edx2
3 For stability use QR decomposition, not normal equations + Cholesky

Advantages of Gauss-Newton

+ Simple to use — no 2nd derivatives required

+ Stable linear least squares methods can be used for step prediction

– Convergence may be slow if problem has both large residual and strong

nonlinearity — but in vision, residuals are usually small



Parametrization of Matching Geometry� The underlying geometry of matching constraints is parametrized by nontrivial

algebraic varieties — there are no single, simple, minimal parametrizations

— e.g. epipolar geometry � the variety of all homographic mappings between

line pencils in two images

There are (at least) three ways to parametrize varieties:

1 Implicit constraints on some higher dimensional space

2 Overlapping local coordinate patches

3 Redundant parametrizations with internal gauge freedoms



Constrained Parametrizations

1 Embed the variety in a larger (e.g. linear, tensor) space

2 Find consistency conditions that characterize the embedding

Matching Tensors are the most familiar embeddings

— coefficients of multilinear feature matching relations

— e.g. the fundamental matrix F� Other useful embeddings of matching geometry may exist : : :� Typical consistency conditions:

— fundamental matrix: det(F) = 0
— trifocal tensor: d3dx3 det(G � x) = 0 plus others : : :



Advantages of Constrained Parametrizations

+ Very natural when matching geometry is derived from image data

+ “Linear methods” give (inconsistent!) initial estimates

– Reconstruction problem — how to go from tensor to other properties of

matching geometry

– The consistency conditions rapidly become complicated and non-obvious

— Demazure for essential matrix

— Faugeras-Papadopoulo for the trifocal tensor

– Constraint redundancy is common: #generators > codimension



Local Coordinates / Minimal Parametrizations

Express the geometry in terms of a minimal set of independent parameters� e.g. describe some components of a matching tensor as nonlinear functions

of the others (or of some other parameters)� c.f. Z. Zhang’s F = � a b cd e fua+vd ub+ve uc+vf � guarantees det(F) = 0



Advantages of Minimal Parametrizations

+ Simple unconstrained optimization methods can be used

– They are usually highly anisotropic

— they don’t respect symmetries of the underlying geometry so they are messy

to implement, and hard to optimize over

– They are usually only valid locally

— many coordinate patches may be needed to cover the variety, plus code to

manage inter-patch transitions

– They must usually be found by algebraic elimination using the constraints

— numerically ill-conditioned, and rapidly becomes intractable

It is usually preferable to eliminate variables numerically

using the constraint Jacobians — i.e. constrained optimization



Redundant Parametrizations / Gauge Freedom

In many geometric problems, the simplest approach requires an arbitrary choice

of coordinate system

Common examples:

1 3D coordinate frames in reconstruction, projection-based matching constraint

parametrizations

2 Homogeneous-projective scale factors F ! �F

3 Homographic parametrizations of epipolar and trifocal geometry

F ' [ e ]� H with freedom H ! H + e a for any a

G ' e0 
H00 �H0 
 e00 with freedom

�

H0

H00 � ! �

H0

H00 �+ � e0

e00 � a>



Gauge Freedoms

Gauge Freedoms are internal symmetries associated with a free choice of

internal “coordinates”� Gauge just means (internal) coordinate system� There is an associated symmetry group and its representations� Expressions derived in gauged coordinates reflect the symmetries� A familiar example: ordinary 3D Cartesian coordinates

— the gauge group is the rigid motions

— the gauged representations are Cartesian tensors



Advantages of Gauged Parametrizations

+ Very natural when the matching geometry is derived from the 3D one

+ Close to the geometry, so it is easy to derive further properties from them

+ Numerically much stabler than minimal parametrizations

+ One coordinate system covers the whole variety

– Symmetry implies rank degeneracy — special numerical methods are needed

– They may be slow as there are additional, redundant variables



Handling Gauge Freedom Numerically

Gauge motions don’t change the residual, so

there is nothing to say what they should be� If left undamped, large gauge fluctuations can destabilize the system

— e.g. Hessians are exactly rank deficient in the gauge directions� Control fluctuations by gauge fixing conditions or free gauge methods� C.f. ‘Free Bundle’ methods in photogrammetry



1. Gauge Fixing Conditions� Remove the degeneracy by adding artificial constraints

— e.g. Hartley’s gauges P1 = ( I3�3 j 0 ), e �H = 0� Constrained optimization is (usually) needed� Poorly chosen constraints can increase ill-conditioning

2. ‘Free Gauge’ Methods

1 Leave the gauge “free to drift” — but take care not to push it too hard !

— rank deficient least squares methods (basic or min. norm solutions)

— Householder reduction projects motion orthogonally to gauge directions

2 Monitor the gauge and reset it “by hand” as necessary (e.g. each iteration)



Constrained Optimization

Constraints arise from

1 Matching relations on features, e.g. x>F x = 0
2 Consistency conditions on matching tensors, e.g. det(F) = 0
3 Gauge fixing conditions , e.g. e �H = 0, kFk2 = 1



Approaches to Constrained Optimization

1 Eliminate variables numerically using constraint Jacobian

2 Introduce Lagrange multipliers and solve for these too

— for dense systems, 2 is simpler but 1 is usually faster and stabler

— each has many variants: linear algebra method, operation ordering, : : :

Difficulties� The linear algebra gets complicated, especially for sparse problems� A lack of efficient, reliable search control heuristics� Constraint redundancy



Constraint Redundancy

Many algebraic varieties have #generators > codimension

The constraint Jacobian has

8<:rank = codimension on the variety

rank > codimension away from it� Examples

1 the trifocal point constraint [ x0 ]� (G � x) [ x00 ]� has rank 3 for valid trifocal

tensors, 4 otherwise

2 the trifocal consistency constraint d3dx3 det(G � x) has rank 8 for valid

tensors, 10 otherwise� It seems difficult to handle such localized redundancies numerically� Currently, I assume known codimension r, project out the strongest r

constraints and enforce only these



Abstract Geometric Fitting Problem

1. Model-Feature Constraints

There are

1 Unknown true underlying ‘features’ xi
2 An unknown true underlying ‘model’ u
3 Exactly satisfied model-feature consistency constraintsci(xi;u) = 0

� E.g. for epipolar geometry

— a ‘feature’ is a pair of corresponding points (xi; x0i)

— the ‘model’ u is the fundamental matrix F

— the ‘model-feature constraint’ is the epipolar constraint x>i F x0i = 0



2. Error Model

1 There is an additive posterior statistical error metric linking the underlying

features to observations and other prior information�i(xi) = �i(xijobservations i)
— e.g. (robustified, bias corrected) posterior log likelihood

2 There may also be a model-space prior �prior(u)� For epipolar geometry, given observed points (x; x0), we could take�(x; x0) = � � kx� xk2 + kx0 � x0k2 �

where �(�) is some robustifier



3. Model Parametrization

The model u may have a nontrivial parametrization

1 internal constraints k(u) = 0

2 local parametrization u = u(v) with free parameters v
3 internal gauge freedoms

E.g. for the fundamental matrix we can choose

either constraint det(F) = 0
or gauge freedom F ' [ e ]� H



4. Estimation Method� We want to find point estimates of the model u and (maybe) the underlying

features xi, which minimize the total error subject to all of the constraints

(^u; ^xi) � arg min

 �prior(u) +Xi �i(xi) ����� ci(xi;u) = 0;k(u) = 0!

� (^u; ^xi) are optimal self-consistent estimates of the underlying model and

features (u;xi)



Fitting by Reduction to Model Space� The traditional approach to geometric fitting is reduction

1 Use local approximations based at the observations xi to derive an

effective model-space cost function

Xi �i(ujxi)
2 Numerically optimize over u (subject to any constraints, etc, on it)

Advantages

+ The optimization is (nominally) over relatively few variables u

– The cost function �(u) is complicated and only correct to 1st order

– If dim(c) > 1, even the approximation has to be evaluated numerically



Estimating the Reduced Cost

The reduced error �i(ujxi) is given by Gradient Weighted Least Squares

either Project each observation Mahalanobis-orthogonally onto the estimated

local constraint surface, and work out the error �i there

or Find the covariance in ci due to xi , and work out �2 � c>Cov(c)�1c� In either case, to first order

�(u) = Xi c>i � dcidxi �d2�idx2i ��1 dcidxi >��1 ci ����(xi;u)



� e.g. for the epipolar constraint

�(u) = Xi (x>i F x0i)2
x>i F Cov(x0i)F> xi + x0i> F> Cov(xi)F x0i

� If ci is linear in u and the dependence of the Jacobians on u is ignored, �(u)

is a simple quadratic in u which can be worked out once and for all



Direct Geometric Fitting

Fit the model by direct constrained numerical optimization

over the natural variables (u;xi)
+ Simple to use, even for complex problems

— only the ‘natural’ error and constraint Jacobians are required

+ Gives exact, optimal results

+ Generates useful estimates of true underlying features xi

– Requires a sparse constrained optimization routine

The only difference between the direct and reduced methods is that

the reduced one throws away the easily calculated feature updates dxi



Direct Geometric Fitting — QR Method
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Robustification� Use standard statistical fitting (e.g. max. likelihood) to a model of the total

observed data distribution — i.e. including both inliers and outliers� Use numerical optimization, with initialization e.g. by consensus search� All distribution parameters can (in principle) be estimated

— e.g. covariances, outlier percentages

Implementation� Assume a central robust cost function �i(xi) = �(kei(xi)k2)

— ei(�) is a normalized residual error vector

— �(�) is a robust cost function� e.g. an outlier polluted Normal distribution � = � log��+ � � e�kek2=2�



Numerical Problems caused by Robustification

1 Nonconvex cost function — regularization may be needed to guarantee

positivity. This can slow convergence

— to partially compensate, correct Jacobians for 2nd order curvature of

robustifier �(�) — a rank 1 correction along e
2 The robust error surface is very flat for outliers — this can cause poor

numerical condition & scaling problems

— apply the robust suppression as late in the numerical chain as possible, i.e.

when the feature contributes to the model’s cost function
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Summary� A generic, modular library for matching constraint estimation� Aims to be efficient and stable , even in near-degenerate cases� Will be used to compare different

— feature error models

— constraint parametrizations

— numerical resolution methods� Central numerical method is direct geometric fitting
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