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Optimal Estimation of Matching Constraints

Motivation & general approach
Parametrization of matching constraints
Direct vs. reduced fitting

Numerical methods

Robustification

Summary
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Why Study Matching Constraint Estimation?

They are practically useful , both for correspondence and reconstruction
They are algebraically complicated , so the best algorithm is not obvious
— a good testing ground for new ideas . . .
There are many variants
— different constraint & feature types, camera models
— special forms for degenerate motions and scene geometries

—> Try a systematic approach rather than an ad hoc case-by-case one



| Model selection |

e For practical reliability, it is essential to use an appropriate model
e Model selection methods fit several models, choose the best
=—> many fits are to inappropriate models (strongly biased, degenerate)

= the fitting algorithm must be efficient and reliable, even in difficult cases



Questions to Study

1] How much difference does an accurate statistical error model  make ?

2] Which types of constraint parametrization — are the most reliable ?

3] Which numerical method offers the best stability/speed/simplicity ?

The answers are most interesting for nearly degenerate cases, as these are the

most difficult to handle reliably.



Design of Library

|1. Modular Architecture |

® Separate modules for
1] matching geometry type & parametrization
2] feature type, parametrization & error model

3] linear algebra implementation

4] loop controller (step damping, convergence tests)



Stable Gauss-Newton Approach I

o | de
1] Work with residual error vectors | e(x) | and Jacobians I
X
| | d(le[*) .de de'de
— not gradient and Hessian of squared error | ———— = € ;
dx dx’ dx dx

® e.g. simplestresidualis |e = X — X | for observations X

+ d?%e
dx?2

2] Discard 2nd derivatives, e.g. €

3] For stability use QR decomposition, not normal equations + Cholesky

Advantages of Gauss-Newton I

@ Simple to use — no 2nd derivatives required

@ Stable linear least squares methods can be used for step prediction

@ Convergence may be slow if problem has both large residual and strong

nonlinearity — but in vision, residuals are usually small



Parametrization of Matching Geometry

e The underlying geometry of matching constraints is parametrized by nontrivial

algebraic varieties — there are no single, simple, minimal parametrizations

— e.g. epipolar geometry & the variety of all homographic mappings between

line pencils in two images

There are (at least) three ways to parametrize varieties:
1] Implicit constraints  on some higher dimensional space

2] Overlapping local coordinate patches

3] Redundant parametrizations  with internal gauge freedoms



Constrained Parametrizations

1] Embed the variety in a larger (e.g. linear, tensor) space

2] Find consistency conditions  that characterize the embedding

Matching Tensors I are the most familiar embeddings

— coefficients of multilinear feature matching relations

— e.g. the fundamental matrix F
e Other useful embeddings of matching geometry may exist . . .
e Typical consistency conditions:

— fundamental matrix: [det(F) = 0

3
— trifocal tensor: | - det(G-X) = O plus others. ..



Advantages of Constrained Parametrizations

@ Very natural when matching geometry is derived from image data
@ “Linear methods” give (inconsistent!) initial estimates

@ Reconstruction problem — how to go from tensor to other properties of

matching geometry

@ The consistency conditions rapidly become complicated and non-obvious
— Demazure for essential matrix
— Faugeras-Papadopoulo for the trifocal tensor

@ Constraint redundancy is common: #generators > codimension



Local Coordinates / Minimal Parametrizations

Express the geometry in terms of a minimal set of independent parameters

® e.g. describe some components of a matching tensor as nonlinear functions
of the others (or of some other parameters)
a b C

e cf. Z. Zhangs F = ( d e f )guarantees det(F) = 0
ua+vd ub+ve uc+v f



Advantages of Minimal Parametrizations

@ Simple unconstrained optimization methods can be used
@ They are usually highly anisotropic

— they don’t respect symmetries of the underlying geometry so they are messy

to implement, and hard to optimize over
@ They are usually only valid locally

— many coordinate patches may be needed to cover the variety, plus code to

manage inter-patch transitions
@ They must usually be found by algebraic elimination using the constraints

— numerically ill-conditioned, and rapidly becomes intractable

It is usually preferable to eliminate variables numerically
using the constraint Jacobians — i.e. constrained optimization




Redundant Parametrizations / Gauge Freedom

In many geometric problems, the simplest approach requires an arbitrary choice

of coordinate system
Common examples:

3D coordinate frames in reconstruction, projection-based matching constraint

parametrizations
Homogeneous-projective scale factors F — A F

Homographic parametrizations  of epipolar and trifocal geometry

F ~ [e] H withfreedom H — H 4 ea foranya

/

G~ edxH'"—H ®€& with freedom (H’) — (I_HI,’,)—|—(9,,) a’

H'/ e



Gauge Freedoms

|Gauge Freedoms I are internal symmetries associated with a free choice of
internal “coordinates”

e Gauge just means (internal) coordinate system
® There is an associated symmetry group and its representations

e Expressions derived in gauged coordinates reflect the symmetries

e A familiar example: ordinary 3D Cartesian coordinates
— the gauge group is the rigid motions

— the gauged representations are Cartesian tensors



Advantages of Gauged Parametrizations

@ Very natural when the matching geometry is derived from the 3D one

@ Close to the geometry, so it is easy to derive further properties from them

@ Numerically much stabler than minimal parametrizations

@ One coordinate system covers the whole variety

@ Symmetry implies rank degeneracy — special numerical methods are needed

@ They may be slow as there are additional, redundant variables



Handling Gauge Freedom Numerically

Gauge motions don’t change the residual, so

there is nothing to say what they should be

e If left undamped, large gauge fluctuations can destabilize the system

— e.g. Hessians are exactly rank deficient in the gauge directions

e Control fluctuations by |gauge fixing conditions I or |free gauge Imethods

e C.f. ‘Free Bundle’ methods in photogrammetry




|1. Gauge Fixing Conditions I

e Remove the degeneracy by adding artificial constraints
— e.g. Hartley’s gauges P; = (l3x3|0), e-H =0
e Constrained optimization is (usually) needed

e Poorly chosen constraints can increase ill-conditioning

|2. ‘Free Gauge’ Methods I

Leave the gauge “free to drift” — but take care not to push it too hard!

— rank deficient least squares methods (basic or min. norm solutions)
— Householder reduction  projects motion orthogonally to gauge directions

Monitor the gauge and reset it “by hand” as necessary (e.g. each iteration)



Constrained Optimization

Constraints arise from

1] Matching relations on features, e.g. X'FX =10

N

Consistency conditions  on matching tensors, e.g. det(F) = 0

3] Gauge fixing conditions ,e.g. e-H =0, ||[F||? =1



Approaches to Constrained Optimization

Eliminate variables numerically  using constraint Jacobian
Introduce Lagrange multipliers and solve for these too

— for dense systems, |2] is simpler but [1] is usually faster and stabler

— each has many variants: linear algebra method, operation ordering, . . .

| Difficulties |

® The linear algebra gets complicated, especially for sparse problems
e A lack of efficient, reliable search control heuristics

e Constraint redundancy



Constraint Redundancy

Many algebraic varieties have #generators > codimension

_ _ rank = codimension on the variety
The constraint Jacobian has

rank > codimension away from it

e Examples

the trifocal point constraint [ X' | (G- X) X" ] has rank 3 for valid trifocal

tensors, 4 otherwise

3
the trifocal consistency constraint % det(G - X) has rank 8 for valid

tensors, 10 otherwise

e |t seems difficult to handle such localized redundancies numerically

e Currently, | assume known codimension 7, project out the strongest r

constraints and enforce only these



Abstract Geometric Fitting Problem

|1. Model-Feature Constraints |

There are

1] Unknown true underlying ‘features’ X;

2] An unknown true underlying ‘model’ u

3] Exactly satisfied model-feature consistency constraints

Ci(x’iau) =0

e E.g. for epipolar geometry
— a ‘feature’ is a pair of corresponding points (X;, X})

— the ‘model’ u is the fundamental matrix F

— the ‘model-feature constraint’ is the epipolar constraint X, F X, =



|2. Error Model |

There is an additive posterior statistical error metric ~ linking the underlying

features to observations and other prior information

pi(X;) = pi(x;|observations 1)

— e.g. (robustified, bias corrected) posterior log likelihood

There may also be a model-space prior | Pyrior (1)
e For epipolar geometry, given observed points (X, X ), we could take
p(x,X") = p ([Ix = x> + [[xX' = x[|?)

where p(-) is some robustifier



|3. Model Parametrization |

The model u may have a nontrivial parametrization

1] internal constraints | k(u) = 0

2] local parametrization |1 = u(Vv) | with free parameters v

[

internal gauge freedoms

E.g. for the fundamental matrix we can choose

either] constraint | det(F) = 0

gauge freedom |F ~ [e] H

X



|4. Estimation Method |

e \We want to find point estimates of the model u and (maybe) the underlying

features X;, which minimize the total error  subject to all of the constraints

(0,%;) = agmin { ppior(u) + Zpi(xi) ci(x;,u) = 0,k(u) =0

e (11,X;) are optimal self-consistent estimates  of the underlying model and

features (u, X;)



Fitting by Reduction to Model Space

e The traditional approach to geometric fitting is reduction
Use local approximations based at the observations X, to derive an

effective model-space cost function Z Pi (u\ &)
i

2] Numerically optimize over u (subject to any constraints, etc, on it)

Advantages I

@ The optimization is (nominally) over relatively few variables u

@ The cost function p(u) is complicated and only correct to 1st order

S If dim(c) > 1, even the approximation has to be evaluated numerically



Estimating the Reduced Cost

The reduced error p;(u|x;) is given by |Gradient Weighted Least Squares I

either | Project each observation Mahalanobis-orthogonally onto the estimated

local constraint surface, and work out the error p; there

Find the covariance in ¢; due to X;, and work out x?> ~ ¢ Cov(c) 'c

® |n either case, to first order

—1
—1
. T de; [ d?%p; dec; "
plu) = ) ¢, (dxi <dxg> dx; ) Ci
7

(x

x;,u)



e e.g. for the epipolar constraint

() Z (X, Flé)z
u p—
P x] FCov(x})FTx, + x:" FT Cov(x,) F X!

()

e If c; is linear in u and the dependence of the Jacobians on u is ignored, p(u)

IS a simple quadratic in 1 which can be worked out once and for all



Direct Geometric Fitting

Fit the model by direct constrained numerical optimization

over the natural variables (u, Xi)

@ Simple to use, even for complex problems

— only the ‘natural’ error and constraint Jacobians are required
@ Gives exact, optimal results
@ Generates useful estimates of true underlying features  X;

@ Requires a sparse constrained optimization  routine

The only difference between the direct and reduced methods is that

the reduced one throws away the easily calculated feature updates dx;




Direct Geometric Fitting — QR Method




Robustification

e Use standard statistical fitting (e.g. max. likelihood) to a model of the total

observed data distribution —i.e. including both inliers and outliers
e Use numerical optimization, with initialization e.g. by consensus search
e All distribution parameters can (in principle) be estimated

— €.Q. covariances, outlier percentages

| Implementation I

e Assume a central robust cost function | p;(x;) = p(|lei(x;)[?)

— ¢€;(+) is a normalized residual error vector

— p(+) is a robust cost function

e e.g. an outlier polluted Normal distribution | p = — log (a + 03 - e_||e||2/2>



Numerical Problems caused by Robustification

Nonconvex cost function — regularization may be needed to guarantee

positivity. This can slow convergence

— to partially compensate, correct Jacobians for 2nd order curvature of

robustifier p(-) — a rank 1 correction along €

The robust error surface is very flat for outliers — this can cause poor

numerical condition & scaling problems

— apply the robust suppression as late in the numerical chain as possible, i.e.

when the feature contributes to the model’s cost function
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Ground Truth Residual - direct F matrix - strong geometry
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Ground Truth Residual - reduced F matrix - strong geometry
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Ground Truth Residual - direct F matrix - near-planar (1%)

0.001 |
0.0001 |

1le-05

10 points —— ]
20 points -~ -
100 points .
chisq 7
001 F :
50 60

(R

0.1 ¢

Ground Truth Residual - reduced F matrix - near-planar (1%)

0.01 |
0.001

0.0001

1le-05

(R

0.1 ¢

T

[
PR

10 points —— ]
20 points -~ -

100 points
chisq 7

==

10

20




Ground Truth Residual - direct F matrix - near-planar (1%)
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Ground Truth Residual - reduced F matrix - near-planar (1%)
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Summary

® A generic, modular library for matching constraint estimation
® Aims to be efficient and stable, even in near-degenerate cases
e Will be used to compare different

— feature error models

— constraint parametrizations

— numerical resolution methods

e Central numerical method is direct geometric fitting

http://www.inrialpes.fr/movi/people/Triggs/home.htm



