-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Fast and Realistic Image Synthesis for Telemanipulation
Purposes

Jérébme Blanc, Salvatore Livatino, Roger Mohr

» To cite this version:

Jéréme Blanc, Salvatore Livatino, Roger Mohr. Fast and Realistic Image Synthesis for Telemanip-
ulation Purposes. European Workshop on Hazardous Robotics (HEROS '96), Nov 1996, Barcelona,
Spain. pp.77-83. inria-00548376

HAL Id: inria-00548376
https://hal.inria.fr /inria-00548376
Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50029535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00548376
https://hal.archives-ouvertes.fr

Fast and Realistic Image Synthesis for Telemanipulation Purposes

J. Blanc

S. Livatino*

R. Mohr

Movi, GRAVIR-IMAG

INRIA Rhéne-Alpes
655, av. de I’Europe
38330 MONTBONNOT ST-MARTIN

FRANCE

Jerome. Blanc@inrialpes.fr

Abstract

We describe here a method to build fast and realistic
synthetic tmages, which does not require a tedious a
priori modeling of the scene to be displayed. We only
use photos or videos of a real scene taken from some
viewpoints, which in some way we “wrap” to get new
(synthetic) images of the same scene. This way, we
can virtually see and move inside the 3D scene.

The process consists of two steps: we first need to
registrate the so-called reference views, using computer
vision techniques. Then we just project the obtained
model onto the plane of a virtual camera; this last step
1s fast and gqives realistic results, allowing to use the
method for instance to simulate the environment of a
tele-operated device.

1 Introduction

Synthetic images have proven useful for telemanip-
ulation: synthesizing the environment of the operated
device is needed for visualization, simulation, and bet-
ter remote positioning. The necessity of virtual reality
(VR) itself during the design stage has now become
obvious. At the CERN in Geneva, Switzerland, a VR,
software helped them to set-up the building of the fu-
ture Large Hadron Collider; by simulating, they saw
they could avoid the building of an extra shaft, thus
sparing millions of dollars! [Bal 96].

For these simulation uses, we must synthesize the
environment of the robot to be tele-operated, and the
robot or vehicle itself inside this scenery. The scenery
should be a real 3D model, for a better feeling of the
environment and of the possible collisions with the
operated device.
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Whereas such a modeling remains feasible by hand
for a world of blocks, obtaining a complete 3D model
of a complex environment (say, a whole city) becomes
a tough and annoying task. More, it will never lead
to realistic images without an extra cost in modeling
(rocks, trees), and rendering.

What we present here is a mostly automated fast
and realistic image synthesis technique, which relies on
some real pictures of the 3D scene we want to simulate.
We’ll call these pictures reference views.

Algorithms Outline From some known reference
views, our process needs 3 distinct steps:

1. a preprocessing step consists of matching the ref-
erence views together, to get a disparity map (see
section 2);

2. from the disparity map, we build a 3D model,
this model can be a set of 3D points, or a more
sophisticated one (see section 3);

3. the last step just consists of projecting the con-
tructed model onto virtual cameras, so as to gen-
erate the synthesized views (see section 4).

The views we’ll use in this paper are aerial views of
the city of Marseilles, France; they’re shown on fig. 1.

2 Matching the Reference Views
2.1 Several Methods

Many methods can be used to recover a depth map
between the reference views. The use of each method
depends on:



a priori knowledge of the scene: for in-
stance, knowing the epipolar geometry between
the reference views allows to restrict the search
area: corresponding points are only searched for
on conjugate epipolar lines.

measure type: comparing two points can be done
with raw correlation measures, or robust correla-
tion measures, or measures of distances between
quasi-invariants of the intensities of points.

the required density for the depth map:
we can match only sparse points on the images
(interest points), or contour points (but they’re
often on an occluding edge), or even all points.

For each case, we need a different algorithm. One
we used in the presented paper matches sparse points,
using the epipolar constraints, and the measure is a
plain correlation measure, for instance saDp [Asc 92].
We use cross-correlations, that is, for one point in im-
age 1, we find the best match in image 2. For this
match, we find the best matching point in image 1,
and if it is the first point again, then we keep the
match, else we reject it.

Another algorithm is a brute-force method consist-
ing of matching all the possible points of the reference
views, using a dynamic programming algorithm (or
again cross-correlations).

2.2 Recovering the Epipolar Geometry

For the algorithms we described, we need to com-
pute the epipolar geometry from the two reference
views. The method we implemented is the following:

1. Extract interest points in the 2 images (such
as corners). These points are easily trackable.
We use an ameliorated Harris corner detector

[Sch 96].

2. Match these
[Sch 96].

points using cross-invariants

3. Refine the matches by moving the points with a
subpixel accuracy and evaluate their resemblance
with correlations measures.

4. Estimate the epipolar geometry from these sub-
pixel matches. We mix [Har 95] and [Der 94]
methods to get a robust and precise estimation.

The obtained disparity map is shown on figure 2,
along with a denser version.

3 Computing a Model of the Scene

3.1 From a Projective to a Euclidean Re-
construction

From a disparity map, we need to obtain a 3D
model. First of all, let’s notice that if we only know
the images - hence the epipolar geometry -, all we can
get is a projective reconstruction of the scene [Fau 92].
That is not suitable for our use, where we would
like to manipulate a real 3D euclidean model, using
standard model viewers or editors. To obtain such a
model, many techniques are available, including: set-
ting euclidean constraints on the scene (lengths and
angles measures), as in [Bou 93], or performing auto-
calibration (we need at least 3 images). But the best
for us, as we don’t need a full-automatic reconstruc-
tion, is simply to enter the internal parameters of the
camera which took the reference views. These param-
eters can for instance be given by the manufacturer.

3.2 Building the 3D Points

From the epipolar geometry and the internal pa-
rameters, we compute the two projection matrices
modeling the two cameras, using the algorithm de-
scribed in [Luo 92]. Then for each match in the ref-
erence views, we compute the corresponding 3D point
using a plain triangulation. The matches have to be
precise and must exactly obey the epipolar constraint.
If, as in our case, the matching process did not en-
sure these two points, we have to refine the obtained
matches (we just move them by a subpixel amount,
testing for a better correlation), and to make them
fit the epipolar constraint. For the latter, we use the

method of [Har 94].
3.3 Towards a Better Model

At this stage, we have a sparse cloud of 3D points.
As we will see in section 4, this is a poor model, be-
cause we lost all information about connexity or sur-
face. Moreover, we need to handle as many points
as pixels could be matched in the reference views, i.e.
tens or hundreds of thousands of points.

To solve this problem, we are currently experi-
menting another approach: from some sparse matches
(dozens to hundreds), we build triangles in the ref-
erence views. By “backprojecting” them in the 3D
sparse model, we obtain 3D textured triangles, that
we can display with any viewer.



Reference view #1 Reference view #2

Figure 1: the 2 reference views.
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Figure 2: computed disparity maps.




Computing the Triangular Mesh We used sev-
eral methods to compute the triangular mesh.

e We used a plain Delaunay triangulation. The
problem is that each triangle area does not nec-
essarily cover a plane in the reference views. This
can lead to strange artifacts in the synthesized
(texture-mapped) views. We are still developing
automatic methods to ensure this; a way to do is
to impede triangles from crossing occluding edges.

e This leads us to another method: a constrained
Delaunay triangulation, where we set boundaries
on the occluding edges. We need to detect pre-
cisely the occluding edges in the reference views,
and this part is still under development.

e Our last method is experimental: for each triangle
in an initial Delaunay triangulation, we project it
to the second reference view, and compute the
image difference. To do this, we just subtract the
images, then filter them using an erosion/dilation
operator to remove isolated insignificant points,
and decide whether this difference is null (under
a fixed threshold). We experimented this method
with success, which is however excessively time
consuming.

4 Synthesizing New Views - Results

4.1 From the Cloud of Points

We have enough to synthesize new views of the
scene: we just project the points onto the plane of
a virtual camera. We get some usual problems; for
instance, when we get nearer, the pixels tend to part,
and let the pixels behind show through. This tech-
nique is quite fast (~ 1 second to synthesize a 500x500
picture), but we need to apply a filter afterwards.

Some synthesized images can be seen on figure 3.

4.2 From Triangles

On another model (the Movi house), we experi-
mented the triangle technique, generating a VRML file
we displayed with VRWEB. We used this model be-
cause it is well adapted to flat triangles, and because
we could get enough precision in the matches. Us-
ing a standard tool as VRWEB allows to benefit from
special hardware as on Silicon Graphics workstations,
especially for anti-aliased texture mapping.

The triangulation can be seen on figure 4; the
points were matched and refined automatically. For

this experiment the triangles were connected by hand,
helped by an initial Delaunay triangulation, although
we could have used the experimental technique de-
scribed before.

Some synthesized views of the MovI house can be
seen on figure 5.

5 Conclusion

We proposed a method to use real views of the
scenery as models for image synthesis. That is to say,
from some photographs of a real scene, we can build a
synthetic model, allowing to virtually navigate inside
the scene and appreciate the tri-dimensional structure.

The advantages are speed and realistic effects.

Speed in the pre-processing stage: extracting
the 3D model from the photos is mostly auto-
mated, thus avoiding a tedious modeling stage by

hand.

Speed in the rendering process: as real photos
are mapped to synthesize new views, we don’t
need a sophisticated rendering computation; this
information is already available in the photos.

Realistic viewing: for the same reason, using real
images as a basis ensures a realistic viewing. A
fine level of detail is impossible to achieve in a
reasonable time using a model which would be
hand-coded from scratch; if we did so, we’d need
to encode the details of the rocks and dust on the
ground, the leaves of the trees, etc...

Future Work At this stage, we have sparse points
in the 3D euclidean space. An automated and fast
building of the triangle mesh having these points as
vertices, and texture extracted from the reference
views, is still to be developed.
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Triangles on the Movi house

Figure 4: the generated triangulation.
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Figure 5: some computed views using triangles.
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