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Abstract.
This paper studies the geometry of perspective projection into multiple images and the matching constraints

that this induces between the images. The combined projections produce a 3D subspace of the space of combined
image coordinates called the joint image. This is a complete projective replica of the 3D world defined entirely
in terms of image coordinates, up to an arbitrary choice of certain scale factors. Projective reconstruction is a
canonical process in the joint image requiring only the rescaling of image coordinates. The matching constraints
tell whether a set of image points is the projection of a single world point. In 3D there are only three types of
matching constraint: the fundamental matrix, Shashua’s trilinear tensor, and a new quadrilinear 4 image tensor.
All of these fit into a single geometric object, the joint image Grassmannian tensor. This encodes exactly the
information needed for reconstruction: the location of the joint image in the space of combined image coordinates.
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1. Introduction

This is the first of two papers that examine the geo-
metry underlying the recovery of 3D projective struc-
ture from multiple images. This paper focuses on the
geometry of multi-image projection and the matching
constraints that this induces on image measurements.
The second paper will deal with projective reconstruc-
tion techniques and error models.

Matching constraints like the fundamental matrix
and Shashua’s trilinear tensor [19] are currently a topic
of lively interest in the vision community. This pa-
per uncovers some of the beautiful and useful structure
that lies behind them and should be of interest to any-
one working on the geometry of vision. We will show
that in three dimensions there are only three types of
constraint: the fundamental matrix, Shashua’s trilin-
ear tensor, and a new quadrilinear four image tensor.
All other matching constraints reduce trivially to one
of these three types. Moreover, all of the constraint
tensors fit very naturally into a single underlying geo-
metric object, the joint image Grassmannian. Struc-
tural constraints on the Grassmannian tensor lead to
quadratic relations between the matching tensors.

The joint image Grassmannian encodes precisely
the portion of the imaging geometry that can be re-
covered from image measurements. It specifies the
location of the joint image, a three dimensional sub-
manifold of the space of combined image coordinates
containing the matchingm-tuples of image points. The
topology of the joint image is complicated, but with an
arbitrary choice of certain scale factors it becomes a
3D projective space containing a projective ‘replica’
of the 3D world. This replica is all that can be inferred
about the world from image measurements. 3D recon-
struction is an intrinsic, canonical geometric process
only in the joint image, however an appropriate choice
of basis there allows the results to be transferred to the
original 3D world up to a projectivity.

This is a paper on the geometry of vision so there
will be ‘too many equations, no algorithms and no
real images’. However it also represents a powerful
new way to think about projective vision and that does
have practical consequences. To understand this pa-
per you will need to be comfortable with the tensorial
approach to projective geometry: appendix A sketches
the necessary background. This approach will be unfa-
miliar to many vision researchers, although a mathem-
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atician should have no problems with it. The change
of notation is unfortunate but essential: the traditional
matrix-vector notation is simply not powerful enough
to express many of the concepts discussed here and be-
comes a real barrier to clear expression above a certain
complexity. However in my experience effort spent
learning the tensorial notation is amply repaid by in-
creased clarity of thought.

In origin this work dates from the initial project-
ive reconstruction papers of Faugeras & Maybank
[3], [6], [5]. The underlying geometry of the situation
was immediately evoked by those papers, although the
details took several years to gel. In that time there has
been a substantial amount of work on projective recon-
struction. Faugeras’ book [4] is an excellent general
introduction and Maybank [15] provides a more math-
ematically oriented synthesis. Alternative approaches
to projective reconstruction appear in Hartley et.al. [9]
and Mohr et.al. [17]. Luong & Vi�eville [14] have stud-
ied ‘canonic decompositions’ of projection matrices
for multiple views. Shashua [19] has developed the
theory of the trilinear matching constraints, with input
from Hartley [8]. A brief summary of the present paper
appears in [20]. In parallel with the current work, both
Werman & Shashua [22] and Faugeras & Mourrain [7]
independently discovered the quadrilinear constraint
and some of the related structure (but not the ‘big pic-
ture’ — the full joint image geometry). However the
deepest debt of the current paper is to time spent in the
Oxford mathematical physics research group lead by
Roger Penrose [18], whose notation I have ‘borrowed’
and whose penetrating synthesis of the geometric and
algebraic points of view has been a powerful tool and
a constant source of inspiration.

2. Conventions and Notation

The world and images will be treated as projective
spaces and expressed in homogeneous coordinates.
Many equations will apply only up to scale, denoteda � b. The imaging process will be approximated by
a perspective projection. Optical effects such as radial
distortion and all the difficult problems of early vision
will be ignored: we will basically assume that the im-
ages have already been reduced to a smoldering heap
of geometry. When token matching between images is
required, divine intervention will be invoked (or more
likely a graduate student with a mouse).

Our main interest is in sequences of 2D images of
ordinary 3D Euclidean space, but when it is straight-
forward to generalize to Di dimensional images of d
dimensional space we will do so. 1D ‘linear’ cameras
and projection within a 2D plane are also practically
important, and for clarity it is often easier to see the
general case first.

Our notation is fully tensorial with all indices writ-
ten out explicitly (c.f. appendix A). It is modelled
on notation developed for mathematical physics and
projective geometry by Roger Penrose [18]. Explicit
indices are tedious for simple expressions but make
complex tensor calculations much easier. Superscripts
denote contravariant (i.e. point or vector) indices,while
subscripts denote covariant (i.e. hyperplane, linear
form or covector) ones. Contravariant and covariant
indices transform inversely under changes of coordin-
ates so that the contraction (i.e. ‘dot product’ or sum
over all values) of a covariant-contravariant pair is in-
variant. The ‘Einstein summation convention’ applies:
when the same index symbol appears in covariant and
contravariant positions it denotes a contraction (im-
plicit sum) over that index pair. For example Tabxb
and xbTab both stand for standard matrix-vector mul-
tiplication

PbTabxb. The repeated indices give the
contraction, not the order of terms. Non-tensorial la-
bels like image number are never implicitly summed
over.

Different types of index denote different space or
label types. This makes the notation a little baroque
but it helps to keep things clear, especially when there
are tensors with indices in several distinct spaces as
will be common here. Hx denotes the homogeneous
vector space of objects (i.e. tensors) with index typex, while Px denotes the associated projective space of
such objects defined only up to nonzero scale: tensorsTx and �Tx in Hx represent the same element ofPx for all � 6= 0. We will not always distinguish
points of Px from their homogeneous representatives
in Hx. Indices a; b; : : : denote ordinary (projectiv-
ized homogenized d-dimensional) Euclidean spacePa
(a = 0; : : : ; d), while Ai; Bi; : : : denote homogen-
eous coordinates in the Di-dimensional ith imagePAi
(Ai = 0; : : : ; Di). When there are only two imagesA and A0 are used in place of A1 and A2. Indicesi; j; : : : = 1; : : : ;m are image labels, while p; q; : : : =1; : : : ; n are point labels. Greek indices �; �; : : : de-
note the combined homogeneous coordinates of all the
images, thought of as a single big (D+m)-dimensional
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joint image vector (D =Pmi=1Di). This is discussed
in section 4.

The same base symbol will be used for ‘the same
thing’ in different spaces, for example the equationsxAi � PAia xa (i = 1; : : : ;m) denote the projec-
tion of a world point xa 2 Pa to m distinct image
points xAi 2 PAi via m distinct perspective projec-
tion matrices PAia . These equations apply only up to
scale and there is an implicit summation over all values
of a = 0; : : : ; d.

We will follow the mathematicians’ convention
and use index 0 for homogenization, i.e. a Euc-
lidean vector (x1 � � �xd)> is represented projectively
as (1 x1 � � �xd)> rather than (x1 � � �xd 1)>. This
seems more natural and makes notation and coding
easier.T[ab:::c] denotes the result of antisymmetrizing the
tensor Tab:::c over all permutations of the indicesab : : : c. For example T[ab] � 12 (Tab � Tba). In anyd + 1 dimensional linear space there is a unique-up-
to-scale d + 1 index alternating tensor "a0a1���an and
its dual "a0a1���an . Up to scale, these have compon-
ents �1 and 0 as a0a1 : : : an is respectively an even
or odd permutation of 01 : : : n, or not a permutation
at all. Any antisymmetric k + 1 index contravariant
tensor T[a0:::ak ] can be ‘dualized’ to an antisym-
metric d � k index covariant one (�T)ak+1���ad �1(k+1)! "ak+1���adb0���bkTb0:::bk , and vice versaTa0:::ak = 1(d�k)! (�T)bk+1���bd "bk+1���bda0���ak ,
without losing information.

A k dimensional projective subspace of the d
dimensional projective space Pa can be denoted
by either the span of any k + 1 independent
points fxai j i = 0; : : : ; kg in it or the intersection of
any d � k independent linear forms (hyperplanes)fliaji = k + 1; : : : ; dg orthogonal to it. The antisym-
metric tensors x[a00 : : :xak ]k and lk+1[ak+1 � � � ldad] uniquely
define the subspace and are (up to scale) independent
of the choice of points and forms and dual to each other.
They are called respectively Grassmann coordinates
and dual Grassmann coordinates for the subspace.
Read appendix A for more details on this.

3. Prelude in F

As a prelude to the arduous general case, we will briefly
consider the important sub-case of a single pair of 2D
images of 3D space. The low dimensionality of this
situation allows a slightly simpler (but ultimately equi-

valent) method of attack. We will work rapidly in
homogeneous coordinates, viewing the 2D projective
image spaces PA and PA0

as 3D homogeneous vector
spaces HA and HA0

(A = 0; 1; 2; A0 = 00; 10; 20) and
the 3D projective world space Pa as a 4D vector spaceHa (a = 0; : : : ; 3). The perspective image projections
are then 3�4matricesPAa andPA0a defined only up to
scale. Assuming that the projection matrices have rank
3, each has a 1D kernel that corresponds to a unique
world point killed by the projection: PAa eA = 0 andPA0a e0a = 0. These points are called the centres of
projection and each projects to the epipole in the op-
posite image: eA � PAa e0a and eA0 � PA0a ea. If the
centres of projection are distinct, the two projections
define a 3 � 3 rank 2 tensor called the fundamental
matrixFAA0 [4]. This maps any given image pointxA
(xA0

) to a corresponding epipolar line lA0 � FAA0xA
(lA � FAA0xA0

) in the other image. Two image points
correspond in the sense that they could be the projec-
tions of a single world point if and only if each lies
on the epipolar line of the other: FAA0 xAxA0 = 0.
The null directions of the fundamental matrix are the
epipoles: FAA0 eA = 0 and FAA0 eA0 = 0, so every
epipolar line must pass through the corresponding epi-
pole. The fundamental matrix FAA0 can be estimated
from image correspondences even when the image pro-
jections are unknown.

Two image vectors xA and xA0
can be packed into

a single 6 component vector x� = (xA xA0)> where� = 0; 1; 2; 00; 10; 20. The space of such vectors will
be called homogeneous joint image space H�. Quo-
tienting out the overall scale factor in H� produces a
5 dimensional projective space called projective joint
image space P�. The two 3 � 4 image projection
matrices can be stacked into a single 6� 4 joint pro-
jection matrix P�a � (PAa PA0a )>. If the centres of
projection are distinct, no point inPa is simultaneously
killed by both projections, so the joint projection mat-
rix has a vanishing kernel and hence rank 4. This
implies that the joint projection is a nonsingular linear
bijection from Ha onto its image space in H�. This
4 dimensional image space will be called the homo-
geneous joint image I�. Descending to P�, the joint
projection becomes a bijective projective equivalence
between Pa and the projective joint image PI� (the
projection of I� into P�). The projection of PI�
to each image is just a trivial deletion of coordinates,
so the projective joint image is a complete project-
ive replica of the world space in image coordinates.



4 Bill Triggs

Unfortunately, PI� is not quite unique. Any rescal-
ing fPAa ;PA0a g ! f�PAa ; �0PA0a g of the underlying
projection matrices produces a different but equivalent
space PI�. However modulo this arbitrary choice of
scaling the projective joint image is canonically defined
by the physical situation.

Now suppose that the projection matrices are un-
known but the fundamental matrix has been estimated
from image measurements. Since F has rank 2, it can
be decomposed (non-uniquely!) asFAA0 = uA vA0 � vA uA0 = Det� uA uA0vA vA0 �
where uA 6� vA and uA0 6� vA0 are two pairs of
independent image covectors. It is easy to see thatuA $ uA0 and vA $ vA0 are actually pairs of corres-
ponding epipolar lines1. In terms of joint image space,
the u’s and v’s can be viewed as a pair of 6 component
covectors defining a 4 dimensional linear subspace I�
of H� via the equations:I� � �� xAxA0 � j � uA xA + uA0 xA0vA xA + vA0 xA0 �= � uA uA0vA vA0 �� xAxA0 � = 0�
Trivial use of the constraint equations shows that any
point (xA xA0)> of I� automatically satisfies the epi-
polar constraint FAA0 xAxA0 = 0. In fact, given any(xA xA0)> 2 H�, the equations0 = � uA uA0vA vA0 �� � xA�0 xA0 �= � uAxA uA0xA0vAxA vA0xA0 �� ��0 �
have a nontrivial solution if and only ifFAA0 xAxA0 = Det� uAxA uA0xA0vAxA vA0xA0 � = 0
In other words, the set of matching point pairs in the
two images is exactly the set of pairs that can be res-
caled to lie in I�. Up to a rescaling, the joint image is
the set of matching points in the two images.

A priori, I� depends on the choice of the decom-
position FAA0 = uA vA0 � vA uA0 . In fact appendix

B shows that the most general redefinition of the u’s
and v’s that leaves F unchanged up to scale is� uA uA0vA vA0 � �! �� uA uA0vA vA0 �� 1=� 00 1=�0 �
where � is an arbitrary nonsingular 2 � 2 matrix andf�; �0g are arbitrary nonzero relative scale factors. �
is a linear mixing of the constraint vectors and has no
effect on the location of I�, but � and �0 represent res-
calings of the image coordinates that move I� bodily
according to� xAxA0 � �! � � xA�0 xA0 �
Hence, given F and an arbitrary choice of the relative
image scaling the joint image I� is defined uniquely.

Appendix B also shows that given any pair of
nonsingular projection matrices PAa and PA0a com-
patible with FAA0 in the sense that the projection
of every point of Pa satisfies the epipolar constraintFAA0 PAaPA0b xaxb = 0, the I� arising from fac-
torization of F is projectively equivalent to the I�
arising from the projection matrices. (Here, nonsin-
gular means that each matrix has rank 3 and the joint
matrix has rank 4, i.e. the centres of projection are
unique and distinct). In fact there is a constant res-
caling fPAa ;PA0a g ! f�PAa ; �0 PA0a g that makes the
two coincide.

In summary, the fundamental matrix can be fac-
torized to define a three dimensional projective sub-
space PI� of the space of combined image coordin-
ates. PI� is projectively equivalent to the 3D world
and uniquely defined by the images up to an arbitrary
choice of a single relative scale factor. Projective re-
construction in PI� is simply a matter of rescaling
the homogeneous image measurements. This paper
investigates the geometry of PI� and its multi-image
counterparts and argues that up to the choice of scale
factor, they provide the natural canonical projective re-
construction of the information in the images: all other
reconstructions are merely different ways of looking at
the information contained in PI�.

4. Too Many Joint Images

Now consider the general case of projection intom� 1
images. We will model the world and images re-
spectively as d and Di dimensional projective spaces
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Fig. 1. The various joint images and projections.Pa (a = 0; : : : ; d) and PAi (Ai = 0; : : : ; Di,i = 1; : : : ;m) and use homogeneous coordinates
everywhere. It may appear more natural to use Eu-
clidean or affine spaces, but when it comes to discuss-
ing perspective projection it is simpler to view things
as (fragments of) projective space. The usual Cartesian
and pixel coordinates are still inhomogeneous local co-
ordinate systems covering almost all of the projective
world and image manifolds, so projectivization does
not change the essential situation too much.

In homogeneous coordinates the perspective image
projections are represented by homogeneous (Di +1) � (d + 1) matrices fPAia ji = 1; : : : ;mg that take
homogeneous representatives of world points xa 2Pa to homogeneous representatives of image pointsxAi � PAia xa 2 PAi . The homogeneous vectors and
matrices representing world points xa, image pointsxAi and projections PAia are each defined only up
to scale. Arbitrary nonzero rescalings of them do
not change the physical situation because the rescaled
world and image vectors still represent the same points
of the underlying projective spaces Pa and PAi , and
the projection equations xAi � PAia still hold up to
scale.

Any collection of m image pointsfxAi ji = 1; : : : ;mg can be viewed as a single point
in the Cartesian product PA1 � PA2 � � � � � PAm
of the individual projective image spaces. This is aD = Pmi=1Di dimensional differentiable manifold
whose local inhomogeneous coordinates are just the
combined pixel coordinates of all the image points.

Since any m-tuple of matching points is an element ofPA1�� � ��PAm , it may seem that this space is the nat-
ural arena for multi-image projective reconstruction.
This is almost true but we need to be a little more care-
ful. Although most world points can be represented by
their projections in PA1 � � � � � PAm , the centres of
projection are missing because they fail to project to
anything at all in their own images. To represent these,
extra points must be glued on to PA1 � � � � � PAm .

When discussing perspective projections it is con-
venient to introduce homogeneous coordinates. A sep-
arate homogenizer is required for each image, so the
result is just the Cartesian productHA1 �HA2�� � ��HAm of the individual homogeneous image spacesHAi . We will call thisD+m dimensional vector space
homogeneous joint image spaceH�. By quotienting
out the overall scale factor in H� in the usual way, we
can view it as a D + m � 1 dimensional projective
spaceP� called projective joint image space. This is
a bona fide projective space but it still contains the ar-
bitrary relative scale factors of the component images.
A point of H� can be represented as a D +m com-
ponent column vector x� = (xA1 � � �xAm)> where
the xAi are homogeneous coordinate vectors in each
image. We will think of the index � as taking values01; 11; : : : ; Di; 0i+1; : : : ; Dm, where the subscripts in-
dicate the image the coordinate came from. An indi-
vidual image vector xAi can be thought of as a vector
in H� whose non-image-i components vanish.

Since the coordinates of each image are only defined
up to scale, the natural definition of the equivalence
relation ‘�’ onH� is ‘equality up to individual rescal-
ings of the component images’: (xA1 � � � xAm)> �(�1 xA1 � � � �m xAm)> for all f�i 6= 0g. So long as
none of the xAi vectors vanish, the equivalence classes
of ‘�’ are m-dimensional subspaces of H� that cor-
respond exactly to the points of PA1 � � � � � PAm .
However when some of the xAi vanish the equivalence
classes are lower dimensional subspaces that have no
corresponding point in PA1 � � � � � PAm . We will
call the entire stratified set of equivalence classes fully
projective joint image space FP�. This is basicallyPA1 � � � � � PAm augmented with the lower dimen-
sional product spacesPAi�� � ��PAj for each proper
subset of images i; : : : ; j. Most world points project to
‘regular’ points of FP� in PA1 � � � � � PAm , but the
centres of projection project into lower dimensional
fragments of FP�.
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A set of perspective projections into m projective
images PAi defines a unique joint projection into
the fully projective joint projective image space FP�.
Given an arbitrary choice of scaling for the homo-
geneous representatives fPAia j i = 1; : : : ;mg of the
individual image projections, the joint projection can
be represented as a single (D + m) � (d + 1) joint
projection matrixP�a � 0B@ PA1a

...PAma 1CA : Ha �! H�
which defines a projective mapping between the un-
derlying projective spaces Pa and P�. A rescalingfPAia g ! f�i PAia g of the individual image projec-
tion matrices does not change the physical situation
or the fully projective joint projection on FP�, but
it does change the joint projection matrix P�a and the
resulting projections from Ha to H� and from Pa toP�. An arbitrary choice of the individual projection
scalings is always necessary to make things concrete.

Given a choice of scaling for the components ofP�a , the image of Ha in H� under the joint projec-
tion P�a will be called the homogeneous joint im-
age I�. This is the set of joint image space points
that are the projection of some point in world space:fP�a xa 2 H�j xa 2 Hag. In I�, each world point is
represented by its homogeneous vector of image co-
ordinates. Similarly we can define the projective and
fully projective joint images PI� and FPI� as the
images of the projective world space Pa in the pro-
jective and fully projective joint image spaces P� andFP� under the projective and fully projective joint
projections. (Equivalently, PI� and FPI� are the
projections of I� to P� and FP�).

If the (D + m) � (d + 1) joint projection matrixP�a has rank less than d + 1 it will have a nontrivial
kernel and many world points will project to the same
set of image points, so unique reconstruction will be
impossible. On the other hand ifP�a has rank d+1, the
homogeneous joint image I� will be a d + 1 dimen-
sional linear subspace ofH� andP�a will be a nonsin-
gular linear bijection from Ha onto I�. Similarly,
the projective joint projection will define a nonsingu-
lar projective bijection fromPa onto the d dimensional
projective spacePI� and the fully projective joint pro-
jection will be a bijection (and at most points a diffeo-
morphism) from Pa onto FPI� in FP�. Structure
in Pa will be mapped bijectively to projectively equi-

valent structure in PI�, so PI� will be ‘as good as’Pa as far as projective reconstruction is concerned.
Moreover, projection from PI� to the individual im-
ages is a trivial throwing away of coordinates and scale
factors, so structure in PI� has a very direct relation-
ship with image measurements.

Unfortunately, although PI� is closely related to
the images it is not quite canonically defined by the
physical situation because it moves when the individual
image projection matrices are rescaled. However, the
truly canonical structure — the fully projective joint
imageFPI� — has a complex stratified structure that
is not so easy to handle. When restricted to the product
spacePA1�� � ��PAm ,FPI� is equivalent to the pro-
jective spacePa with each centre of projection ‘blown
up’ to the corresponding image space PAi . The miss-
ing centres of projection lie in lower strata of FP�.
Given this complication, it seems easier to work with
the simple projective space PI� or its homogeneous
representative I� and to accept that an arbitrary choice
of scale factors will be required. We will do this from
now on, but it is important to verify that this arbitrary
choice does not affect the final results, particularly as
far as numerical methods and error models are con-
cerned. It is also essential to realize that although for
any one point the projection scale factors can be chosen
arbitrarily, once they are chosen they apply uniformly
to all other points: no matter which scaling is chosen,
there is a strong coherence between the scalings of dif-
ferent points. A central theme of this paper is that the
essence of projective reconstruction is the recovery of
this scale coherence from image measurements.

5. The Joint Image Grassmannian Tensor

We can view the joint projection matrixP�a (with some
choice of the internal scalings) in two ways: (i) as a
collection of m projection matrices from Pa to them images PAi ; (ii) as a set of d + 1 (D + m)-
component column vectors fP�a ja = 0; : : : ; dg that
span the joint image subspace I� in H�. From the
second point of view the images of the standard basisf(10 � � �0)>; (01 � � �0)>; : : : ; (00 � � � 1)>g forHa (i.e.
the columns of P�a ) form a basis for I� and a
set of homogeneous coordinates fxaja = 0; : : : ; dg
can be viewed either as the coordinates of a pointxa in Pa or as the coordinates of a point P�axa
in I� with respect to the basis fP�a ja = 0; : : : ; dg.
Similarly, the columns of P�a and the (d + 2)nd
column

Pda=0P�a form a projective basis for PI�
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that is the image of the standard projective basisf(10 � � �0)>; : : : ; (00 � � � 1)>; (11 � � � 1)>g for Pa.
This means that any reconstruction in Pa can be

viewed as reconstruction inPI� with respect to a par-
ticular choice of basis there. This is important because
we will see that (up to a choice of scale factors)PI� is
canonically defined by the imaging situation and can
be recovered directly from image measurements. In
fact we will show that the information in the combined
matching constraints is exactly the location of the sub-
space PI� in P�, and this is exactly the information
we need to make a canonical geometric reconstruction
of Pa in PI� from image measurements.

By contrast we can not hope to recover the basis inPa or the individual columns ofP�a by image measure-
ments. In fact any two worlds that project to the same
joint image are indistinguishable so far as image meas-
urements are concerned. Under an arbitrary nonsingu-
lar projective transformation xa ! ~xa0 = (��1)a0bxb
between Pa and some other world space Pa0 , the pro-
jection matrices (and hence the basis vectors for PI�)
must change according to P�a ! ~P�a0 = P�b �ba0 to
compensate. The new basis vectors are a linear com-
bination of the old ones so the space PI� they span
is not changed, but the individual vectors are changed:
all we can hope to recover from the images is the geo-
metric location of PI�, not its particular basis.

But how can we specify the location of PI� geo-
metrically? We originally defined it as the span of the
columns of the joint projection P�a , but that is rather
inconvenient. For one thing PI� depends only on the
span and not on the individual vectors, so it is redund-
ant to specify every component of P�a . What is worse,
the redundant components are exactly the things that
can not be recovered from image measurements. It is
not even clear how we would use a ‘span’ even if we
did manage to obtain it.

Algebraic geometers encountered this sort of prob-
lem long ago and developed a useful partial solu-
tion called Grassmann coordinates (see appendix
A). Recall that [a � � � c] denotes antisymmetrization
over all permutations of the indices a � � � c. Givenk + 1 independent vectors fxai j i = 0; : : : ; kg in ad + 1 dimensional vector space Ha, it turns out that
the antisymmetric k + 1 index Grassmann tensorxa0���ak � x[a00 � � �xak ]k uniquely characterizes thek + 1 dimensional subspace spanned by the vectors
and (up to scale) does not depend on the particular

vectors of the subspace chosen to define it. In fact
a point ya lies in the span if and only if it satisfiesx[a0���akyak+1] = 0, and under a (k+1)� (k+1) lin-
ear redefinition �ij of the basis elements fxai g, xa0���ak
is simply rescaled byDet(�). Up to scale, the compon-
ents of the Grassmann tensor are the (k+1)� (k+1)
minors of the (d+1)� (k+1) matrix of components
of the xai .

The antisymmetric tensors are global coordinates
for the k dimensional subspaces in the sense that
each subspace is represented by a unique (up to scale)
Grassmann tensor. However the parameterization is
highly redundant: for 1 � k � d � 2 the k + 1
index antisymmetric tensors have many more inde-
pendent components than there are degrees of free-
dom. In fact only the very special antisymmetric
tensors that can be written in the above ‘simple’ formx[a00 � � �xak ]k specify subspaces. Those that can are
characterized by the quadratic Grassmann simplicity
relations xa0���[ak xb0���bk] = 0.

In the present case the d+1 columns ofP�a specify
the d dimensional joint image subspace PI�. Instead
of antisymmetrizing over the image space indices �we
can get the same effect by contracting the world space
indices a with the d+1 dimensional alternating tensor.
This gives the d+ 1 index antisymmetric joint image
Grassmannian tensorI �0�1����d � 1(d+1)! P�0a0 P�1a1 � � �P�dad "a0a1���ad� P[�00 P�11 � � �P�d]d
Although we have defined the Grassmann tensor in
terms of the columns of the projection matrix basis forPI�, it is actually an intrinsic property of PI� that
defines and is defined by it in a manner completely
independent of the choice of basis (up to scale). In
fact we will see that the Grassmann tensor contains
exactly the same information as the complete set of
matching constraint tensors. Since the matching con-
straints can be recovered from image measurements,
the Grassmann tensor can be too.

As a simple test of plausibility, let us verify that the
Grassmann tensor has the correct number of degrees of
freedom to encode the imaging geometry required for
projective reconstruction. The geometry of an m cam-
era imaging system can be specified by giving each of
the m projection mappings modulo an arbitrary over-
all choice of projective basis in Pa. Up to an arbitrary
scale factor, a (Di + 1) � (d + 1) projection matrix
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is defined by (Di + 1)(d+ 1)� 1 parameters while a
projective basis inPa has (d+1)(d+1)�1 degrees of
freedom. The m camera projective geometry therefore
hasmXi=1�(Di + 1) (d+ 1)� 1� � �(d+ 1)2 � 1�= (D +m� d� 1) (d+ 1)�m+ 1
independent degrees of freedom. For example 11m�15 parameters are required to specify the geometry ofm 2D cameras viewing 3D projective space [14].

The antisymmetric Grassmann tensor I �0����d has�D+md+1 � linearly independent components. However
the quadratic Grassmann relations reduce the num-
ber of algebraically independent components to the
dimension (D + m � d � 1)(d + 1) of the space
of possible locations of the joint image I� in P�.
(Joint image locations are locally parameterized by the((D +m)� (d+ 1)) � (d+ 1) matrices, or equival-
ently by giving d+ 1 (D +m)-component spanning
basis vectors in P� modulo (d + 1) � (d + 1) linear
redefinitions). The overall scale factor of I �0����d has
already been subtracted from this count, but it still con-
tains the m�1 arbitrary relative scale factors of the m
images. Subtracting these leaves the Grassmann tensor
(or the equivalent matching constraint tensors) with(D +m� d� 1) (d+ 1) �m + 1 physically mean-
ingful degrees of freedom. This agrees with the above
degree-of-freedomcount based on projection matrices.

6. Reconstruction Equations

Suppose we are given a set of m image pointsfxAi j i = 1; : : : ;mg that may correspond to an un-
known world point xa via some known projection
matrices PAia . Can the world point xa be recovered,
and if so, how?

As usual we will work projectively in homogen-
eous coordinates and suppose that arbitrary nonzero
scalings have been chosen for the xAi and PAia . The
image vectors can be stacked into a D+m component
joint homogeneous image vectorx� and the projection
matrices can be stacked into a (D+m)� (d+1) com-
ponent joint homogeneous projection matrix, where d
is the world dimension and D =Pmi=1Di is the sum
of the image dimensions.

Any candidate reconstruction xa must project to
the correct point in each image: xAi � PAia xa. In-

serting variables f�ij i = 1; : : : ;mg to represent the
unknown scale factors gives m homogeneous equa-
tions PAia xa � �i xAi = 0. These can be written as
a single (D +m)� (d+1+m) homogeneous linear
system, the basic reconstruction equations:0BBB@ P�a xA1 0 � � � 00 xA2 � � � 0

...
...

. . .
...0 0 � � � xAm 1CCCA0BBBBB@ xa��1��2

...��m
1CCCCCA = 0

Any nonzero solution of these equations gives a re-
constructed world point xa consistent with the image
measurements xAi , and also provides the unknown
scale factors f�ig.

These equations will be studied in detail in the next
section. However we can immediately remark that if
there are less image measurements than world dimen-
sions (D < d) there will be at least two more free
variables than equations and the solution (if it exists)
can not be unique. So from now on we require D � d.

On the other hand, if there are more measurements
than world dimensions (D > d) the system will usually
be overspecified and a solution will exist only when
certain constraints between the projection matricesPAia and the image measurements xAi are satisfied.
We will call these constraints matching constraints
and the inter-image tensors they generate matching
tensors. The simplest example is the epipolar con-
straint.

It is also clear that there is no hope of a unique
solution if the rank of the joint projection matrix P�a
is less than d + 1, because any vector in the kernel
of P�a can be added to a solution without changing
the projection at all. So we will also require the joint
projection matrix to have maximal rank (i.e. d + 1).
Recall that this implies that the joint projectionP�a is a
bijection from Pa onto its image the joint image PI�
in P�. (This is necessary but not always sufficient for
a unique reconstruction).

In the usual 3D!2D case the individual projections
are 3 � 4 rank 3 matrices and each has a one dimen-
sional kernel: the centre of projection. Provided there
are at least two distinct centres of projection among
the image projections, no point will project to zero in
every image and the joint projection will have a van-
ishing kernel and hence maximal rank. (It turns out
that in this case Rank(P�a ) = 4 is also sufficient for a
unique reconstruction).
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Recalling that the joint projection columnsfP�a j a = 0; : : : ; dg form a basis for the homogen-
eous joint image I� and treating the xAi as vectors
in H� whose other components vanish, we can inter-
pret the reconstruction equations as the geometrical
statement that the space spanned by the image vec-
tors fxAi j i = 1; : : : ;mg inH� must intersect I�. At
the intersection there is a point of H� that can be ex-
pressed: (i) as a rescaling of the image measurementsPi �i xAi ; (ii) as a point of I� with coordinates xa
in the basis fP�a j a = 0; : : : ; dg; (iii) as the projection
into I� of a world point xa under P�a . (Since Ha is
isomorphic to I� underP�a , the last two points of view
are equivalent).

This construction is important because although
neither the coordinate system inHa nor the columns ofP�a can be recovered from image measurements, the
joint image I� can be recovered (up to an arbitrary
choice of relative scaling). In fact the content of the
matching constraints is precisely the location of I� inH�. This gives a completely geometric and almost ca-
nonical projective reconstruction technique in I� that
requires only the scaling of joint image coordinates.
A choice of basis in I� is necessary only to map the
construction back into world coordinates.

Recalling that the joint image can be located by giv-
ing its Grassmann coordinate tensor I �����
 and that in
terms of this a point lies in the joint image if and only
if I [�����
 x�] = 0, the basic reconstruction system is
equivalent to the following joint image reconstruc-
tion equationsI [�� ��� 
 �  mXi=1 �i xAi]! = 0
This is a redundant system of homogeneous linear
equations for the �i given the I �����
 and the xAi .
It will be used in section 10 to derive implicit ‘recon-
struction’ methods that are independent of any choice
of world or joint image basis.

There is yet another form of the reconstruction equa-
tions that is more familiar and compact but slightly
less symmetrical. For notational convenience suppose
that x0i 6= 0. (We use component 0 for normaliz-
ation. Each image vector has at least one nonzero
component so the coordinates can be relabelled if ne-
cessary so that x0i 6= 0). The projection equationsPAia xa = �i xAi can be solved for the 0th component
to give �i = (P0ia xa)=x0i . Substituting back into the

projection equations for the other components yields
the following constraint equations for xa in terms ofxAi and PAia :�x0i PAia � xAi P0ia �xa = 0 Ai = 1; : : : ; Di
(Equivalently, xAi � PAia xa implies x[Ai PBi]a xa =0, and the constraint follows by setting Bi = 0i).
Each of these equations constrains xa to lie in a hyper-
plane in the d-dimensional world space. Combining
the constraints from all the images gives the follow-
ing D � (d + 1) system of reduced reconstruction
equations:0B@ x01 PA1a � xA1 P01a

...x0m PAma � xAm P0ma 1CAxa = 0 (Ai=1;:::;Di)
Again a solution of these equations provides the recon-
structed homogeneous coordinates of a world point in
terms of image measurements, and again the equa-
tions are usually overspecified when D > d. Providedx0i 6= 0 the reduced equations are equivalent to the
basic ones. Their compactness makes them attractive
for numerical work, but their lack of symmetry makes
them less suitable for symbolic derivations such as the
extraction of the matching constraints. In practice both
representations are useful.

7. Matching Constraints

Now we are finally ready to derive the constraints that
a set of image points must satisfy in order to be the
projections of some world point. We will assume that
there are more image than space dimensions (D > d)
(if not there are no matching constraints) and that the
joint projection matrix P�a has rank d+ 1 (if not there
are no unique reconstructions). We will work from the
basic reconstruction equations, with odd remarks on
the equivalent reduced case.

In either case there areD�d�1more equations than
variables and the reconstruction systems are overspe-
cified. The image points must satisfy D� d additional
independent constraints for there to be a solution, since
one degree of freedom is lost in the overall scale factor.
For example in the usual 3D!2D case there are 2m�3
additional scalar constraints: one for the first pair of
images and two more for each additional image.

An overspecified homogeneous linear system has
nontrivial solutions exactly when its coefficient mat-
rix is rank deficient, which occurs exactly when all of
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its maximal-size minors vanish. For generic sets of
image points the reconstruction systems typically have
full rank: solutions exist only for the special sets of im-
age points for which all of the (d+m+1)�(d+m+1)
minors of the basic (or (d+1)� (d+1)minors of the
reduced) reconstruction matrix vanish. These minors
are exactly the matching constraints.

In either case each of the minors involves alld + 1 (world-space) columns and some selection ofd + 1 (image-space) rows of the combined projec-
tion matrices, multiplied by image coordinates. This
means that the constraints will be polynomials (i.e.
tensors) in the image coordinates with coefficients that
are (d+1)� (d+1) minors of the (D+m)� (d+1)
joint projection matrix P�a . We have already seen in
section 5 that these minors are precisely the Grassmann
coordinates of the joint image I�, the subspace of ho-
mogeneous joint image space spanned by the d + 1
columns of P�a . The complete set of these defines I�
in a manner entirely independent (up to a scale factor)
of the choice of basis in I�: they are the only quantit-
ies that could have appeared if the equations were to be
invariant to this choice of basis (or equivalently, to ar-
bitrary projective transformations of the world space).

Each of the (d+m+ 1)� (d+m+ 1) minors of
the basic reconstruction system contains one column
from each image, and hence is linear in the coordin-
ates of each image separately and homogeneous of
degree m in the combined image coordinates. The
final constraint equations will be linear in the coordin-
ates of each image that appears in them. Any choice ofd+m+1 of the D+m rows of the matrix specifies a
minor, so naively there are

� D+md+m+1� distinct constraint
polynomials, although the simple degree of freedom
count given above shows that even in this naive case
only D � d of these can be algebraically independ-
ent. However the reconstruction matrix has many zero
entries and we need to count more carefully.

Each row comes from (contains components from)
exactly one image. The only nonzero entries in the im-
age i column are those from image i itself, so any minor
that does not include at least one row from each image
will vanish. This leaves only d+1of them+d+1 rows
free to apportion. On the other hand, if a minor con-
tains only one row from some image — say the xAi row
for some particular values of i and Ai — it will simply
be the product of �xAi and an m � 1 image minor
because xAi is the only nonzero entry in its image i
column. But exactly the same (m � 1)-image minor

will appear in several other m-image minors, one for
each other choice of the coordinate Ai = 0; : : : ; Di.
At least one of these coordinates is nonzero, so the
vanishing of the Di +1m-image minors is equivalent
to the vanishing of the single (m� 1)-image one.

This allows the full set of m-image matching poly-
nomials to be reduced to terms involving at most d+1
images. (d+1 because there are only d+1 spare rows to
share out). In the standard 3D!2D case this leaves the
following possibilities (i 6= j 6= k 6= l = 1; : : : ;m):
(i) 3 rows each in images i and j; (ii) 3 rows in imagei, and 2 rows each in images j and k; and (iii) 2 rows
each in images i, j, k and l. We will show below
that these possibilities correspond respectively to fun-
damental matrices (i.e. bilinear two image constraints),
Shashua’s trilinear three-image constraints [19], and a
new quadrilinear four-image constraint. For 3 dimen-
sional space this is the complete list of possibilities:
there are no irreducible k-image matching constraints
for k > 4.

We can look at all this in another way. Con-
sider the d + m + 1 (D + m)-component columns
of the reconstruction system matrix. Temporar-
ily writing x�i for the image i column whose
only nonzero entries are xAi , the columns arefP�a j a = 0; : : : ; dg and fx�i j i = 1; : : : ;mg and we
can form them into a d + m + 1 index antisymmet-
ric tensor P[�00 � � �P�dd x�11 � � �x�m]m . Up to scale, the
components of this tensor are exactly the possible(d + m + 1) � (d + m + 1) minors of the system
matrix. The term x�i vanishes unless � is one of the
components Ai, so we need at least one index from
each image in the index set �0; : : : ; �d; �1; : : : ; �m. If
only one component from image i is present in the set
(Bi say, for some fixed value of Bi), we can extract
an overall factor of xBi as above. Proceeding in this
way the tensor can be reduced to irreducible terms of
the formP[�00 � � �P�dd xBii xBjj � � �xBk ]k . These contain
anything from 2 to d+1 distinct images i; j; : : : ; k. The
indices �0; : : : ; �d are an arbitrary choice of indices
from images i; j; : : : ; k in which each image appears
at least once. Recalling that up to scale the compon-
ents of the joint image Grassmannian I �0����d are justP[�00 � � �P�d]d , and dropping the redundant subscripts
on the xAii , we can write the final constraint equations
in the compact formI [AiAj ���Ak����� xBixBj � � �xBk] = 0
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where i; j; : : : ; k contains between 2 and d+1 distinct
images. The remaining indices � � � �� can be chosen
arbitrarily from any of the images i; j; : : : ; k, up to the
maximum ofDi+1 indices from each image. (NB: thexBi stand for m distinct vectors whose non-i compon-
ents vanish, not for the single vector x� containing all
the image measurements. Since I �0����d is already an-
tisymmetric and permutations that place a non-i index
on xBi vanish, it is enough to antisymmetrize separ-
ately over the components from each image).

This is all rather intricate, but in three dimensions
the possibilities are as follows (i 6= j 6= k 6= l =1; : : : ;m): I [AiBiAjBj xCixCj ] = 0I [AiBiAjAk xCixBjxBk ] = 0I [AiAjAkAl xBixBjxBkxBl] = 0
These represent respectively the epipolar constraint,
Shashua’s trilinear constraint and the new quadrilinear
four image constraint.

We will discuss each of these possibilities in de-
tail below, but first we take a brief look at the con-
straints that arise from the reduced reconstruction sys-
tem. Each row of this system is linear in the coordinates
of one image and in the corresponding rows of the joint
projection matrix, so each (d+1)� (d+1)minor can
be expanded into a sum of degree d + 1 polynomial
terms in the image coordinates, with (d+1)� (d+1)
minors of the joint projection matrix (Grassmann co-
ordinates of PI�) as coefficients. Moreover, any term
that contains two non-zeroth coordinates from the same
image (say Ai 6= 0 and Bi 6= 0) vanishes because the
rowP0ia appears twice in the corresponding coefficient
minor. So each term is at most linear in the non-zeroth
coordinates of each image. If ki is the total number of
rows from the ith image in the minor, this implies that
the zeroth coordinate x0i appears either ki or ki � 1
times in each term to make up the total homogeneity
of ki in the coordinates of the ith image. Throwing
away the nonzero overall factors of (x0i)ki�1 leaves
a constraint polynomial linear in the coordinates of
each image and of total degree at most d + 1, with(d+1)� (d+1)minors of the joint projection matrix
as coefficients. Closer inspection shows that these are
the same as the constraint polynomials found above.

7.1. Bilinear Constraints

Now we restrict attention to 2D images of a 3D world
and examine each of the three constraint types in turn.
First consider the bilinear joint image Grassmannian
constraint I [B1C1B2C2xA1xA2] = 0, where as usualI ��
� � 14! P�aP�bP
cP�d "abcd. Recalling that it is
enough to antisymmetrize over the components from
each image separately, the epipolar constraint becomesx[A1 IB1C1][B2C2 xA2] = 0
Dualizing both sets of antisymmetric indices by con-
tracting with "A1B1C1 "A2B2C2 gives the epipolar con-
straint the equivalent but more familiar form0 = FA1A2 xA1xA2= 14�4! �"A1B1C1xA1PB1a PC1b ����"A2B2C2xA2PB2c PC2d � "abcd
where the 3 � 3 = 9 component bilinear constraint
tensor or fundamental matrix FA1A2 is defined byFA1A2 � 14 "A1B1C1 "A2B2C2 IB1C1B2C2= 14�4! �"A1B1C1PB1a PC1b ����"A2B2C2PB2c PC2d � "abcdIB1C1B2C2 = FA1A2 "A1B1C1"A2B2C2

Equivalently, the epipolar constraint can be derived
by direct expansion of the 6 � 6 basic reconstruction
system minorDet� PA1a xA1 0PA2a 0 xA2 � = 0
Choosing the image 1 rows and column and any two
columns a and b of P gives a 3 � 3 sub-determinant"A1B1C1xA1PB1a PC1b . The remaining rows and
columns (for image 2 and the remaining two columns c
and d of P, say) give the factor "A2B2C2xA2PB2c PC2d
multiplying this sub-determinant in the determinantal
sum. Antisymmetrizing over the possible choices of a
through d gives the above bilinear constraint equation.
When there are only two images, F can also be writ-
ten as the inter-image part of the P� (six dimensional)
dualFA1A2 = 14 "A1B1C1A2B2C2 IB1C1B2C2 . This is
why it was generated by the 6�4 = 2 six dimensional
constraint covectors u� and v� for I� in section 3.

The bilinear constraint equation
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can be interpreted geometrically as follows. The du-
alization "ABC xA converts an image point xA into
covariant coordinates in the image plane. Roughly
speaking, this represents the point as the pencil of lines
through it: for any two lines lA and mA through xA,
the tensor l[BmC] is proportional to "ABC xA. Any
covariant image tensor can be ‘pulled back’ through
the linear projection PAa to a covariant tensor in 3D
space. An image line lA pulls back to the 3D planela = lAPAa through the projection centre that projects
to the line. The tensor "ABC xA pulls back to the 2
index covariant tensor x[bc] � "ABC xA PBb PCc . This
is the covariant representation of a line in 3D: the op-
tical ray through xA. Given any two lines x[ab] andy[ab] in 3D space, the requirement that they intersect
is xab ycd "abcd = 0. So the above bilinear constraint
equation really is the standard epipolar constraint, i.e.
the requirement that the optical rays of the two im-
age points must intersect. Similarly, the FA1A2 tensor
really is the usual fundamental matrix. Of course this
can also be illustrated by explicitly writing out terms.

7.2. Trilinear Constraints

Now consider the trilinear, three image Grassmannian
constraint I [B1C1B2B3 xA1xA2xA3] = 0. This corres-
ponds to a 7 � 7 basic reconstruction minor formed
by selecting all three rows from the first image and
two each from the remaining two. Restricting the an-
tisymmetrization to each image and contracting with"A1B1C1 gives the trilinear constraintxA1x[A2 GA1B2][B3 xA3] = 0
where the 3�3�3 = 27 component trilinear constraint
tensor GA1A2A3 is defined byGA1A2A3 � 12 "A1B1C1 IB1C1A2A3= 12�4! �"A1B1C1PB1a PC1b � PA2c PA3d "abcdIA1B1A2A3 = GC1A2A3 "C1A1B1
Dualizing the image 2 and 3 indices by contracting with"A2B2C2 "A3B3C3 gives the constraint the alternative

form0 = "A2B2C2 "A3B3C3 �GA1B2B3 � xA1xA2xA3= 12:4! �"A1B1C1xA1PB1a PC1b ����"A2B2C2xA2PB2c ��"A3B3C3xA3PB3d � "abcd
These equations must hold for all 3 � 3 = 9 values
of the free indices C2 and C3. However when C2 is
projected along the xC2 direction or C3 is projected
along the xC3 direction the equations are tautological
because, for example, "A2B2C2 xA2xC2 � 0. So there
are actually only 2�2 = 4 linearly independent scalar
constraints among the 3 � 3 = 9 equations, corres-
ponding to the two image 2 directions ‘orthogonal’ toxA2 and the two image 3 directions ‘orthogonal’ toxA3 . However, each of the 3� 3 = 9 constraint equa-
tions and 33 = 27 components of the constraint tensor
are ‘activated’ for some xAi , so none can be discarded
outright.

The constraint can also be written in matrix notation
as follows (c.f. [19]). The contraction xA1GA1A2A3
has free indices A2A3 and can be viewed as a 3 � 3
matrix [Gx1], and the fragments "A2B2C2 xA2 and"A3B3C3 xA3 can be viewed as 3 � 3 antisymmet-
ric ‘cross product’ matrices [x2]� and [x3]� (wherex� y = [x]� y for any 3-vector y). The constraint is
then given by the 3� 3 matrix equation[x2]� [Gx1] [x3]� = 0f3�3g
The projections along x>2 (on the left) and x3 (on the
right) vanish identically, so again there are only 4 lin-
early independent equations.

The trilinear constraint formulaxA1x[A2 GA1B2][B3 xA3] = 0
also implies that for all values of the free indices[A2B2] (or dually C2)xA3 � xA1x[A2 GA1B2]A3� "C2A2B2 xA1xA2 GA1B2A3
More precisely, for matching xA1 and xA2 the quant-
ity xA1x[A2 GA1B2]A3 can always be factorized asT[A2B2] xA3 for some xAi -dependent tensor T[A2B2]
(and similarly with TC2 for the dual form). By fixing
suitable values of [A2B2] orC2, these equations can be
used to transfer points from images 1 and 2 to image 3,
i.e. to directly predict the projection in image 3 of a 3D
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point whose projections in images 1 and 2 are known,
without any intermediate 3D reconstruction step2.

The trilinear constraints can be interpreted geo-
metrically as follows. As above the quantity"ABC xA PBb PCc represents the optical ray throughxA in covariant 3D coordinates. For any yA 2 PA the
quantity "ABC xAyBPCc defines the 3D plane through
the optical centre that projects to the image line throughxA and yA. All such planes contain the optical ray ofxA, and asyA varies the entire pencil of planes through
this line is traced out. The constraint then says that for
any plane through the optical ray of xA2 and any other
plane through the optical ray of xA3 , the 3D line of
intersection of these planes meets the optical ray ofxA1 .

The line of intersection always meets the optical
rays of both xA2 and xA3 because it lies in planes
containing those rays. If the rays are skew every line
through the two rays is generated as the planes vary.
The optical ray through xA1 can not meet every such
line, so the constraint implies that the optical rays ofxA2 and xA3 can not be skew. In other words the im-
age 1 trilinear constraint implies the epipolar constraint
between images 2 and 3.

Given that the rays of xA2 and xA3 meet (say, at
some point xa), as the two planes through these rays
vary their intersection traces out every line through xa
not in the plane of the rays. The only way that the
optical ray of xA1 can arrange to meet each of these
lines is for it to pass through xa as well. In other words
the trilinear constraint for each image implies that all
three optical rays pass through the same point. Thus,
the epipolar constraints between images 1 and 2 and
images 1 and 3 also follow from the image 1 trilinear
constraint.

The constraint tensor GA1A2A3 �"A1B1C1 IB1C1A2A3 treats image 1 specially.
The analogous image 2 and image 3 tensorsGA2A3A1 � "A2B2C2 IB2C2A3A1 and GA3A1A2 �"A3B3C3 IB3C3A1A2 are linearly independent ofGA1A2A3 and give further linearly independent tri-
linear constraints on xA1xA2xA3 . Together, the 3
homogeneous constraint tensors contain 3� 27 = 81
linearly independent components (including 3 arbit-
rary scale factors) and na�ıvely give 3�9 = 27 trilinear
scalar constraint equations, of which 3 � 4 = 12 are
linearly independent for any given triple xA1xA2xA3 .

However, although there are no linear relations
between the 3�27 = 81 trilinear and 3�9 = 27 bilin-

ear matching tensor components for the three images,
the matching tensors are certainly not algebraically
independent of each other: there are many quadratic
relations between them inherited from the quadratic
simplicity constraints on the joint image Grassman-
nian tensor. In fact, we saw in section 5 that the sim-
plicity constraints reduce the number of algebraically
independent degrees of freedom of I �0����3 (and there-
fore the complete set of bilinear and trilinear match-
ing tensor components) to only 11m � 15 = 18 form = 3 images. Similarly, there are only 2m� 3 = 3
algebraically independent scalar constraint equations
among the linearly independent 3 � 4 = 12 trilinear
and 3 � 1 = 3 bilinear constraints on each matching
triple of points. One of the main advantages of the
Grassmann formalism is the extent to which it clarifies
the rich algebraic structure of this matching constraint
system. The components of the constraint tensors are
essentially just Grassmann coordinates of the joint im-
age, and Grassmann coordinates are always linearly
independent and quadratically redundant.

Since all three of the epipolar constraints follow
from a single trilinear tensor it may seem that the tri-
linear constraint is more powerful than the epipolar
ones, but this is not really so. Given a triple of image
points fxAi j i = 1; : : : ; 3g, the three pairwise epipolar
constraints say that the three optical rays must meet
pairwise. If they do not meet at a single point, this
implies that each ray must lie in the plane of the other
two. Since the rays pass through their respective op-
tical centres, the plane also contains the three optical
centres, and is therefore the trifocal plane. But this
is impossible in general: most image points simply do
not lie on the trifocal lines (the projections of the tri-
focal planes). So for general matching image points the
three epipolar constraints together imply that the three
optical rays meet at a unique 3D point. This is enough
to imply the trilinear constraints. Since we know that
only 2m � 3 = 3 of the constraints are algebraically
independent, this is as expected.

Similarly, the information contained in just one
of the trilinear constraint tensors is generically 4 >2m� 3 = 3 linearly independent constraints, which is
enough to imply the other two trilinear tensors as well
as the three bilinear ones. This explains why most
of the early work on trilinear constraints successfully
ignores two of the three available tensors [19], [8].
However in the context of purely linear reconstruction
all three of the tensors would be necessary.
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7.3. Quadrilinear Constraints

Finally, the quadrilinear, four image Grassmannian
constraint I [B1B2B3B4 xA1xA2xA3xA4] = 0 corres-
ponds to an 8�8 basic reconstruction minor that selects
two rows from each of four images. As usual the an-
tisymmetrization applies to each image separately, but
in this case the simplest form of the constraint tensor
is just a direct selection of 34 = 81 components of the
Grassmannian itselfHA1A2A3A4 � IA1A2A3A4= 14! PA1a PA2b PA3c PA4d "abcd
Dualizing the antisymmetric index pairs [AiBi] by con-
tracting with "AiBiCi for i = 1; : : : ; 4 gives the quad-
rilinear constraint0 = "A1B1C1 "A2B2C2 "A3B3C3 "A4B4C4 ��xA1xA2xA3xA4 HB1B2B3B4= 14! �"A1B1C1xA1PB1a ��"A2B2C2xA2PB2b ����"A3B3C3xA3PB3c ��"A4B4C4xA4PB4d � "abcd
This must hold for each of the 34 = 81 values ofC1C2C3C4 . But again the constraints with Ci along
the direction xCi for any i = 1; : : : ; 4 vanish identic-
ally, so for any given quadruple of points there are
only 24 = 16 linearly independent constraints among
the 34 = 81 equations.

Together, these constraints say that for every pos-
sible choice of four planes, one through the optical ray
defined by xAi for each i = 1; : : : ; 4, the planes meet
in a point. By fixing three of the planes and varying
the fourth we immediately find that each of the optical
rays passes through the point, and hence that they all
meet. This brings us back to the two and three image
sub-cases.

Again, there is nothing algebraically new here. The34 = 81 homogeneous components of the quadrilinear
constraint tensor are linearly independent of each other
and of the 4 � 3 � 27 = 324 homogeneous trilinear
and 6� 9 = 54 homogeneous bilinear tensor compon-
ents; and the 24 = 16 linearly independent quadrilin-
ear scalar constraints are linearly independent of each
other and of the linearly independent 4� 3� 4 = 48
trilinear and 6 � 1 = 6 bilinear constraints. However
there are only 11m�15 = 29 algebraically independ-
ent tensor components in total, which give 2m�3 = 5
algebraically independent constraints on each 4-tuple

of points. The quadrilinear constraint is algebraically
equivalent to various different combinations of two
and three image constraints. For example five scalar
epipolar constraints will do: take the three pairwise
constraints for the first three images, then add two of
the three involving the fourth image to force the op-
tical rays from the fourth image to pass through the
intersection of the corresponding optical rays from the
other three images.

7.4. Matching Constraints for Lines

It is well known that there is no matching constraint
for lines in two images. Any two non-epipolar image
lines lA1 and lA2 are the projection of some unique
3D line: simply pull back the image lines to two 3D
planes lA1PA1a and lA2PA2a through the centres of pro-
jection and intersect the planes to find the 3D linelab = lA1lA2 PA1[a PA2b] .

However for three or more images of a line there
are trilinear matching constraints as follows [8]. An
image line is the projection of a 3D line if and only
if each point on the 3D line projects to a point on the
image line. Writing this out, we immediately see that
the lines flAi j i = 1; : : : ;mg correspond to a 3D line
if and only if the m� 4 reconstruction equations0B@ lA1PA1a

...lAmPAma 1CAxa = 0
have a line (i.e. a 2D linear space) of solutions�xa + �ya for some solutions xa 6� ya.

There is a 2D solution space if and only if the coef-
ficient matrix has rank 4 � 2 = 2, which means that
every 3�3minor has to vanish. Obviously each minor
is a trilinear function in three lAi’s and misses out one
of the columns of P�a . Labelling the missing column
as a and expanding produces constraint equations likelA1 lA2 lA3 �PA1b PA2c PA3d "abcd� = 0
These simply require that the three pulled back planeslA1PA1a , lA2PA2a and lA3PA3a meet in some common
3D line, rather than just a single point. Note the geo-
metry here: each line lAi pulls back to a hyperplane
in P� under the trivial projection. This restricts to a
hyperplane inPI�, which can be expressed as lAiPAia
in the basis P�a for PI�. There are 2m � 4 algebra-
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ically independent constraints for m images: two for
each image except the first two. There are no irredu-
cible higher order constraints for lines in more than 3
images, e.g. there is no analogue of the quadrilinear
constraint for lines.

By contracting with a final P�a , the constraints can
also be written in terms of the Grassmannian tensor aslA1 lA2 lA3 I �A1A2A3 = 0
for all �. Choosing � from images 1, 2 or 3 and
contracting with an image 1, 2 or 3 epsilon to pro-
duce a trivalent tensor GAiAjAk , or choosing � from
a fourth image and substituting the quadrivalent tensorHAiAjAkAl reduces the line constraints to the formlA2 lA3 l[A1 GB1]A2A3 = 0lA1 lA2 lA3 HA1A2A3A4 = 0
These formulae illustrate and extend Hartley’s obser-
vation that the coefficient tensors of the three-image
line constraints are equivalent to those of the trilinear
point constraints [8]. Note that although all of these
line constraints are trilinear, some of them do involve
quadrivalent point constraint tensors.

Since� can take any of 3m valuesAi, for each triple
of lines and m � 3 images there are very na�ıvely 3m
trilinear constraints of the above two forms. However
all of these constraints are derived by linearly con-
tracting 4 underlying world constraints with P�a ’s, so
at most 4 of them can be linearly independent. Form matching images of lines this leaves 4�m3 � linearly
independent constraints of which only 2m� 4 are al-
gebraically independent.

The skew symmetrization in the trivalent tensor
based constraint immediately implies the line transfer
equation lA1 � lA2 lA3 GA1A2A3
This can be used to predict the projection of a 3D
line in image 1 given its projections in images 2 and
3, without intermediate 3D reconstruction. Note that
line transfer from images 1 and 2 to image 3 is most
simply expressed in terms of the image 3 trilinear
tensor GA3A1A2 , whereas the image 1 or image 2
tensors GA1A2A3 or GA2A1A3 are the preferred form
for point transfer.

It is also possible to match (i) points against lines
that contain them and (ii) distinct image lines that are

known to intersect in 3D. Such constraints might be
useful if a polyhedron vertex is obscured or poorly loc-
alized. They are most easily derived by noting that
both the line reconstruction equations and the reduced
point reconstruction equations are homogeneous in xa,
the coordinates of the intersection point. So line and
point rows from several images can be stacked into a
single 4 column matrix. As usual there is a solution
exactly when all 4 � 4 minors vanish. This yields
two particularly simple irreducible constraints — and
correspondingly simple interpretations of the match-
ing tensors’ content — for an image point against two
lines containing it and four non-corresponding image
lines that intersect in 3D:xA1 GA1A2A3 lA2l0A3 = 0HA1A2A3A4 lA1l0A2l00A3l000A4 = 0
7.5. Matching Constraints for k-Subspaces

More generally, the projections of a k dimensional
subspace in d dimensions are (generically) k dimen-
sional image subspaces that can be written as antisym-
metric Di � k index Grassmann tensors xAi���Bi���Ci .
The matching constraints can be built by selecting anyd + 1 � k of these covariant indices from any seti; j; : : : ; k of image tensors and contracting with the
Grassmannian to leave k free indices:0 = xAi���BiCi���Ei � � � xAk���BkCk���Ek �� I �1����kAi���Bi���Ak���Bk
Dualizing each covariant Grassmann tensor gives an
equivalent contravariant form of the constraint, for im-
age subspaces xAj ���Ej defined by the span of a set of
image points0 = I �1����k[Ai���Bi���Ak���Bk xCi���Ei � � � xCk���Ek]
As usual it is enough to antisymmetrize over the
indices from each image separately. Each setAj � � �BjCj � � �Ej is any choice of up to Dj + 1 in-
dices from image j, j = i; : : : ; k.

7.6. 2D Matching Constraints & Homographies

Our formalism also works for 2D projective images of
a 2D space. This case is practically important because
it applies to 2D images of a planar surface in 3D and
there are many useful plane-based vision algorithms.
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The joint image of a 2D source space is two dimen-
sional, so the corresponding Grassmannian tensor has
only three indices and there are only two distinct types
of matching constraint: bilinear and trilinear. Let in-
dices a and Ai represent 3D space and the ith image
as usual, and indices A = 0; 1; 2 represent homogen-
eous coordinates on the source plane. If the plane is
given by paxa = 0, the three index epsilon tensor on
it is proportional to pa"abcd when expressed in world
coordinates, so the Grassmann tensor becomesI ��
 � 13! P�AP�B P
C "ABC� 14! pa P�b P�c P
d "abcd
This yields the following bilinear and trilinear match-
ing constraints with free indices respectively C2 andC1C2C30 = pa �"A1B1C1 xA1 PB1b PC1c ����"A2B2C2 xA2 PB2d � "abcd0 = pa �"A1B1C1 xA1 PB1b ��"A2B2C2 xA2 PB2c ����"A3B3C3 xA3 PB3d � "abcd
The bilinear equation says that xA2 is the image of the
intersection of optical ray of xA1 with the plane pa:xA2 � �pa � "A1B1C1 PB1b PC1c �PA2d � "abcd�xA1 .

In fact it is well known that any two images of a plane
are projectively equivalent under a transformation (ho-
mography) xA2 � HA2A1 xA1 . In our notation the
homography is justHA2A1 � pa � "A1B1C1 PB1b PC1c �PA2d � "abcd
The trilinear constraint says that any three image
lines through the three image points xA1 , xA2 andxA3 always meet in a point when pulled back to
the plane pa. This implies that the optical rays of
the three points intersect at a common point on the
plane, and hence gives the obvious cyclic consist-
ency condition HA1A2 HA2A3 � HA1A3 (or equivalentlyHA1A2 HA2A3 HA3B1 � �A1B1 ) between the three homo-
graphies.

7.7. Matching Constraints for 1D Cameras

If some of the images are taken with one dimensional
‘linear’ cameras, a similar analysis applies but the cor-

responding entries in the reconstruction equations have
only two rows instead of three. Constraints that would
require three rows from a 1D image no longer exist,
and the remaining constraints lose their free indices.
In particular, when all of the cameras are 1D there are
no bilinear or trilinear tensors and the only irreducible
matching constraint is the quadrilinear scalar:0 = HA1A2A3A4 xA1xA2xA3xA4= �"A1B1 xA1 PB1a ��"A2B2 xA2 PB2b ����"A3B3 xA3 PB3c ��"A4B4 xA4 PB4d � "abcd
This says that the four planes pulled back from the
four image points must meet in a 3D point. If one of
the cameras is 2D and the other two are 1D a scalar
trilinear constraint also exists.

7.8. 3D to 2D Matching

It is also useful to be able to match known 3D structure
to 2D image structure, for example when building a re-
construction incrementally from a sequence of images.
This case is rather trivial as the ‘constraint tensor’ is
just the projection matrix, but for comparison it is per-
haps worth writing down the equations. For an image
point xA projected from a world point xa we havexA � PAa xa and hence the equivalent constraintsx[A PB]a xa = 0 () "ABC xA PBa xa = 0
There are three bilinear equations, only two of which
are independent for any given image point. Similarly,
a world line l[ab] (or dually, l[ab]) and a corresponding
image line lA satisfy the equivalent bilinear constraintslA PA[a lbc] = 0 () lA PAa lbc "abcd = 0
or duallylA PAa lab = 0
Each form contains four bilinear equations, only two
of which are linearly independent for any given image
line. For example, if the line is specified by giving
two points on it lab � x[ayb], we have the two scalar
equations lA PAa xa = 0 and lA PAa ya = 0.
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7.9. Epipoles

There is still one aspect of I �0����d that we have not yet
seen: the Grassmannian tensor also directly contains
the epipoles. In fact, the epipoles are most naturally
viewed as the first order term in the sequence of match-
ing tensors, although they do not themselves induce
any matching constraints.

Assuming that it has rank d, the d�(d+1) projection
matrix of a d� 1 dimensional image of d dimensional
space defines a unique centre of projection eia byPAia eia = 0. The solution of this equation is given
(c.f. section 8) by the vector of d � d minors of PAia ,
i.e. eia � "Ai���Ci PAia1 � � �PCiad "aa1���ad
The projection of a centre of projection in another im-
age is an epipoleeiAj � "Ai���Ci PAja0 PAia1 � � �PCiad "a0a1���ad
Recognizing the factor of IAjAiBi���Ci , we can fix the
scale factors for the epipoles so thateiAj � 1d! "AiBi���Ci IAjAiBi���CiIAjAiBi���Ci = eiAj "AiBi���Ci
The d-dimensional joint image subspace PI� of P�
passes through the d-codimensional projective sub-
space xAi = 0 at the joint image epipoleei� � �eiA1 ; : : : ; eiAi�1 ;0; eiAi+1 ; : : : ; eiAm�>
As usual, an arbitrary choice of the relative scale factors
is required.

Counting up the components of the
�m4 � quadrilin-

ear, 3�m3 � trilinear,
�m2 � bilinear and m(m� 1) mono-

linear (epipole) tensors for m images of a 3D world,
we find a total of�3m4 � = 81 ��m4� + 27 � 3�m3�+ 9 � �m2� + 3 �m(m� 1)
linearly independent components. These are linearly
equivalent to the complete set of

�3m4 � linearly in-
dependent components of I �0����d , so the joint im-
age Grassmannian tensor can be reconstructed linearly
given the entire set of (appropriately scaled) matching
tensors.

8. Minimal Reconstructions and Uniqueness

The matching constraints found above are closely as-
sociated with a set of minimal reconstruction tech-
niques that produce candidate solutions xa from min-
imal sets of d image measurements (three in the 3D
case). Geometrically, measuring an image coordinate
restricts the corresponding world point to a hyperplane
in Pa. The intersection of any d independent hyper-
planes gives a unique solution candidate xa, so there
is a minimal reconstruction technique based on any set
of d independent image measurements. Matching is
equivalent to the requirement that this candidate lies in
the hyperplane of each of the remaining measurements.
If dmeasurements are not independent the correspond-
ing minimal reconstruction technique will fail to give
a unique candidate, but so long as the images con-
tain some set of d independent measurements at least
one of the minimal reconstructions will succeed and
the overall reconstruction solution will be unique (or
fail to exist altogether if the matching constraints are
violated).

Algebraically, we can restate this as follows. Con-
sider a general k � (k + 1) system of homogeneous
linear equations with rank k. Up to scale the system
has a unique solution given by the (k +1)-component
vector of k � k minors of the system matrix3. Adding
an extra row to the system destroys the solution unless
the new row is orthogonal to the existing minor vector:
this is exactly the requirement that the determinant of
the (k+1)� (k+1) matrix vanish so that the system
still has rank k. With an overspecified rank k system:
any choice of k rows gives a minor vector; at least one
minor vector is nonzero by rank-k-ness; every minor
vector is orthogonal to every row of the system matrix
by non-rank-(k+1)-ness; and all of the minor vectors
are equal up to scale because there is only one direction
orthogonal to any given k independent rows. In other
words the existence of a solution can be expressed as
a set of simple orthogonality relations on a candidate
solution (minor vector) produced from any set of k
independent rows.

We can apply this to the (d+m)�(d+m)minors of
the (D+m)�(d+m+1)basic reconstruction system,
or equivalently to the d� d minors of the D� (d+1)
reduced reconstruction system. The situation is very
similar to that for matching constraints and a similar
analysis applies. The result is that if i; j; : : : ; k is a
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set of 2 � m0 � d distinct images and 
; : : : ; � is any
selection of d�m0 indices from images i; j; : : : ; k (at
mostDi�1 from any one image), there is a pair of equi-
valent minimal reconstruction techniques for xa 2 Pa
and x� 2 P�:xa � Pa[BiBj ���Bk
���� xAixAj � � �xAk ]x� � I �[BiBj ���Bk
���� xAixAj � � �xAk ]
where Pa[�1����d] � 1d! P�1a1 � � �P�dad "aa1���ad
In these equations, the right hand side has tensorial
indices [Bi � � �Bk
 � � � �Ai � � �Ak ] in addition to a
or �, but so long as the matching constraints hold
any value of these indices gives a vector parallel
to xa or x� (i.e. for matching image points the
tensor Pa[Bi���Bk
���� xAi � � �xAk] can be factorized
as xa T[Bi���Bk
����Ai���Ak] for some tensors xa andT). Again it is enough to antisymmetrize over the in-
dices of each image separately. For 2D images of 3D
space the possible minimal reconstruction techniques
arePa[B1C1B2 xA1xA2] andPa[B1B2B3 xA1xA2xA3]:xa � �"A1B1C1 xA1 PB1b PC1c ����"A2B2C2 xA2 PC2d � "abcdxa � �"A1B1C1 xA1 PC1b ��"A2B2C2 xA2 PC2c ����"A3B3C3 xA3 PC2d � "abcd
These correspond respectively to finding the intersec-
tion of the optical ray from one image and the constraint
plane from one coordinate of the second one, and to
finding the intersection of three constraint planes from
one coordinate in each of three images.

To recover the additional matching constraints that
apply to the minimal reconstruction solution with in-
dices [Bi � � �Bk
 � � � �Ai � � �Ak], project the solution
to some image l to getPCla xa = ICl[Bi���Bk
���� xAi � � �xAk ]
If the constraint is to hold, this must be proportional
to xCl . If l is one of the existing images (i, say)xAl is already in the antisymmetrization, so if we
extend the antisymmetrization to Cl the result must
vanish: I [ClBi���Bk
���� xAi � � �xAk] = 0. If l
is distinct from the existing images we can expli-

citly add xAl to the antisymmetrization list, to getI [ClBi���Bk
���� xAi � � �xAkxAl] = 0.
Similarly, the minimal reconstruction solution for

3D lines from two images is just the pull-backlab � lA1lA2 PA1[a PA2b]
or in contravariant formlab � lA1lA2 PA1c PA2d "abcd
This can be projected into a third image and dualized
to give the previously stated line transfer equationlA3 � lA1lA2 � "A3B3C3 PB3a PC3b PA1c PA2d "abcd� lA1lA2 GA3A1A2
More generally, the covariant form of the k-subspace
constraint equations given in section 7.5 generates ba-
sic reconstruction equations for k dimensional sub-
spaces of the jth image or the world space by dropping
one index Aj from the contraction and using it as the�0 of a set of k + 1 free indices �0 � � ��k designating
the reconstructed k-subspace in PAj . To reconstruct
the k-subspace in world coordinates, the projection
tensors P�iai corresponding to the free indices must
also be dropped, leaving free world indices a0 � � �ak.

9. Grassmann Relations between Matching
Tensors

The components of any Grassmann tensor must sat-
isfy a set of quadratic ‘simplicity’ constraints called
the Grassmann relations. In our case the joint image
Grassmannian satisfies0 = I �0����d�1[�0 I �0����d+1]= 1d+2 d+1Xa=0(�1)a I �0����d�1�a I �0����a�1�a+1����d+1
Mechanically substituting expressions for the vari-
ous components of I �0����d in terms of the match-
ing tensors produces a long list of quadratic relations
between the matching tensors. For reference, table 1
gives a (hopefully complete) list of the identities that
can be generated between the matching tensors of two
and three images in d = 3 dimensions, modulo im-
age permutation, traces of identities with covariant and
contravariant indices from the same image, and (anti-
)symmetrization operations on identities with several
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covariant or contravariant indices from the same im-
age. (For example,FA2A3GA1A2A3 = 2FA1A2 e3A2
and FA3(A1 GB1)A2A3 = 0 follow respectively from
tracing [112; 22233] and symmetrizing [112; 11333] ).
The constraint tensors are assumed to be normalized
as in their above definitions, in terms of an arbit-
rary choice of scale for the underlying image projec-
tions. In practice, these scale factors must often be
recovered from the Grassmann relations themselves.
Note that with these conventions, FA1A2 = FA2A1
and GA1A2A3 = �GA1A3A2 . For clarity the free
indices have been displayed on the (zero) left-hand
side tensors. The labels indicate one choice of image
numbers for the indices of the Grassmann simplicity
relation that will generate the identity (there may be
others).

As an example of the use of these identities,GA1A2A3 follows from linearly from FA1A2 , FA1A3
and the corresponding epipoles e1A2 , e3A1 and e3A2
by applying [112; 11333] and [112; 22333].

10. Reconstruction in Joint Image Space

We have argued that multi-image projective recon-
struction is essentially a matter of recovering a coherent
set of projective scale factors for the measured image
points, that it canonically takes place in the joint image
spaceP�, and that reconstruction in world coordinates
is best seen as a choice of basis in the resulting joint
image subspace PI�. To emphasize these points it is
interesting to develop ‘reconstruction’ techniques that
work directly in joint image space using measured im-
age coordinates, without reference to any 3D world or
basis.

First suppose that the complete set of matching
tensors between the images has been recovered. It
is still necessary to fix an arbitrary overall scale factor
for each image. This can be done by choosing any co-
herent set of relative scalings for the matching tensors,
so that they verify the Grassmann simplicity relations
as given above. Then, since the components of the joint

Table 1. The Grassmann identities between the matching tensors of two and three images.0A1 = FA1A2 e1A2 [111; 11122]0A1A2 = FB1B2 FC1C2 "B1C1A1 "B2C2A2 + 2 e2A1 e1A2 [112; 11222]0A3 = FA2A3 e1A2 � "A3B3C3 e1B3 e2C3 [111; 22233]0A3A1A2 = "A2B2C2 e1B2 GA1C2A3 + e1A3 FA1A2 [111; 11223]0A1A2A3 = "A2B2C2 e1B2 GA3A1C2 + "A3B3C3 e1B3 GA2A1C3 [111; 12233]0A1A2A3B2 = FB1B2 GC1A2A3 "B1C1A1 � e1A2 GB2A1A3 + �B2A2 e1C2 GC2A1A3 [112; 11223]0A2B2A1B1A3 = "A3B3C3 GA1A2B3 GB1B2C3 � e1A2 "A1B1C1 GA3C1B2 [112; 11233]�FA1C2 "C2A2B2 FB1A30A2A1B1 = FA1A3 GB1A2A3 + "A1B1C1 e3C1 e1A2 [112; 11333]0B1B2A1A2A3 = "A3B3C3 GA1B2B3GA2B1C3 �FA1A2 GA3B1B2 + �A2B2 FA1C2 GA3B1C2 [112; 12233]+�A1B1 e1B2 FA2A30B1A2B2A1 = GC3B1B2 GA1A2C3 + e3B1 FA1C2 "C2A2B2 + �A1B1 e1A2 e3B2 [112; 12333]0A2A1A3 = "A3B3C3 e2B3 GA1A2C3 �FA1B2FC2A3 "B2C2A2 [112; 22233]0B2A1A2 = FA2A3 GA1B2A3 + FA1A2 e3B2 � �A2B2 FA1C2 e3C2 [112; 22333]0A1A2B2A3B3 = GB1A2A3 GC1B2B3 "B1C1A1 �GC2A1A3 "C2A2B2 e1B3 [123; 11123]�GC3A1A2 "C3A3B3 e1B20B1B2A3B3A1A2 = GA2B1A3 GA1B2A3 �GA2B1B3 GA1B2A3 �FA1A2 GC3B1B2 "C3A3B3 [123; 11223]��A2B2 GC2B1A3 GA1C2B3 + �A1B1 GA2C1B3 GC1B2A3
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image Grassmann tensor I �����
 can be recovered dir-
ectly from the matching tensors, the location of the
joint image PI� has been fixed.

Now consider a matching set of image pointsfxA1 ; : : : ;xAmg with arbitrary relative scalings. As
discussed in section 6, the matching constraints are
equivalent to the requirement that there be a rescaling
of the image points that places the joint image space
vector

Pmi=1 �ixAi in the joint imagePI�. Expressed
in terms of the Grassmannian, this becomes the joint
image reconstruction systemI [�� ��� 
 �  mXi=1 �i xAi]! = 0
This is a redundant set of homogeneous multilin-
ear equations in the Grassmannian I �����
 , the image
points xAi , and the scale factors �i, that can be used to
‘reconstruct’ the scale factors given the Grassmannian
and the image measurements.

These equations can be reexpressed in terms of the
matching tensors, in much the same way as the Grass-
mann simplicity relations can. The types of constraint
that can arise for 2D images of 3D space are shown
in table 1. The left hand sides are zero tensors and
the labels give index image numbers that will generate
the equation. The numerical coefficients are valid only
for correctly scaled matching tensors. Permuting the
images generates further equations. Note that since
the equations are algebraically redundant it is only ne-
cessary to apply a subset of at least m � 1 of them to
solve for the m scale factors. The optimal choice of
equations probably depends on the ease and accuracy
with which the various matching tensor components
can be estimated.

Recovery of the scale factors locates the reconstruc-
ted joint image point x� unambiguously in the sub-
space PI�. Its coordinates in any chosen basis (i.e.
with respect to any given choice of the basis-vector
columns of the joint projection matrix P�a ) can easily
be obtained, if required. Although this process is ar-
guably too abstract to be called ‘reconstruction’, all of
the relevant structure is certainly present in the joint
image representation and can easily be extracted from
it.

Given an efficient numerical technique for the res-
olution of sets of bilinear equations and a sufficient
number of matching points, it would also be possible to
solve the above equations simultaneously for the vector
of matching tensor components and the vector of scale
factors, given the measured image coordinates as coef-
ficients. Algebraic elimination of the scale factors from
these equations should ultimately lead back to the vari-
ous matching constraints (modulo probably heavy use
of the Grassmann relations). Elimination of the match-
ing tensors (modulo the matching constraints viewed
as constraints on the matching tensor components) for
sufficiently many matching points would lead to (high
degree!) basic reconstruction methods for the recov-
ery of the scale factors directly from measured image
coordinates.

Geometrically, the reconstruction process can be
pictured as follows. Each image point is a Di-
codimensional subset of its Di-dimensional image, so
under the trivial projection it can be pulled back to aDi-
codimensional subspace of the joint image space P�.
Intersecting the subspaces pulled back from the differ-
ent images results in an (m�1)-dimensional projective
subspace ofP�. This is precisely the set of all possible
rescalings of the xAi . The joint image PI� intersects

Table 1. The five basic types of reconstruction equation for a point in the joint image.0A2 = (FA1A2 xA1)�1 + ("A2B2C2 e1B2 xC2)�2 [11122]0A2A3 = (GA1A2A3 xA1)�1 � (e1A3 xA2)�2 + (e1A2 xA3)�3 [11123]0A3A1A2 = ("A1B1C1 GA2B1A3 xC1)�1 + ("A2B2C2 GA1B2A3 xC2)�2 � (FA1A2 xA3)�3 [11223]0A2A3A4A1 = ("A1B1C1 HB1A2A3A4 xC1)�1 + (GA1A4A3 xA2)�2 � (GA1A2A4 xA3)�3 [11234]+(GA1A2A3 xA4)�40A1A2A3A4A5 = (HA2A3A4A5 xA1)�1 � (HA1A3A4A5 xA2)�2 + (HA1A2A4A5 xA3)�3 [12345]�(HA1A2A3A5 xA4)�4 + (HA1A2A3A4 xA5)�5
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this subspace if and only if the matching constraints
are satisfied, and the intersection is of course the de-
sired reconstruction. So the problem of multi-image
projective reconstruction from points can be viewed as
the search for the (d +m � 1)-dimensional subspace
of P� that contains (or comes closest to containing)
a given set of (m � 1)-dimensional joint-image-point
subspaces, followed by an arbitrary choice (the scale
factors) of a d-dimensional subspace (the joint image)
of the (d+m� 1)-dimensional space that meets each
joint-image-point subspace transversally. The recon-
struction of lines and higher dimensional subspaces
can be viewed in similarly geometric terms.

11. Perspectives

The theoretical part of the paper is now finished, but
before closing it may be worthwhile to reflect a little
on our two principal themes: projective reconstruction
and the tensor calculus. We will take it for granted that
the projective and algebraic-geometric approaches to
vision are here to stay: the ‘unreasonable efficacy of
mathematics in the physical sciences’ can only lead to
an increasing mathematization of the field.

11.1. Matching & Reconstruction

Clearly visual scene reconstruction is a large and com-
plex problem that is not going to be ‘solved’ by any
one contribution, so we will restrict ourselves to a few
technical remarks. To the extent that the problem can
be decomposed at all, the most difficult parts of it will
probably always be the low level feature extraction and
token matching. 3D reconstruction seems relatively
straightforward once image tokens have been put into
correspondence, although much remains to be done
on the practical aspects, particularly on error models
[17], [4], [21] and the recovery of Euclidean structure
[17].

Given the complexity and algebraic redundancy of
the trilinear and quadrilinear constraints it is certainly
legitimate to ask whether they are actually likely to be
useful in practice. I think that the answer is a clear
‘yes’ for the trilinear constraints and the overall joint
image/Grassmannian picture, but the case for the quad-
rilinear constraints is still open.

The principal application of the matching tensors
must be for token matching and verification. The trilin-

ear constraints can be used directly to verify the corres-
pondence of a triple of points or lines, or indirectly to
transfer a hypothesized feature location to a third image
given its location in two others, in a hypothesize-and-
test framework. Image synthesis (e.g. image sequence
compression and interpolation) is likely to be another
important application of transfer [11].

Fundamental matrices can also be used for these
applications, but because the higher order constraints
‘holistically’ combine data from several images and
there is built-in redundancy in the constraint equations,
it is likely that they will prove less prone to mismatches
and numerically more stable than a sequence of applic-
ations of the epipolar constraint. For example Shashua
[19] has reported that a single trilinear constraint gives
more reliable transfer results than two epipolar ones,
and Faugeras and Mourrain [7]have pointed out that bi-
linear constraint based transfer breaks down when the
3D point lies in the trifocal plane or the three optical
centres are aligned, whereas trilinear transfer continues
to be reasonably well conditioned.

When there are four images the quadrilinear con-
straint can also be used for point matching and trans-
fer, but the equations are highly redundant and it seems
likely that bilinear and trilinear methods will prove ad-
equate for the majority of applications. The trilinear
constraint is nonsingular for almost all situations in-
volving points, provided the optical centres do not co-
incide and the points avoid the lines passing between
them.

The most important failure for lines is probably that
for lines lying in an epipolar plane of two of the images.
In this case the constraints mediated by trivalent tensors
are vacuous (although there is still enough information
to reconstruct the corresponding 3D line unless it lies
in the trifocal plane or the optical centres are aligned)
and those mediated by quadrivalent tensors are rank
deficient. But given the linear dependence of the vari-
ous line constraints it is not clear that the quadrivalent
ones have any advantage over an equivalent choice of
trivalent ones.

A closely related issue is that of linear versus higher
order methods. Where possible, linear formulations
are usually preferred. They tend to be simpler, faster,
better understood and numerically more stable than
their nonlinear counterparts, and they are usually much
easier to adapt to redundant data, which is common in
vision and provides increased accuracy and robustness.
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On the other hand, nonlinear constraints can not be rep-
resented accurately within a linear framework.

This is especially relevant to the estimation of the
matching tensors. We have emphasized that the match-
ing tensor components and constraint equations are
linearly independent but quadratically highly depend-
ent. It is straightforward to provide linear minimum-
eigenvector methods to estimate: the 9-component
fundamental matrix from at least 8 pairs of corres-
ponding points in two images [12], [13]; each of
the three linearly independent 27-component trilinear
tensors from at least 7 triples of points in three images;
and the 81-component quadrilinear tensor from at least
6 quadruples of corresponding points in four images
[21]. For complex applications several of these tensors
might be needed, for example a fundamental constraint
might provide initial feature pairings that can be used
to check for corresponding features in a third image us-
ing further fundamental or trilinear constraints. Also,
different trilinear tensors are required for point transfer
and line transfer.

Unfortunately, it turns out that the above linear es-
timation techniques (particularly that for the funda-
mental matrix) are numerically rather poorly condi-
tioned, so that the final estimates are very sensitive
to measurement errors and outliers. Moreover, even
in the case of a single fundamental matrix there is a
nonlinear constraint that can not be expressed within
the linear framework. The quadratic epipolar rela-
tion FA1A2 e1A2 = 0 implies the cubic constraintDet(F) = 0. If this constraint is ignored, one finds
that the resulting estimates of F and the epipoles tend
to be rather inaccurate [13]. In fact, the linear method
is often used only to initialize nonlinear optimization
routines that take account of the nonlinearity and the
estimated measurement errors in the input data.

This leads to the following open question: When
several matching tensors are being estimated, to what
extent is it possible or necessary to take account of the
quadratic constraints between them? The full set of
quadratic relations is very complex and it is probably
not practical to account for all of them individually: it
would be much simpler just to work directly in terms of
the 3D joint image geometry. Moreover, many of the
relations depend on the relative scaling of the constraint
tensors and the recovery of these further complicates
the issue (it is a question of exactly which combinations
of components need to be fixed to ensure consistency
and numerical stability). On the other hand, experi-

ence with the fundamental matrix suggests that it is
dangerous to ignore the constraints entirely. Some at
least of them are likely to be important in any given
situation. Our current understanding of these matters
is very sketchy: essentially all we have is a few ad hoc
comparisons of particular techniques.

As a final point, a few people seem to have been
hoping for some ‘magic’ reconstruction technique that
completely avoids the difficulties of image-to-image
matching, perhaps by holistically combining data from
a large number of images (or a single dense image se-
quence). The fact that the matching constraints stop
at four images (or equivalently three time derivatives)
does not preclude this,but perhaps makes it seem a little
less likely. On the other hand, the simplicity of the joint
image picture makes incremental recursive reconstruc-
tion techniques that correctly handle the measurement
errors and constraint geometry seem more likely (c.f.
[16]).

11.2. Tensors vs. the Rest

This paper is as much about the use of tensors as a
vehicle for mathematical vision as it is about image
projection geometry. Tensors have seldom been used
in vision and many people appear to be rather tensor-
phobic, so it seems appropriate to say a few words in
their favour: “Don’t panic!” [1].

First of all, what is a tensor? — It is a collection (a
multidimensional array) of components that represent
a single geometric object with respect to some system
of coordinates, and that are intermixed when the co-
ordinate system is changed. This immediately evokes
the two principal concerns of tensor calculus: (i) to
perform manipulations abstractly at the object level
rather than explicitly at the component level; and (ii) to
ensure that all expressions are properly covariant (i.e.
have the correct transformation laws) under changes of
basis. The advantages are rather obvious: the higher
level of abstraction brings greater compactness, clarity
and insight, and the guaranteed covariance of well-
formed tensorial expressions ensures that no hidden
assumptions are made and that the correct algebraic
symmetries and relationships between the components
are automatically preserved.

Vectors are the simplest type of tensor and the
familiar 3D vector calculus is a good example of
the above points: it is much simpler and less error
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prone to write a single vector x instead of three com-
ponents (x1; x2; x3) and a symbolic cross productz = x�y instead of three equations z1 = x2y3�x3y2,z2 = x3y1 � x1y3 and z3 = x1y2 � x2y1. Unfor-
tunately, the simple index-free matrix-vector notation
seems to be difficult to extend to higher-order tensors
with the required degree of flexibility. (Mathem-
aticians sometimes define tensors as multilinear func-
tions T(x; : : : ; z) where x; : : : ; z are vectors of some
type and the result is a scalar, but this notation becomes
hopelessly clumsy when it comes to inter-tensor con-
tractions, antisymmetrization and so forth). In fact,
the index-free notation becomes as much a dangerous
weapon as a useful tool as soon as one steps outside
the realm of simple vector calculations in a single Eu-
clidean space. It is only too easy to write x>x = 1 in
a projective space where no transpose (metric tensor)
exists, or a meaningless ‘epipolar equation’ l>Fx = 0
where l is actually the 3-component vector of an im-
age line (rather than an image point) and x belongs to
the wrong image for the fundamental matrix F (which
should have been transposed in any case).

To avoid this sort of confusion, it is essential to use
a notation that clearly distinguishes the space and co-
variant/contravariant type of each index. Although it
can not be denied that this sometimes leads to rather
baroque-looking formulae — especially when there are
many indices from many different spaces as in this pa-
per — it is much preferable to the alternatives of using
either no indices at all or i, j, and k for everything,
so that one can never quite see what is supposed to
be happening. It is important not to be fooled into
thinking that tensor equations are intrinsically difficult
just because they have indices. For simple calculations
the indexed notation is not significantly more difficult
to use than the traditional index-free one, and it be-
comes much clearer and more powerful in complex
situations. For a visually appealing (but typographic-
ally inconvenient) pictorial notation, see the appendix
of [18].

Simultaneously with the work presented in this pa-
per, at least two other groups independently converged
on parts of the constraint geometry from component-
based points of view: Faugeras & Mourrain [7] using
the Grassmann-Cayley algebra of skew linear forms,
and Werman & Shashua [22] using Gr�obner bases and
algebraic elimination theory. Both approaches make
very heavy use of computer algebra whereas all of the

calculations in the present paper were done by hand,
and neither (notwithstanding the considerable value of
their results) succeeded in obtaining anything like a
complete picture of the constraint geometry. My feel-
ing is that it is perhaps no accident that in each of the
three categories: level of geometric abstraction, effi-
ciency of calculation, and insight gained, the relative
ordering is the same: tensor calculus > Grassmann-
Cayley algebra > elimination theory.

Elimination-theoretic approaches using resultants
and Gr�obner bases seem to be intrinsically component-
based. They take no account of the tensorial structure
of the equations and therefore make no use of the many
symmetries between them, so even when the coordin-
ate systems are carefully adapted to the problem they
tend to carry a significant amount of computational
redundancy. Werman & Shashua [22] suggest that
an advantage of such approaches is the fact that very
little geometric insight is required. Unfortunately, one
might also suggest that very little geometric insight is
gained: the output is a complex set of equations with
no very clearly articulated structure.

The Grassmann-Cayley algebra [7], [2] is spiritu-
ally much closer to the tensorial point of view. Indeed,
it can be viewed as a specialized index-free notation for
manipulating completely antisymmetric covariant and
contravariant tensors. It supports operations such as
antisymmetrization over indices from several tensors
(wedge product), contractions over corresponding sets
of covariant and contravariant antisymmetric indices
(hook product), and contravariant-covariant dualiza-
tion (sometimes used to identify the covariant and
contravariant algebras and then viewed as the iden-
tity, in which case the hook product is replaced by
the join product). Given the connection with Grass-
mann coordinates, the Grassmann-Cayley algebra can
be viewed as a calculus of intersection and union (span)
for projective subspaces: clearly a powerful and highly
relevant concept. It is likely that this approach would
have lead fairly rapidly to the full Grassmannian match-
ing constraint geometry, notwithstanding the relative
opacity of the initial component-orientedformulations.

Despite its elegance, there are two problems with
the Grassmann-Cayley algebra as a general formal-
ism. The first is that it is not actually very general: it
is good for calculations with linear or projective sub-
spaces, but it does not extend gracefully to more com-
plex situations or higher-degree objects. For example
quadric surfaces are represented by symmetric tensors



24 Bill Triggs

which do not fit at all well into the antisymmetric al-
gebra. Tensors are much more flexible in this regard.
The second problem with the Grassmann-Cayley al-
gebra is that it is often infuriatingly vague about geo-
metric (covariance) issues. Forms of different degree
with indices from different spaces can be added form-
ally within the algebra, but this makes no sense at all
tensorially: such objects do not transform reasonably
under changes of coordinates, and consequently do not
have any clear geometric meaning, whatever the status
of the algebra. The fact that the algebra has a stratified
tensorial structure is usually hidden in the definitions
of the basic product operations, but it becomes a cent-
ral issue as soon as geometric invariance is called into
question.

In summary, my feeling is that the tensorial ap-
proach is ultimately the most promising. The indexed
notation is an extraordinarily powerful, general and
flexible tool for the algebraic manipulation of geomet-
ric objects. It displays the underlying the structure and
covariance of the equations very clearly, and it natur-
ally seems to work at about the right level of abstraction
for practical calculations: neither so abstract nor so de-
tailed as to hide the essential structure of the problem.
Component-based approaches are undoubtedly useful,
but they are probably best reserved until after a gen-
eral tensorial derivation has been made, to specialize
and simplify a set of abstract tensorial equations to the
particular application in hand.

As an example of this, a k + 1 index antisymmet-
ric tensor representing a k dimensional subspace of
a d dimensional projective space has (very na�ıvely)(d + 1)k+1 components, but only

�d+1k+1� of these are
linearly independent owing to antisymmetry. The inde-
pendent components can easily be enumerated (the in-
dices i0i1 � � � ik for 0 � i0 < i1 < : : : < ik � d form a
spanning set) and gathered into an explicit

�d+1k+1� com-
ponent vector for further numerical or symbolic ma-
nipulation. In fact, these components span exactly one
tensorial stratum of the Grassmann-Cayley algebra.

It is perhaps unfortunate that current computer al-
gebra systems seem to have very few tools for manip-
ulating general tensorial expressions, as these would
greatly streamline the derivation and specialization
processes. However, there does not appear to be any
serious obstacle to the development of such tools and
it is likely that they will become available in the near
future.

12. Summary

Given a set of perspective projections intom projective
image spaces, there is a 3D subspace of the space of
combined image coordinates called the joint image.
This is a complete projective replica of the 3D world
expressed directly in terms of scaled image coordin-
ates. It is defined intrinsically by the physical situation
up to an arbitrary choice of some internal scalings.
Projective reconstruction in the joint image is a ca-
nonical process requiring only a rescaling of the image
coordinates. A choice of basis in the joint image allows
the reconstruction to be transferred to world space.

There are multilinear matching constraints
between the images that determine whether a set of
image points could be the projection of a single world
point. For 3D worlds only three types of constraint
exist: the epipolar constraint generated by the fun-
damental matrix between pairs of images, Shashua’s
trilinear constraints between triples of images and a
new quadrilinear constraint on sets of corresponding
points from four images.

Moreover, the entire set of constraint tensors for
all the images can be combined into a single com-
pact geometric object, the antisymmetric 4 index joint
image Grassmannian tensor. This can be recovered
from image measurements whenever the individual
constraint tensors can. It encodes precisely the in-
formation needed for reconstruction: the location of
the joint image in the space of combined image co-
ordinates. It also generates the matching constraints
for images of lines and a set of minimal reconstruc-
tion techniques closely associated with the matching
constraints. Structural constraints on the Grassman-
nian tensor produce quadratic identities between the
various constraint tensors.
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Appendix A

Mathematical Background

This appendix provides a very brief overview of the
linear algebra and projective geometry need to under-
stand this paper, and a little background information on
our notation. For more details on using tensor calculus
for projective space see [10], [18].

A.1. Vectors and Tensors

A vector space Ha is a space on which addition and
scaling of elements are defined: �xa + �ya is in Ha
for all scalars � and � and elements xa and ya of Ha.
The span of a set fea1 ; : : : ; eakg of elements ofHa is the
vector space of linear combinations x1ea1+ � � �+xkeak
of elements of the set. A minimal set that spans the
entire space is called a basis and the number of ele-
ments in the set is the dimension of the space. Given
a basis fea1 ; : : : ; eadg for a d dimensional vector spaceHa, any element xa of the space can be expressed asx1ea1 + � � �+ xdead and associated with the coordinate
vector (x1; : : : ; xd).

It is helpful to view the superscript a as an abstract
index [18], i.e. an abstract label or placeholder denot-
ing the space the object belongs to. However given
a choice of basis it can also be thought of as a vari-
able indexing the coordinate vector that represents the
object in that basis.

For every vector space Ha there is a dual vector
space of linear mappings on Ha, denoted Ha. An
element la of Ha acts linearly on an element xa
of Ha to produce a scalar. This action is denoted
symbolically by laxa and called contraction. Any
basis fea1 ; : : : ; eadg forHa defines a unique dual basisfe1a; : : : ; edag for Ha with eiaeaj = �ij , where �ij is
1 when i = j and 0 otherwise. The ith coordin-
ate of xa in the basis feajg is just xi � eia xa. If
elements of Ha are represented in the basis feai g asd index column vectors, elements of Ha in the dual
basis feiag behave like d index row vectors. Con-
traction is then just the dot product of the coordinate
vectors: (u1 e1a+ � � �+ud eda)(x1 ea1 + � � �+xd ead) =u1 x1 + � � �+ ud xd. Contraction involves a sum over
coordinates but we do not explicitly write the summa-
tion signs: whenever a superscript label also appears
as a subscript a summation is implied. This is called
the Einstein summation convention. The order of

terms is unimportant: uaxa and xaua both denote the
contraction of the dual vector ua with the vector xa.

Suppose we change the basis in Ha according toeai ! ~eai = Pj eaj �j i for some matrix �j i. To
keep the resulting abstract element of Ha the same,
coordinate vectors must transform inversely according
to xi ! ~xi = Pj (��1)ij xj . To preserve the rela-
tions ~eia ~eaj = �ij , the dual basis must also transform aseia ! ~eia = Pj (��1)ij eja. Finally, to leave the ab-
stract element of the dual space the same, dual coordin-
ate vectors must transform as ui ! ~ui = Pj uj �ji.
Because of the transformations of their coordinates
under changes of basis, vectors xa are called contrav-
ariant and dual vectors ua are called covariant.

An element xa ofHa can also be viewed as a linear
mapping on elements ofHa defined by uaxa, in other
words as an element of the dual of the dual of Ha. For
finite dimensional spaces every linear mapping on Ha
can be written this way, so there is a complete sym-
metry betweenHa andHa: neither is ‘more primitive’.

Any nonzero element of Ha defines a d� 1 dimen-
sional subspace ofHa by the equationsuaxa = 0, and
conversely any d � 1 dimensional subspace defines a
unique element of Ha up to scale.

It is possible to take formal (‘tensor’ or ‘outer’)
products of n-tuples of elements of vector spaces,
for example a formal element TaA� � xa yA z�
can be made from elements xa, yA, z� of vector
spaces Ha, HA and H�. The vector space of lin-
ear combinations of such objects (for different choices
of xa, yA and z�) is called the tensor product spaceHaA� = Ha 
 HA 
 H�. When there are several
distinct copies of Ha we use distinct letters to denote
them, e.g.Habc = Ha
Hb
Hc contains two copies
of Ha. Elements of a tensor product space are called
tensors and can be thought of as multidimensional
arrays of components in some chosen set of bases.
Under changes of basis each of the indices must be
transformed individually.

There are a number of important generic opera-
tions on tensors. A set of tensors can be contracted
together over any appropriate subset of their indices,
for example uab xa 2 Hb, ua TaBc xc 2 HB . Self
contractionsTab���ac��� 2 Hb���c��� are called traces. A
group of indices can be (anti-)symmetrized by av-
eraging over all possible permutations of their po-
sitions, with an additional minus sign for odd per-
mutations during antisymmetrization. On indices,(� � �) denotes symmetrization and [� � �] antisymmet-
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rization. For example T(ab) = 12 (Tab + Tba) andT[ab] = 12 (Tab � Tba) can be viewed as symmetric
and antisymmetric matrices, and T[abc] = 13! (Tabc �Tbac+Tbca�Tcba+Tcab�Tacb) is an antisymmetric
3 index tensor. A group of indices is (anti-)symmetric
if (anti-)symmetrization over them does not change the
tensor: (� � �) and [� � �] are also used to denote this, for
example T[ab](cd) 2 H[ab](cd) is antisymmetric in ab and
symmetric in cd. Permutation of (anti-)symmetric in-
dices changes at most the sign of the tensor.

In d dimensions antisymmetrizations over more
than d indices vanish: in any basis each index must
take a distinct value between 1 and d. Up to
scale there is a unique antisymmetric d index tensor"a1a2���ad 2 H[a1a2���ad]: choosing "12���d = +1 in
some basis, all other components are �1 or 0. Un-
der a change of basis the components of "a1���ad are
rescaled by the determinant of the transformation mat-
rix. There is a corresponding dual tensor "a1a2���ad 2H[a1a2���ad] with components �1 or 0 in the dual
basis. "a1a2���ad defines a volume element onHa, giv-
ing the volume of the hyper-parallelepiped formed byd vectors xa1 ; : : : ;xad as "a1a2���ad xa11 � � �xadd . The
determinant of a linear transformation Tab on Ha
can be defined as 1d!"a1a2���ad Ta1b1 � � �Tadbd "b1b2���bd ,
and this agrees with the determinant of the matrix
of Tab in any coordinate basis. A contravariant an-
tisymmetric k index tensor T[a1���ak] has a covari-
ant antisymmetric d � k index dual (�T)ak+1���ad �1k! "ak+1���adb1���bk Tb1���bk . Conversely Ta1���ak =1(d�k)! (�T)bk+1���bd "bk+1���bda1���ak . A tensor and its

dual contain the same information and both have
�dk�

independent components.

A.2. Grassmann Coordinates

Antisymmetrization and duality are important in
the theory of linear subspaces. Consider a setfva1 ; : : : ;vakg of k independent vectors spanning a k
dimensional subspace � of Ha. Given some choice
of basis the vectors can be viewed as column vectors
and combined into a single d � k matrix. Any setfa1; : : : ; akg of k distinct rows of this matrix defines ak � k submatrix whose determinant is a k � k minor
of the original matrix. Up to a constant scale factor
these minors are exactly the components of the tensor�a1���ak � v[a11 � � �vak ]k . If the original vectors are
independent the d � k matrix has rank k and at least

one of the k�k minors (and hence the tensor �a1���ak )
will not vanish. Conversely, if the tensor vanishes the
vectors are linearly dependent.

A vector xa lies in the subspace � if and only if all
of the (k + 1) � (k + 1) minors of the d � (k + 1)
matrix whose columns are xa and the vai vanish. In
tensorial terms: xa is an element of � if and only if�[a1���ak xa] = 0. So no two distinct subspaces have
the same �a1���ak . Under a k � k linear redefinitionvai ! ~vai = Pj �ijvaj of the spanning vectors, thek� k minors are simply a constant factor of Det(�ij)
different from the old ones by the usual determinant of
a product rule. So up to scale �a1���ak is independent
of the set of vectors in � chosen to span it.

A subspace� can also be defined as the null space of
a set of d�k independent linear forms fuk+1a ; : : : ;udag,
i.e. as the set of xa on which all of the uia vanish:uia xa = 0. The uia can be viewed as a (d � k) � d
matrix of row vectors. Arguments analogous to those
above show that the covariant antisymmetric d� k in-
dex tensor �ak+1���ad � uk+1[ak+1 � � �udad] is independent

(up to scale) of the fuiag chosen to characterize � and
defines� as the set of points for which�ak+1���adxad =0. We use the same symbol for �ak+1���ad and �a1���ak
because up to scale they turn out to be mutually dual:�ak+1���ad � 1k! "ak+1���adb1���bk �b1���bk . In particu-
lar a hypersurface can be denoted either by ua or byu[a1���ad�1].

Hence, up to scale, �a1���ak and its dual �ak+1���ad
are intrinsic characteristics of the subspace �, inde-
pendent of the bases chosen to span it and uniquely
defined by and defining it. In this sense the antisym-
metric tensors provide a sort of coordinate system on
the space of linear subspaces ofHa, called Grassmann
coordinates.

Unfortunately, only very special antisymmetric
tensors specify subspaces. The space of k dimensional
linear subspaces of a d dimensional vector space is onlyk (d � k) dimensional, whereas the antisymmetric k
index tensors have

�dk� independent components, so
the Grassmann coordinates are massively redundant.
The tensors that do define subspaces are called simple
because they satisfy the following complex quadratic
Grassmann relations:�a1���[ak �b1���bk ] = 0
or in terms of the dual�ak+1���ad �adb2���bk = 0
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These relations obviously hold for any tensor of the
form v[a11 � � �vak ]k because one of the vectors must ap-
pear twice in an antisymmetrization. What is less ob-
vious is that they do not hold for any tensor that can
not be written in this form.

Although their redundancy and the complexity of
the Grassmann relations makes them rather inconveni-
ent for numerical work, Grassmann coordinates are a
powerful tool for the algebraization of geometric op-
erations on subspaces. For example the union of two
independent subspaces is just �[a1���ak�b1���bl] and du-
ally the intersection of two (minimally) intersecting
subspaces is �[a1���ak�b1���bl].
A.3. Projective Geometry

Given a d + 1 dimensional vector space Ha with
nonzero elements xa and ya (a = 0; : : : ; d), we will
writexa � ya and say thatxa andya are equivalent up
to scale whenever there is a nonzero scalar � such thatxa = �ya. The d dimensional projective spacePa is
defined to be the set of nonzero elements of Ha under
equivalence up to scale. When we write xa 2 Pa we
really mean the equivalence class f� xaj � 6= 0g of xa
under�.

The span of any k + 1 independent representativesfxa0 ; : : : ;xakg of points in Pa is a k + 1 dimensional
vector subspace of Ha that projects to a well-definedk dimensional projective subspace of Pa called the
subspace through the points. Two independent points
define a one dimensional projective subspace called a
projective line, three points define a projective plane,
and so forth. The vector subspaces of Ha support no-
tions of subspace dimension, independence, identity,
containment, intersection, and union (vector space sum
or smallest containing subspace). All of these descend
to the projective subspaces of Pa. Similarly, linear
mappings between vector spaces, kernels and images,
injectivity and surjectivity, and so on all have their
counterparts for projective mappings between project-
ive spaces.

Tensors on Ha also descend to projective tensors
defined up to scale on Pa. Elements ua of the project-
ive version Pa of the dual space Ha define d � 1 di-
mensional projective hyperplanes in Pa via uaxa = 0.
The duality of Ha and Ha descends to a powerful du-
ality principle between points and hyperplanes on Pa
and Pa.

More generally the antisymmetric k+1 index con-
travariant and d�k index covariant Grassmann tensors
on Ha define k dimensional projective subspaces ofPa. For example given independent points xa, ya
and za of Pa the projective tensor x[ayb] defines the
line through xa and ya and x[aybzc] defines the plane
through xa, ya and za. Similarly, in 3D a line can
be represented dually as the intersection of two hyper-
planesu[avb] while a point requires three u[avbwc]. In
2D a single hyperplane ua suffices for a line, and two
are required for a point u[avb]. Dualization gives back
the contravariant representation, e.g. xa = ubvc "abc
are the coordinates of the intersection of the two linesua and va in 2D.

A d dimensional projective space can be thought of
as a d dimensional affine space (i.e. a Euclidean space
with points, lines, planes, and so on, but no origin
or notion of absolute distance) with a number of ideal
points added ‘at infinity’. Choosing a basis forHa, any
representative xa of an element Pa with x0 6= 0 can
be rescaled to the form (1; x1; : : : ; xd)>. This defines
an inclusion of the affine space (x1; : : : ; xd) inPa, but
the d� 1 dimensional projective subspace ‘at infinity’
of elements of Pa with x0 = 0 is not represented.
Under this inclusion affine subspaces (lines, planes,
etc) become projective ones, and all of affine geometry
can be transferred to projective space. However pro-
jective geometry is simpler than affine geometry be-
cause projective spaces are significantly more uniform
than affine ones — there are far fewer special cases to
consider. For example two distinct lines always meet
exactly once in the projective plane, whereas in the
affine plane they always meet except when they are
parallel. Similarly, there are natural transformations
that preserve projective structure (i.e. that map lines
to lines, preserve intersections and so) that are quite
complicated when expressed in affine space but very
simple and natural in projective terms. The 3D!2D
pinhole camera projection is one of these, hence the
importance of projective geometry to computer vision.

Appendix B

Factorization of the Fundamental Matrix

This appendix proves two claims made in section 3.
(1) Given the factorization FAA0 = uA vA0 �vA uA0 , the most general redefinition of the u’s andv’s that leaves F unchanged up to scale is
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where � is an arbitrary nonsingular 2� 2 matrix andf�; �0g are arbitrary nonzero relative scale factors.

SinceuA andvA are independent epipolar lines and
there is only a two parameter family of these, any other
choice ~uA; ~vA must be a nonsingular linear combina-
tion of these two, and similarly foruA0 andvA0 . Hence
the only possibilities are:� uAvA � �! �� uAvA � ; � uA0vA0 � �! �0� uA0vA0 �
for nonsingular 2� 2 matrices � and �0. ThenFAA0 = � uA vA �� 0 1�1 0 �� uA0vA0 ��! � uA vA ��>� 0 1�1 0 ��0� uA0vA0 �
Since the covectorsuA;vA anduA0 ;vA0 are independ-
ent, for F to remain unchanged up to scale we must
have �>� 0 1�1 0 ��0 � � 0 1�1 0 �
Using the 2� 2 matrix identity� = �Det(�)� 0 1�1 0 ���>� 0 1�1 0 �
we find that �0 � � up to scale. Defining �0=� to
reflect the difference in scale, the result follows.

(2) Given any factorization FAA0 = uA vA0 �vA uA0 defining a 4D subspace I� of H� via� uA uA0vA vA0 �� xAxA0 � = 0
and any pair fPAa ;PA0a g of rank 3 projection matrices
with distinct centres of projection compatible withFAA0 in the sense that FAA0 PAaPA0b xaxb = 0 for
all xa 2 Ha, there is a fixed rescaling f�; �0g that
makes I� coincide with the image of Ha under the
joint projection (� PAa �0 PA0a )>.

If the compatibility condition holds for all xa, the
symmetric part of the quadratic form FAA0 PAaPA0b
must vanish. Expanding F and for clarity definingua � uA PAa , u0a � uA0 PA0a , va � vA PAa , andv0a � vA0 PA0a we find:

ua v0b + v0a ub � va u0b � u0a vb = 0
Since both projections have rank 3 none of the pulled
back covectors ua;u0a;va;v0a vanish, and since the
pairs uA 6� vA and uA0 6� vA0 are independent,ua 6� va and u0a 6� v0a are independent too. Con-
tracting with any vector xa orthogonal to both ua andu0a we find that(v0a xa) ub � (va xa) u0b = 0
Either there is some xa for which one (and hence both)
of the coefficients va xa and v0a xa are nonzero —
which implies that ua � u0a — or both coefficients
vanish for all such xa. But in this case we could con-
clude that va and v0a were in Span(ua;u0a) and sinceva is independent of ua and v0a of u0a that va � u0a
and v0a � ua. Substituting back into F immediately
shows that � uaub � �0 vavb = 0 with nonzero �
and �0, and hence that ua � va. So this branch
is not possible and we can conclude that for some
nonzero � and �0, �ua+�0u0a = 0. Similarly, �va+�0 v0a = 0 for some nonzero � and �0. Substituting
back into F gives (�=�0 � �=�0) (uavb + vaub) =0, so up to scale f�; �0g � f�; �0g. The rescalingfPAA; PA0A g �! f�PAA; �0 PA0A g then takes the pro-
jection of any xa to a vector lying in I�:� uA uA0vA vA0 �� �PAa�0 PA0a �xa= � � ua + �0 u0a� va + �0 v0a �xa = � 00 �xa = 0
Notes

1. Epipolarity: uA eA = 0 = vA eA follows from0 = FAA0 eA = (uAeA) vA0 � (vAeA) uA0 ,
given the independence of uA0 and vA0 for rank 2 F.
Correspondence: For any xA on uA, uA xA = 0 implies
thatFAA0 xA = �(vAxA) uA0 � uA0 .
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2. IfxA1 and xA2 are not matching points, the transfer equations
trace out an entire line of mutually inconsistent ‘solutions’ as[A2B2] or C2 vary. For fixed xA1 and any line lA2 there is a

‘solution’ xA3 (xA1 ; lA2) � lA2 GA1A2A3 xA1 . This is
just the intersection of the image 3 epipolar line of xA1 with the
image 3 epipolar line of the intersection of lA2 and the image 2
epipolar line of xA1 , i.e. the transfer of the only point on lA2
that could be a correct match. In general, as lA2 traces out the the
pencil of lines through xA2 the corresponding ‘solutions’ xA3
trace out the entire epipolar line of xA1 in image 3. The line of
‘solutions’ collapses to a point only when xA2 lies on the epi-
polar line ofxA1 . For reliable transfer the line lA2 should meet
the epipolar line of xA1 reasonably transversally and if possible
should pass close to the image 3 epipole. This can be arranged
by projecting the free index C2 along (an approximation to) the
image 3 epipole eA23 .

Similarly, xA3 could be predicted as the intersection of
the epipolar lines of xA1 and xA2 in PA3 . This intersection
always exists, but it is not structurally meaningful if xA1 andxA2 do not correspond. The moral is that it is dangerous to use
only some of the available equations for transfer.

3. Proof: By the rank k condition the vector of minors does not
vanish. Adding any (k+ 1)st row vector v to the system gives
a (k + 1) � (k + 1) matrix. By the usual cofactor expansion,
the determinant of this matrix is exactly the dot product of v
with the vector of minors. The determinant vanishes when v is
chosen to be any of the existing rows of the matrix, so the minor
vector is orthogonal to each row.
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