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Abstract.

This paper studies the geometry of perspective projection into multiple images and the matching constraints
that this induces between the images. The combined projections produce a 3D subspace of the space of combined
image coordinates called the joint image. Thisis a complete projective replica of the 3D world defined entirely
in terms of image coordinates, up to an arbitrary choice of certain scale factors. Projective reconstruction is a
canonical processin the joint image requiring only the rescaling of image coordinates. The matching constraints
tell whether a set of image points is the projection of a single world point. In 3D there are only three types of
matching constraint: the fundamental matrix, Shashua’s trilinear tensor, and a new quadrilinear 4 image tensor.
All of these fit into a single geometric object, the joint image Grassmannian tensor. This encodes exactly the
information needed for reconstruction: the location of the joint image in the space of combined image coordinates.
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1. Introduction

This is the first of two papers that examine the geo-
metry underlying the recovery of 3D projective struc-
ture from multiple images. This paper focuses on the
geometry of multi-image projection and the matching
constraintsthat thisinduces on image measurements.
The second paper will deal with projective reconstruc-
tion techniques and error models.

Matching constraints like the fundamental matrix
and Shashua strilinear tensor [19] are currently atopic
of lively interest in the vison community. This pa-
per uncoverssome of the beautiful and useful structure
that lies behind them and should be of interest to any-
one working on the geometry of vision. We will show
that in three dimensions there are only three types of
constraint: the fundamental matrix, Shashua’s trilin-
ear tensor, and a new quadrilinear four image tensor.
All other matching constraints reduce trivialy to one
of these three types. Moreover, al of the constraint
tensors fit very naturally into a single underlying geo-
metric object, the joint image Grassmannian. Struc-
tural constraints on the Grassmannian tensor lead to
quadratic relations between the matching tensors.

The joint image Grassmannian encodes precisely
the portion of the imaging geometry that can be re-
covered from image measurements. It specifies the
location of the joint image, a three dimensional sub-
manifold of the space of combined image coordinates
containing the matching m-tuplesof imagepoints. The
topology of thejoint imageis complicated, but with an
arbitrary choice of certain scale factors it becomes a
3D projective space containing a projective ‘replica
of the 3D world. Thisreplicaisall that can beinferred
about the world from image measurements. 3D recon-
struction is an intrinsic, canonical geometric process
only in thejoint image, however an appropriate choice
of basisthere allowstheresults to be transferred to the
origina 3D world up to aprojectivity.

This is a paper on the geometry of vision so there
will be ‘too many eguations, no algorithms and no
real images. However it also represents a powerful
new way to think about projective vision and that does
have practical consequences. To understand this pa-
per you will need to be comfortable with the tensorial
approach to projective geometry: appendix A sketches
the necessary background. Thisapproachwill beunfa-
miliar to many vision researchers, although amathem-
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atician should have no problems with it. The change
of notation is unfortunate but essential: the traditional
matrix-vector notation is ssmply not powerful enough
to express many of the conceptsdiscussed here and be-
comesareal barrier to clear expression above acertain
complexity. However in my experience effort spent
learning the tensoria notation is amply repaid by in-
creased clarity of thought.

In origin this work dates from the initial project-
ive reconstruction papers of Faugeras & Maybank
[3], [6], [5]. The underlying geometry of the situation
was immediately evoked by those papers, although the
details took several yearsto gel. In that time there has
been a substantial amount of work on projective recon-
struction. Faugeras' book [4] is an excellent general
introduction and Maybank [15] providesamore math-
ematically oriented synthesis. Alternative approaches
to projective reconstruction appear in Hartley et.al. [9]
and Mohret.al. [17]. Luong & Viéville[14] have stud-
ied ‘canonic decompositions' of projection matrices
for multiple views. Shashua [19] has developed the
theory of the trilinear matching constraints, with input
fromHartley [8]. A brief summary of the present paper
appearsin[20]. In parallel with the current work, both
Werman & Shashua[22] and Faugeras& Mourrain [7]
independently discovered the quadrilinear constraint
and some of the related structure (but not the *big pic-
ture’ — the full joint image geometry). However the
deepest debt of the current paper isto time spent in the
Oxford mathematical physics research group lead by
Roger Penrose[18], whose notation | have * borrowed’
and whose penetrating synthesis of the geometric and
algebraic points of view has been a powerful tool and
a constant source of inspiration.

2. Conventionsand Notation

The world and images will be treated as projective
spaces and expressed in homogeneous coordinates.
Many equations will apply only up to scale, denoted
a ~ b. Theimaging process will be approximated by
a perspective projection. Optical effects such asradial
distortion and all the difficult problems of early vision
will beignored: we will basically assume that the im-
ages have aready been reduced to a smoldering heap
of geometry. When token matching between imagesis
required, divineintervention will be invoked (or more
likely a graduate student with a mouse).

Our main interest is in sequences of 2D images of
ordinary 3D Euclidean space, but when it is straight-
forward to generalize to D; dimensiona images of d
dimensional space we will do so. 1D ‘linear’ cameras
and projection within a 2D plane are also practically
important, and for clarity it is often easier to see the
general case first.

Our notation is fully tensorial with al indiceswrit-
ten out explicitly (c.f. appendix A). It is modelled
on notation developed for mathematical physics and
projective geometry by Roger Penrose [18]. Explicit
indices are tedious for simple expressions but make
complex tensor calculations much easier. Superscripts
denote contravariant (i.e. point or vector) indices, while
subscripts denote covariant (i.e. hyperplane, linear
form or covector) ones. Contravariant and covariant
indices transform inversely under changes of coordin-
ates so that the contraction (i.e. ‘dot product’ or sum
over al values) of a covariant-contravariant pair is in-
variant. The'Einstein summation convention’ applies:
when the same index symbol appearsin covariant and
contravariant positions it denotes a contraction (im-
plicit sum) over that index pair. For example T¢x®
and x*T¢ both stand for standard matrix-vector mul-
tiplication ), T¢x®. The repeated indices give the
contraction, not the order of terms. Non-tensorial la-
bels like image number are never implicitly summed
over.

Different types of index denote different space or
label types. This makes the notation a little barogue
but it helpsto keep things clear, especially when there
are tensors with indices in several distinct spaces as
will be common here. H® denotes the homogeneous
vector space of objects (i.e. tensors) with index type
x, while P* denotes the associated projective space of
such objects defined only up to nonzero scale: tensors
T* and AT in ‘H* represent the same element of
P® for al A # 0. We will not always distinguish
points of P* from their homogeneous representatives
in H*. Indices a,b,... denote ordinary (projectiv-
ized homogenized d-dimensional) Euclidean space P*
(a = 0,...,d), while A;, B;, ... denote homogen-
eous coordinatesin the D;-dimensional i" imagePAi
(4; = 0,...,D;). When there are only two images
A and A’ are used in place of A; and A;. Indices
i,j,.-..=1,...,m areimagelabels, whilep,q,... =
1,...,n are point labels. Greek indices o, 3, . .. de-
note the combined homogeneous coordinates of all the
images, thought of asasinglebig (D +m)-dimensional



jointimagevector (D = ", D;). Thisisdiscussed
in section 4.

The same base symbol will be used for ‘the same
thing’ in different spaces, for example the equations
x4 ~ P4ix® (i = 1,...,m) denote the projec-
tion of a world point x* € P® to m distinct image
points x4 € PA¢ viam distinct perspective projec-
tion matrices P:. These equations apply only up to
scaleand thereisan implicit summation over all values
ofa=0,...,d

We will follow the mathematicians convention
and use index 0 for homogenization, i.e. a Euc-
lidean vector (z'---2%)7 is represented projectively
as (1z'-- 2?7 rather than (z'---z?1)T. This
seems more natural and makes notation and coding
easier.

Tleb-<] denotes the result of antisymmetrizing the
tensor Teb¢ over al permutations of the indices
ab...c. For example Tl*t) = L(Te — Tbe). Inany
d + 1 dimensional linear space there is a unique-up-
to-scale d + 1 index alternating tensor 0= and
its dual €4,4,...4,- Up to scale, these have compon-
ents +£1 and 0 as agay - - - a, IS respectively an even
or odd permutation of 01...n, or not a permutation
at al. Any antisymmetric £ + 1 index contravariant
tensor Tl%-2 can be ‘dualized’ to an antisym-
metric d — k index covariant one (*T)a,,,..a; =

1 by H
T Eansraabeb T, and  vice versa

Tao--ak — ﬁ (*T)bk+1---bd ekarl---bdao---ak’
without losing information.

A k dimensional projective subspace of the d
dimensional projective space P* can be denoted
by either the span of any k& + 1 independent
points {x¢|i =0,...,k} in it or the intersection of
any d — k independent linear forms (hyperplanes)
{li|i = k+1,...,d} orthogona to it. The antisym-
metrictensorSXgl“ .. xZ’“] and lf“ail - -lgd] uniquely
define the subspace and are (up to scale) independent
of the choiceof pointsand formsand dual to each other.
They are called respectively Grassmann coor dinates
and dual Grassmann coor dinates for the subspace.
Read appendix A for more details on this.

3. PreludeinF

Asapreludeto thearduousgeneral case, wewill briefly
consider the important sub-case of a single pair of 2D
images of 3D space. The low dimensionality of this
situation allowsadightly simpler (but ultimately equi-
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valent) method of attack. We will work rapidly in
homogeneous coordinates, viewing the 2D projective
image spaces P4 and P4’ as 3D homogeneous vector
spaces HA and HA' (4 =10,1,2; A’ = 0,1',2') and
the 3D projectiveworld space P¢ asa4D vector space
H® (a = 0,...,3). The perspectiveimage projections
arethen 3 x 4 matrices P4 and P4 defined only up to
scale. Assuming that the projection matrices haverank
3, each has a 1D kernel that corresponds to a unique
world point killed by the projection: P4 e4 = 0 and
P2 e/ = 0. These points are called the centres of
projection and each projectsto the epipole in the op-
positeimage: e = PAe'* and e’ = PAe?. If the
centres of projection are distinct, the two projections
define a3 x 3 rank 2 tensor called the fundamental
matrix F 4 4+ [4]. Thismapsany givenimage point x4
(x*") toacorresponding epipolar linel4 ~ F 44 x4
(14 ~ F 44 x*") intheotherimage. Twoimagepoints
correspond in the sense that they could be the projec-
tions of a single world point if and only if each lies
on the epipolar line of the other: F4 4 x4x4 = 0.
The null directions of the fundamental matrix are the
epipoles: F4 4 e* = 0 and F 44 4 = 0, s0 every
epipolar line must pass through the corresponding epi-
pole. The fundamental matrix F 4 4. can be estimated
fromimage correspondenceseven whentheimage pro-
jections are unknown.

Two image vectors x* and x*" can be packed into
asingle 6 component vector x® = (x4 x4')T where
a=0,1,2,0",1',2". The space of such vectors will
be called homogeneousjoint image space H*. Quo-
tienting out the overall scale factor in 7 produces a
5 dimensional projective space called projectivejoint
image space P*. The two 3 x 4 image projection
matrices can be stacked into asingle 6 x 4 joint pro-
jection matrix P2 = (P4 PA')T. If the centres of
projectionaredistinct, no pointin P issimultaneously
killed by both projections, so the joint projection mat-
rix has a vanishing kernel and hence rank 4. This
impliesthat thejoint projection isanonsingular linear
bijection from #® onto its image space in H*. This
4 dimensional image space will be called the homo-
geneousjoint image Z¢. Descendingto P¢, the joint
projection becomes a bijective projective equivalence
between P and the projectivejoint image PZ* (the
projection of Z% into P%). The projection of PZ*
to each image is just atrivial deletion of coordinates,
so the projective joint image is a complete project-
ive replica of the world space in image coordinates.
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Unfortunately, PZ¢ is not quite unique. Any rescal-
ing {P2, P2} — {AP2, NP2} of the underlying
projection matrices produces a different but equivalent
space PZ“. However modulo this arbitrary choice of
scaling the projectivejointimageiscanonically defined
by the physical situation.

Now suppose that the projection matrices are un-
known but the fundamental matrix has been estimated
from image measurements. Since F hasrank 2, it can
be decomposed (non-uniquely!) as

uyg ua

Faiag = ugvay —vauy = Det< S >
where uy £ vy and uy ¢ vy are two pairs of
independent image covectors. It is easy to see that
uy ¢ uy andvy « vy areactualy pairsof corres-
ponding epipolar lines'. Interms of joint image space,
theu’sand v’s can beviewed asapair of 6 component
covectorsdefining a4 dimensional linear subspace 7¢
of H“ viathe equations:

7o = xA, | uy x4+ uy XAI,
- x4 vaixA+ vy x4
() () =)
= A/ = 0
VA Var X
Trivial use of the constraint equations shows that any
point (x4 x4')T of Z® automatically satisfies the epi-

polar constraint F 4 4 x4x*" = 0. Infact, given any
(x4 x4)T € 1, theequations

0 = (a4 ua A xA
= VA Var )\/ XA/
uax?A ugx? A
vaxA vaxA N

have anontrivial solution if and only if

A A’
, usx® ugx
Faa x4 = Det 4 " 4 v ) =0
vVaX VaAX

In other words, the set of matching point pairs in the
two images is exactly the set of pairs that can be res-
caedtolieinZ®. Uptoarescaling, thejointimageis
the set of matching pointsin the two images.

A priori, Z® depends on the choice of the decom-
position F 44+ = uy va — v ugu . Infact appendix

B shows that the most general redefinition of the u’s
and v’'sthat leaves F unchanged up to scaleis

uy ug uy ug /A 0
<VA VA/>—>A<VA vAr>< 0 1/)\’>

where A is an arbitrary nonsingular 2 x 2 matrix and
{A, \'} are arbitrary nonzero relative scale factors. A
isalinear mixing of the constraint vectors and has no
effect onthelocation of Z¢, but A and \’ represent res-
calings of the image coordinates that move 7% bodily
according to

x4 . A xA
x4 N xA

Hence, given F and an arbitrary choice of the relative
image scaling the joint image Z© is defined uniquely.

Appendix B aso shows that given any pair of
nonsingular projection matrices P2 and P2 com-
patible with F 44/ in the sense that the projection
of every point of P satisfies the epipolar constraint
Faa PAP{ x°x® = 0, the T arising from fac-
torization of F is projectively equivalent to the Z¢
arising from the projection matrices. (Here, nonsin-
gular means that each matrix has rank 3 and the joint
matrix has rank 4, i.e. the centres of projection are
unique and distinct). In fact there is a constant res-
caing {P4,PA'} — {APA, X P4} that makes the
two coincide.

In summary, the fundamental matrix can be fac-
torized to define a three dimensional projective sub-
space PZ* of the space of combined image coordin-
ates. PZ™ is projectively equivalent to the 3D world
and uniquely defined by the images up to an arbitrary
choice of a single relative scale factor. Projective re-
construction in PZ¢ is smply a matter of rescaling
the homogeneous image measurements. This paper
investigates the geometry of PZ* and its multi-image
counterparts and argues that up to the choice of scale
factor, they providethe natural canonical projectivere-
construction of theinformationin theimages: all other
reconstructionsare merely different ways of looking at
the information contained in PZ<.

4. Too Many Joint Images
Now consider thegeneral caseof projectionintom > 1

images. We will model the world and images re-
spectively as d and D; dimensional projective spaces
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Fig. 1. The various joint images and projections.

P ((l = O,d) and PAi (Az = 0,...,D;,
i = 1,...,m) and use homogeneous coordinates
everywhere. It may appear more natura to use Eu-
clidean or affine spaces, but when it comesto discuss-
ing perspective projection it is simpler to view things
as(fragmentsof) projectivespace. Theusual Cartesian
and pixel coordinatesare till inhomogeneouslocal co-
ordinate systems covering almost all of the projective
world and image manifolds, so projectivization does
not change the essential situation too much.

In homogeneous coordinates the perspectiveimage
projections are represented by homogeneous (D; +
1) x (d + 1) matrices {P2i|i = 1,...,m} that take
homogeneous representatives of world points x* €
P to homogeneous representatives of image points
x4 ~ PAix® ¢ PA:, The homogeneous vectors and
matrices representing world points x*, image points
x4 and projections P/ are each defined only up
to scale. Arbitrary nonzero rescalings of them do
not change the physical situation because the rescaled
world and image vectors still represent the same points
of the underlying projective spaces P* and P4¢, and
the projection equations x4 ~ P2 ill hold up to
scale.

Any collection of m image points
{xA4i|i =1,...,m} can be viewed as a single point
in the Cartesian product P41 x P42 x ... x PAn

of the individual projective image spaces. Thisis a
D = " D, dimensiona differentiable manifold
whose local inhomogeneous coordinates are just the
combined pixel coordinates of al the image points.
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Since any m-tuple of matching pointsisan element of
PALx. .. xPAm it may seemthat thisspaceisthenat-
ural arena for multi-image projective reconstruction.
Thisisalmost true but we need to be alittle more care-
ful. Although most world points can be represented by
their projectionsin P41 x ... x P4 the centres of
projection are missing because they fail to project to
anything at all intheir ownimages. To represent these,
extrapoints must be glued onto P4t x - .. x PAm,

When discussing perspective projectionsit is con-
venient to introduce homogeneouscoordinates. A sep-
arate homogenizer is required for each image, so the
result isjust the Cartesian product 41 x HA2 x -+ - x
HAm of the individual homogeneous image spaces
HAi. Wewill call this D +m dimensional vector space
homogeneousjoint image space H*. By quotienting
out the overall scalefactor in 4“ in the usual way, we
can view it asa D + m — 1 dimensional projective
space P> called projectivejoint image space. Thisis
a bona fide projective space but it still contains the ar-
bitrary relative scale factors of the component images.
A point of 1 can be represented as a D + m com-
ponent column vector x* = (x4t .- x4m)T where
the x4¢ are homogeneous coordinate vectors in each
image. We will think of the index « as taking values
01,11,...,D;,0;41, ..., Dy, wherethesubscriptsin-
dicate the image the coordinate came from. An indi-
vidual image vector x4 can be thought of as a vector
in H* whose non-image-i components vanish.

Sincethe coordinatesof eachimageareonly defined
up to scale, the natural definition of the equivalence
relation‘~’ on 4 is‘equality up to individual rescal-
ings of the component images: (x4t - x4m)T ~
(A x4t oo A, xAm) T foral {\; # 0}. Solong as
noneof thex“: vectorsvanish, the equivalence classes
of ‘~’ are m-dimensional subspaces of ‘H* that cor-
respond exactly to the points of P41 x --. x PAm,
However when some of thex* vanish the equivalence
classes are lower dimensional subspaces that have no
corresponding point in P4t x .. x PAm=_ We will
call theentire stratified set of equivalenceclasses fully
projective joint image space FP*. Thisisbasicaly
PAL x .. x PAm augmented with the lower dimen-
sional product spaces P4 x - - - x P4 for each proper
subset of imagesi, . . ., j. Most world points project to
‘regular’ pointsof FP* in PAt x .. x PAm but the
centres of projection project into lower dimensional
fragmentsof FP°.



6 Bill Triggs

A set of perspective projections into m projective
images P defines a unique joint projection into
thefully projectivejoint projectiveimage space FP“.
Given an arbitrary choice of scaling for the homo-
geneous representatives {P2i |i = 1,...,m} of the
individual image projections, the joint projection can
be represented as asingle (D + m) x (d + 1) joint
projection matrix

Pl
D HY — HE

pn

which defines a projective mapping between the un-
derlying projective spaces P* and P<. A rescaling
{P4} — {\; P/} of the individual image projec-
tion matrices does not change the physical situation
or the fully projective joint projection on FP%, but
it does change the joint projection matrix P¢ and the
resulting projections from H to H* and from P° to
P<. An arbitrary choice of the individual projection
scalings is aways necessary to make things concrete.

Given a choice of scaling for the components of
P%, the image of H” in H® under the joint projec-
tion P% will be called the homogeneous joint im-
age Z®. Thisis the set of joint image space points
that are the projection of some point in world space:
{P%x® € H*| x* € H"}. InZ*, each world point is
represented by its homogeneous vector of image co-
ordinates. Similarly we can define the projective and
fully projective joint images PZ¢ and FPI“ asthe
images of the projective world space P in the pro-
jective and fully projective joint image spaces P and
FP* under the projective and fully projective joint
projections. (Equivalently, PZ* and FPZ“ are the
projectionsof Z% to P and FP?).

If the (D + m) x (d + 1) joint projection matrix
P¢ hasrank less than d + 1 it will have a nontrivial
kernel and many world pointswill project to the same
set of image points, so unique reconstruction will be
impossible. Ontheother handif P¢ hasrank d+1, the
homogeneous joint image Z¢ will bead + 1 dimen-
sional linear subspace of 1 and P¢ will be anonsin-
gular linear bijection from #* onto Z*. Similarly,
the projective joint projection will define a nonsingu-
lar projectivebijection from P* ontothed dimensional
projectivespace PZ* and thefully projectivejoint pro-
jection will be abijection (and at most points adiffeo-
morphism) from P* onto FPZ* in FP*. Structure
in P* will be mapped bijectively to projectively equi-

valent structurein PZ%, so PZ* will be ‘as good as
P as far as projective reconstruction is concerned.
Moreover, projection from PZ to the individual im-
agesisatrivial throwing away of coordinatesand scale
factors, so structurein PZ* has avery direct relation-
ship with image measurements.

Unfortunately, although PZ“ is closely related to
the images it is not quite canonically defined by the
physical situation becauseit moveswhentheindividual
image projection matrices are rescaled. However, the
truly canonical structure — the fully projective joint
image FPZ* — hasacomplex stratified structure that
isnot so easy to handle. When restricted to the product
spacePA1 x- .. x PAm  FPI*isequivaenttothepro-
jective space P* with each centre of projection ‘blown
up’ to the corresponding image space P4:. The miss-
ing centres of projection lie in lower strata of FP<.
Given this complication, it seems easier to work with
the simple projective space PZ“ or its homogeneous
representative 7* and to accept that an arbitrary choice
of scale factorswill be required. We will do thisfrom
now on, but it isimportant to verify that this arbitrary
choice does not affect the final results, particularly as
far as numerical methods and error models are con-
cerned. It isalso essential to redlize that although for
any one point the proj ection scalefactors can be chosen
arbitrarily, once they are chosen they apply uniformly
to all other points: no matter which scaling is chosen,
thereisa strong coherence between the scalings of dif-
ferent points. A central theme of this paper is that the
essence of projective reconstruction is the recovery of
this scale coherence from image measurements.

5. TheJoint Image Grassmannian Tensor

We can view thejoint projection matrix P¢ (with some
choice of the internal scalings) in two ways. (i) as a
collection of m projection matrices from P¢ to the
m images P4i; (ii) asaset of d+ 1 (D + m)-
component column vectors {P%|a =0,...,d} that
span the joint image subspace 7@ in H*. From the
second point of view the images of the standard basis
{(10---0)7,(01---0)",...,(00---1) T} forHe (i.e.
the columns of P%) form a basis for Z¢ and a
set of homogeneous coordinates {z%|a =0,...,d}
can be viewed either as the coordinates of a point
x® in P® or as the coordinates of a point P¢x*
in Z* with respect to the basis {P%|a =0,...,d}.
Similarly, the columns of P2 and the (d + 2)™¢
column Zz:o PS¢ form a projective basis for PZ*



that is the image of the standard projective basis
{(10---0)7,...,(00---1) T, (11---1) T} for Pe.

This means that any reconstruction in P* can be
viewed asreconstructioninPZ“ with respect to a par-
ticular choice of basisthere. Thisisimportant because
wewill seethat (up to achoiceof scalefactors) PZ% is
canonically defined by the imaging situation and can
be recovered directly from image measurements. In
fact we will show that theinformationin the combined
matching constraintsis exactly the location of the sub-
space PZ® in P, and thisis exactly the information
we need to make a canonical geometric reconstruction
of P*inPZ* fromimage measurements.

By contrast we can not hope to recover the basisin
P2 or theindividual columnsof P¢ by imagemeasure-
ments. In fact any two worlds that project to the same
jointimage areindistinguishable so far asimage meas-
urements are concerned. Under an arbitrary nonsingu-
lar projectivetransformation x® — %% = (A~1)®, x*
between P and some other world space P*', the pro-
jection matrices (and hence the basis vectorsfor PZ%)
must change according to P& — P2, = Py A, to
compensate. The new basis vectors are a linear com-
bination of the old ones so the space PZ* they span
is not changed, but theindividual vectors are changed:
all we can hopeto recover from the imagesis the geo-
metric location of PZ“, not its particular basis.

But how can we specify the location of PZ geo-
metrically? We originally defined it as the span of the
columns of the joint projection P&, but that is rather
inconvenient. For onething PZ dependsonly on the
span and not on the individual vectors, so it is redund-
ant to specify every component of P¢. What isworse,
the redundant components are exactly the things that
can not be recovered from image measurements. It is
not even clear how we would use a ‘span’ even if we
did manageto obtainit.

Algebraic geometers encountered this sort of prob-
lem long ago and developed a useful partial solu-
tion called Grassmann coordinates (see appendix
A). Recdll that [a---¢] denotes antisymmetrization
over al permutations of the indices a---c¢. Given
k + 1 independent vectors {x¢|i=0,...,k} in a
d + 1 dimensional vector space H?, it turns out that
the antisymmetric & + 1 index Grassmann tensor
X0k = xg‘“’ e xzk] uniquely characterizes the
k + 1 dimensiona subspace spanned by the vectors
and (up to scale) does not depend on the particular
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vectors of the subspace chosen to define it. In fact
apoint y lies in the span if and only if it satisfies
xl@oakyari1] = 0 andundera(k +1) x (k+1) lin-
ear redefinition A’ of the basiselements {x{ }, x@0 "2
issimply rescaled by Det(A). Uptoscale, thecompon-
ents of the Grassmann tensor arethe (k + 1) x (k+1)
minorsof the (d+ 1) x (k + 1) matrix of components
of the x{.

The antisymmetric tensors are globa coordinates
for the k& dimensional subspaces in the sense that
each subspace is represented by a unique (up to scale)
Grassmann tensor. However the parameterization is
highly redundant: for 1 < k < d-2thek +1
index antisymmetric tensors have many more inde-
pendent components than there are degrees of free-
dom. In fact only the very special antisymmetric
tensorsthat can be written in the above ‘simple’ form
X[ ---x‘,;k] specify subspaces. Those that can are
characterized by the quadratic Grassmann simplicity
relationsx o lax xbobr] = g,

Inthe present casethe d + 1 columnsof P¢ specify
the d dimensional joint image subspace PZ“. Instead
of antisymmetrizing over theimage spaceindices a we
can get the same effect by contracting the world space
indicesa withthed + 1 dimensional alternating tensor.
Thisgivesthed + 1 index antisymmetric joint image
Grassmannian tensor

Qoo d — 1 ap ar aq agalaq
I — (d+1)! Pfl(] Plll Plld €

~ Plopo... Pg‘d]

Although we have defined the Grassmann tensor in
terms of the columns of the projection matrix basisfor
PZ~, itis actualy an intrinsic property of PZ¢ that
defines and is defined by it in a manner completely
independent of the choice of basis (up to scale). In
fact we will see that the Grassmann tensor contains
exactly the same information as the complete set of
matching constraint tensors. Since the matching con-
straints can be recovered from image measurements,
the Grassmann tensor can be too.

Asasimpletest of plausibility, let us verify that the
Grassmann tensor hasthe correct number of degrees of
freedom to encode the imaging geometry required for
projective reconstruction. The geometry of an m cam-
eraimaging system can be specified by giving each of
the m projection mappings modulo an arbitrary over-
all choice of projectivebasisin P¢. Upto an arbitrary
scale factor, a (D; + 1) x (d + 1) projection matrix
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isdefined by (D; + 1)(d + 1) — 1 parameterswhile a
projectivebasisin P has (d+1)(d+ 1) — 1 degreesof
freedom. The m cameraprojective geometry therefore
has

i((Di+1)(d+1)—1> - ((d+1)*-1)
- = D+m-d-1)(d+1)-m+1

independent degrees of freedom. For example 11m —
15 parameters are required to specify the geometry of
m 2D cameras viewing 3D projective space[14].
The antisymmetric Grassmann tensor I “°"~%¢ has
(1) linearly independent components. However
the quadratic Grassmann relations reduce the num-
ber of algebraically independent components to the
dimension (D + m — d — 1)(d + 1) of the space
of possible locations of the joint image Z¢ in P<.
(Joint image locationsare locally parameterized by the
((D+4+m)—(d+1)) x (d+ 1) matrices, or equival-
ently by givingd + 1 (D + m)-component spanning
basis vectorsin P modulo (d + 1) x (d + 1) linear
redefinitions). The overall scale factor of 140" has
already been subtracted fromthis count, but it still con-
tainsthem — 1 arbitrary relative scale factors of them
images. Subtracting theseleavesthe Grassmann tensor
(or the equivalent matching constraint tensors) with
(D+m—-d—1)(d+1) —m + 1 physicaly mean-
ingful degrees of freedom. This agrees with the above
degree-of-freedom count based on proj ection matrices.

6. Reconstruction Equations

Suppose we are given a set of m image points
{x4i]i=1,...,m} that may correspond to an un-
known world point x® via some known projection
matrices P2Ai. Can the world point x® be recovered,
and if so, how?

As usual we will work projectively in homogen-
eous coordinates and suppose that arbitrary nonzero
scalings have been chosen for the x4: and P#:. The
image vectors can be stacked into a D + m component
joint homogeneousimage vector x* and the projection
matrices can be stacked intoa (D + m) x (d+ 1) com-
ponent joint homogeneous projection matrix, where d
istheworld dimensionand D = }_" | D; isthe sum
of the image dimensions.

Any candidate reconstruction x* must project to
the correct point in each image: x4 ~ PZ x?. In-

serting variables {)\;|i = 1,...,m} to represent the
unknown scale factors gives m homogeneous equa-
tions P4 x* — \; x* = 0. These can be written as
asingle (D + m) x (d + 1 + m) homogeneouslinear
system, the basic reconstruction eguations:

x4 0 .. 0 XA
0 x% ... 0 !
pe | X2 | =0
0 0 - xAm /\
—A\m

Any nonzero solution of these equations gives a re-
constructed world point x® consistent with the image
measurements x4, and also provides the unknown
scalefactors {\; }.

These equationswill be studied in detail in the next
section. However we can immediately remark that if
there are less image measurements than world dimen-
sions (D < d) there will be at least two more free
variables than equations and the solution (if it exists)
can not be unique. So from now onwerequire D > d.

On the other hand, if there are more measurements
thanworlddimensions(D > d) thesystemwill usually
be overspecified and a solution will exist only when
certain constraints between the projection matrices
P4 and the image measurements x“¢ are satisfied.
We will call these constraints matching constraints
and the inter-image tensors they generate matching
tensors. The simplest example is the epipolar con-
straint.

It is also clear that there is no hope of a unique
solution if the rank of the joint projection matrix P¢
is less than d + 1, because any vector in the kernel
of P% can be added to a solution without changing
the projection at all. So we will aso require the joint
projection matrix to have maximal rank (i.e. d + 1).
Recall that thisimpliesthat thejoint projection P¢ isa
bijection from P* onto its image the joint image PZ*
inP<. (Thisis necessary but not always sufficient for
a unique reconstruction).

Intheusual 3D—2D casetheindividual projections
are 3 x 4 rank 3 matrices and each has a one dimen-
sional kernel: the centre of projection. Provided there
are a least two distinct centres of projection among
the image projections, no point will project to zero in
every image and the joint projection will have a van-
ishing kernel and hence maximal rank. (It turns out
that in this case Rank(P¢) = 4 isalso sufficient for a
unigue reconstruction).



Recalling that the joint projection columns
{P%la=0,...,d} form a basis for the homogen-
eous joint image Z@ and treating the x*i as vectors
in H* whose other components vanish, we can inter-
pret the reconstruction equations as the geometrical
statement that the space spanned by the image vec-
tors {x4i|i =1,...,m}inH® mustintersect 7. At
the intersection there is a point of A that can be ex-
pressed: (i) asarescaling of the image measurements
S°; A xAi; (i) as a point of Z* with coordinates x®
inthebasis {P%| a =0,...,d}; (iii) asthe projection
into Z* of aworld point x* under P. (Since H* is
isomorphicto Z¢ under P¢, thelast two pointsof view
are equivaent).

This construction is important because although
neither the coordinate systemin #® nor the columnsof
P& can be recovered from image measurements, the
joint image Z¢ can be recovered (up to an arbitrary
choice of relative scaling). In fact the content of the
matching constraintsis precisely the location of Z¢ in
‘H®. Thisgivesacompletely geometric and almost ca-
nonical projective reconstruction technique in Z¢ that
requires only the scaling of joint image coordinates.
A choice of basisin Z is necessary only to map the
construction back into world coordinates.

Recalling that the joint image can belocated by giv-
ing its Grassmann coordinatetensor I *°**” andthat in
terms of thisa point liesin the joint image if and only
if 1[*%7 x9] = 0, the basic reconstruction system is
equivalent to the following joint image reconstruc-
tion equations

I [aB v (Z \; XAi]) -0
i=1

This is a redundant system of homogeneous linear
equations for the \; given the I®%"7 and the x4:.
It will be used in section 10 to derive implicit ‘ recon-
struction’ methods that are independent of any choice
of world or joint image basis.

Thereisyet another form of thereconstruction equa-
tions that is more familiar and compact but dightly
less symmetrical. For notational convenience suppose
that x% # 0. (We use component 0 for normaliz-
ation. Each image vector has at least one nonzero
component so the coordinates can be relabelled if ne-
cessary so that x% # 0). The projection equations
P2 x® = \; x? can be solved for the 0" component
togive \; = (P% x*)/x%. Substituting back into the
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projection equations for the other components yields
the following constraint equations for x® in terms of
x4 and P/

(XO" PAi — x4 P?li) x*=0

(Equivalently, x4 ~ PAi x@ impliesx4: PP xo =
0, and the constraint follows by setting B; = 0;).
Each of these equations constrainsx* to liein ahyper-
plane in the d-dimensiona world space. Combining
the congtraints from all the images gives the follow-
ing D x (d + 1) system of reduced reconstruction
equations:

x"1 P4 — x4 P%

x0m Pl — xAm POm (Ai=1,...,D;)
Again asolution of these equationsprovidesthe recon-
structed homogeneous coordinates of aworld point in
terms of image measurements, and again the egqua-
tionsare usualy overspecified when D > d. Provided
x% = 0 the reduced equations are equivalent to the
basic ones. Their compactness makes them attractive
for numerical work, but their lack of symmetry makes
them less suitable for symbolic derivations such asthe
extraction of the matching constraints. In practiceboth
representations are useful.

7. Matching Constraints

Now we are finally ready to derive the constraints that
a set of image points must satisfy in order to be the
projections of some world point. We will assume that
there are more image than space dimensions (D > d)
(if not there are no matching constraints) and that the
joint projection matrix P hasrank d + 1 (if not there
are no unique reconstructions). We will work fromthe
basic reconstruction equations, with odd remarks on
the equivalent reduced case.

Ineither casethereare D —d—1 moreequationsthan
variables and the reconstruction systems are overspe-
cified. Theimage pointsmust satisfy D — d additional
independent constraintsfor thereto beasolution, since
onedegreeof freedomislost intheoverall scalefactor.
For exampleintheusual 3D— 2D casethereare2m —3
additional scalar congtraints: one for the first pair of
images and two more for each additional image.

An overspecified homogeneous linear system has
nontrivial solutions exactly when its coefficient mat-
rix is rank deficient, which occurs exactly when al of
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its maximal-size minors vanish. For generic sets of
image pointsthe reconstruction systemstypically have
full rank: solutionsexist only for the special setsof im-
agepointsforwhichall of the (d+m+1) x (d+m+1)
minorsof thebasic (or (d+ 1) x (d + 1) minorsof the
reduced) reconstruction matrix vanish. These minors
are exactly the matching constraints.

In either case each of the minors involves al
d + 1 (world-space) columns and some selection of
d + 1 (image-space) rows of the combined projec-
tion matrices, multiplied by image coordinates. This
means that the constraints will be polynomials (i.e.
tensors) in the image coordinateswith coefficientsthat
are(d+1) x (d+1) minorsof the (D +m) x (d+ 1)
joint projection matrix Po. We have aready seen in
section 5that theseminorsare precisely the Grassmann
coordinates of the joint image 7, the subspace of ho-
mogeneous joint image space spanned by the d + 1
columns of P¢. The complete set of these defines Z*
in amanner entirely independent (up to a scale factor)
of the choice of basisin 7¢: they are the only quantit-
iesthat could have appeared if the equationswereto be
invariant to this choice of basis (or equivaently, to ar-
bitrary projective transformations of the world space).

Each of the (d + m + 1) x (d + m + 1) minors of
the basic reconstruction system contains one column
from each image, and hence is linear in the coordin-
ates of each image separately and homogeneous of
degree m in the combined image coordinates. The
final constraint equationswill be linear in the coordin-
ates of each imagethat appearsin them. Any choice of
d+ m + 1 of the D + m rows of the matrix specifiesa
minor, so naively thereare (") distinct constraint
polynomials, although the ssimple degree of freedom
count given above shows that even in this naive case
only D — d of these can be algebraically independ-
ent. However the reconstruction matrix has many zero
entries and we need to count more carefully.

Each row comes from (contains components from)
exactly oneimage. Theonly nonzero entriesin theim-
agei column arethosefromimages itself, so any minor
that does not include at least one row from each image
will vanish. Thisleavesonly d+1 of them+d+1 rows
free to apportion. On the other hand, if a minor con-
tainsonly onerow from someimage— say thex“: row
for some particular valuesof 7 and A; — it will Simply
be the product of +x4¢ and an m — 1 image minor
because x4¢ is the only nonzero entry in its image i
column. But exactly the same (m — 1)-image minor

will appear in several other m-image minors, one for
each other choice of the coordinate A; = 0,..., D;.
At least one of these coordinates is nonzero, so the
vanishing of the D; + 1 m-image minorsis equivalent
to the vanishing of the single (m — 1)-image one.

Thisalowsthe full set of m-image matching poly-
nomialsto be reduced to termsinvolving at most d + 1
images. (d+ 1 becausethereareonly d+1 sparerowsto
shareout). Inthe standard 3D— 2D casethisleavesthe
following possibilities (i # j # k #1 =1,...,m):
(i) 3 rowseachinimagesi and j; (ii) 3 rowsinimage
i, and 2 rows each in images j and k; and (iii) 2 rows
each in images i, j, k and I. We will show below
that these possibilities correspond respectively to fun-
damental matrices(i.e. bilinear two image constraints),
Shashua'strilinear three-image constraints [19], and a
new quadrilinear four-image constraint. For 3 dimen-
sional space this is the complete list of possibilities:
there are no irreducible k-image matching constraints
fork > 4.

We can look at al this in another way. Con-
sider thed + m + 1 (D + m)-component columns
of the reconstruction system matrix.  Temporar-
ily writing x¢ for the image ¢ column whose
only nonzero entries are x4, the columns are
{P%a=0,...,d} and {x}|i=1,...,m} and we
can form them into a d + m + 1 index antisymmet-
fic tensor P ... PSax ... x8] Up to scale, the
components of this tensor are exactly the possible
(d+m +1) x (d +m + 1) minors of the system
matrix. The term x§* vanishes unless « is one of the
components A;, so we need at least one index from
eachimageintheindex setag, ..., aq, 81, - .-, Bm. If
only one component from image i is present in the set
(B; say, for some fixed value of B;), we can extract
an overall factor of xP: as above. Proceeding in this
way the tensor can be reduced to irreducible terms of
theform P - PSexPix 7 .. x*|. Thesecontain
anythingfrom2tod+1 distinctimagesi, j, ..., k. The
indices «y, ..., a4 are an arbitrary choice of indices
from images i, j, ..., k in which each image appears
at least once. Recalling that up to scale the compon-
ents of the joint image Grassmannian I *°"*¢ are just
plo.. -Pgd], and dropping the redundant subscripts
onthex;', we can write the final constraint equations

in the compact form



wherei, j, ..., k containsbetween 2 and d + 1 distinct
images. The remaining indices « - - -  can be chosen
arbitrarily from any of theimagesi, j, . . ., k, up to the
maximumof D; + 1 indicesfromeachimage. (NB: the
xBi stand for m distinct vectors whose non-i compon-
ents vanish, not for the single vector x* containing all
theimage measurements. SinceI *°"“¢ jsalready an-
tisymmetric and permutations that place a non-i index
on xBi vanish, it is enough to antisymmetrize separ-
ately over the components from each image).

Thisis all rather intricate, but in three dimensions
the possibilities are as follows (i # j # k # | =
1,...,m):

I[A,'B,'Aij XC,'XCj] — 0
I[AiBiAjAk XCiXB]'XBk] — 0
I[AiAjAkAl XBiXBjXBkXBl] — 0

These represent respectively the epipolar constraint,
Shashua’strilinear constraint and the new quadrilinear
four image constraint.

We will discuss each of these possibilities in de-
tail below, but first we take a brief look at the con-
straints that arise from the reduced reconstruction sys-
tem. Eachrow of thissystemislinear inthecoordinates
of oneimageand in the corresponding rows of thejoint
projection matrix, so each (d + 1) x (d + 1) minor can
be expanded into a sum of degree d + 1 polynomia
termsin theimage coordinates, with (d + 1) x (d+1)
minors of the joint projection matrix (Grassmann co-
ordinates of PZ*) as coefficients. Moreover, any term
that containstwo non-zeroth coordinatesfrom thesame
image (say A; # 0 and B; # 0) vanishes because the
row PY appearstwicein the corresponding coefficient
minor. So each termisat most linear in the non-zeroth
coordinates of each image. If k; isthetotal number of
rows from the i** image in the minor, thisimplies that
the zeroth coordinate x°: appears either k; or k; — 1
times in each term to make up the total homogeneity
of k; in the coordinates of the i** image. Throwing
away the nonzero overall factors of (x%)*~! |eaves
a congtraint polynomial linear in the coordinates of
each image and of total degree at most d + 1, with
(d+1) x (d+ 1) minorsof the joint projection matrix
as coefficients. Closer inspection shows that these are
the same as the constraint polynomials found above.
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7.1. Bilinear Constraints

Now we restrict attention to 2D images of a 3D world
and examine each of the three constraint typesin turn.
First consider the bilinear joint image Grassmannian
congtraint I[P1¢1B2C23 41342 — 0 where as usual
197 = L pep)PIP) e*°!. Recdling that it is
enough to antisymmetrize over the components from
each image separately, the epipolar constraint becomes

X[Al IB1C1][BZCZ XAQ] -0

Dualizing both sets of antisymmetric indices by con-
tractingwith € 4, B, ¢, € 4, B, givestheepipolar con-
straint the equivalent but more familiar form

0 = Fa,a, xA1xA2

_ 1 A B C
= 14 (SAIBICIX 1Pa1Pb1)'

A B C bed
'(EAQBQCQX ZPCZsz) gave

where the 3 x 3 = 9 component bilinear constraint
tensor or fundamental matrix F 4, 4, isdefined by

—_ 1 B1C1B2C>
FA1A2 = 71€A:Bi4 SAQBQCZI tEe

_ 1 BipC
— 1.4 (eAlBlclpalpbl)'
B>y pC
. (EAQBQCQPCQPdQ) eabcd

[ BiC1B2C A1B1C1 g A2 B>Co

= Fa,a,€

Equivalently, the epipolar constraint can be derived
by direct expansion of the 6 x 6 basic reconstruction
system minor

Pl xh 0
Det < Pg‘g 0 XA2 = 0

Choosing the image 1 rows and column and any two
columns a and b of P givesa 3 x 3 sub-determinant
e Bc,xMPBIPCT The remaining rows and
columns(for image 2 and the remaining two columnsc
and d of P, say) givethe factor e 4, 5,c, x> P22 P>
multiplying this sub-determinant in the determinantal
sum. Antisymmetrizing over the possible choicesof a
through d givesthe above hilinear constraint equation.
When there are only two images, F' can aso be writ-
ten astheinter-image part of the P (six dimensional)
dual FA1A2 = % €A,B1C1A2B>C5 I BIOIBZCQ. Thisis
why it was generated by the 6 — 4 = 2 six dimensional
constraint covectorsu,, and v,, for Z¢ in section 3.
The bilinear constraint equation
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A B c
0 = (EAlBchX 1Palel)-

. (eAQBQCQ XAQPCBQPdCZ) Eade

can be interpreted geometrically as follows. The du-
alization e ypc x* converts an image point x4 into
covariant coordinates in the image plane. Roughly
speaking, thisrepresentsthe point asthe pencil of lines
through it: for any two lines 14 and m4 through x4,
the tensor 1 sm; is proportional to e apc x*. Any
covariant image tensor can be ‘pulled back’ through
the linear projection P2 to a covariant tensor in 3D
space. An image line 14 pulls back to the 3D plane
1, = 1, P through the projection centre that projects
to the line. The tensor € 4z x* pulls back to the 2
index covariant tensor x,] = eapc x* PPPS. This
is the covariant representation of alinein 3D: the op-
tical ray through x#. Given any two lines x(,; and
¥Y[ap) N 3D space, the requirement that they intersect
iSXgap Yeq €20¢4 = 0. So the above bilinear constraint
equation redlly is the standard epipolar constraint, i.e.
the requirement that the optical rays of the two im-
age points must intersect. Similarly, the F 4, 4, tensor
really is the usual fundamental matrix. Of course this
can also beillustrated by explicitly writing out terms.

7.2. Trilinear Constraints

Now consider the trilinear, three image Grassmannian
constraint I 1B1€18283s y Aix Ay As] — 0 Thiscorres-
pondsto a7 x 7 basic reconstruction minor formed
by selecting al three rows from the first image and
two each from the remaining two. Restricting the an-
tisymmetrization to each image and contracting with
€4,B,c, Oivesthetrilinear constraint

xA1xl4z2 GAIBQMB3 x4 =0
wherethe3 x 3 x3 = 27 component trilinear constraint
tensor G 4, 124 is defined by

AxAz _— 1 B1C1A2A
GA1 2 3:§€A1B1011 101 A2A43

_ 1 BipCi As PA3 _abed
= L (eAlBlClPale ) pA2 P ¢
IA1B1A2A3 — G01A2A3 cC1A1B,

Dualizing theimage 2 and 3indicesby contracting with
€A.B.C» €A3B5C5 JiVES the constraint the alternative

form

BoBs Ay As A
0 = €4,B,Cy €EA3By05 - Gay o0 - xXTIXTPXT

_ 1 AL pBipCi
= 2a (EAlBchX PPy )
AspBa AspB bed
-(EAQBQC,ZX ’ZPC") (€A3B303X 3Pd3) g

These equations must hold for all 3 x 3 = 9 values
of the free indices Cy and C3. However when Cs is
projected along the x direction or Cs is projected
along the x“3 direction the equations are tautological
because, for example, € 4, 5,0, x4?2x“2 = 0. Sothere
areactually only 2 x 2 = 4 linearly independent scalar
congtraints among the 3 x 3 = 9 equations, corres-
ponding to the two image 2 directions ‘ orthogonal’ to
x*2 and the two image 3 directions ‘orthogona’ to
x“3, However, each of the 3 x 3 = 9 constraint equa-
tionsand 3% = 27 components of the constraint tensor
are‘activated’ for some x4, so none can be discarded
outright.

The constraint can al so be writtenin matrix notation
as follows (c.f. [19]). The contraction x4t G 4, 424
has free indices A, A3 and can be viewed asa 3 x 3
matrix [G x;], and the fragments € 4,5,c, x4 and
€4,B,0, X3 can be viewed as 3 x 3 antisymmet-
ric ‘cross product’” matrices [x,],, and [x3], (where
x X y = [x], y forany 3-vector y). The constraintis
then given by the 3 x 3 matrix equation

[x2], [Gx1] [x3], = Og3x3y

The projectionsalong xJ (on the left) and x3 (on the
right) vanish identically, so again there are only 4 lin-
early independent equations.

Thetrilinear constraint formula

xA1xl4z GAIBZ][B3 x4l = 0

also implies that for all values of the free indices
[A2B2] (Or dually 02)

Ag Aiglds @, BalAs
1

X ~ X

~ E€CyA,B, XAIXAQ GA1 B2 A3
More precisely, for matching x4* and x> the quant-
ity xA1x[42 G4, P43 can always be factorized as
TlA2B2] x43 for some x ¢ -dependent tensor T[425>]
(and similarly with T, for the dual form). By fixing
suitablevaluesof [A, By] or Cs, these equationscan be
usedtotransfer pointsfromimages1and 2toimage3,
i.e. to directly predict the projectioninimage 3 of a3D



point whose projectionsin images 1 and 2 are known,
without any intermediate 3D reconstruction step?.

The trilinear constraints can be interpreted geo-
metrically as follows. As above the quantity
eapc x* PPPY represents the optical ray through
x4 in covariant 3D coordinates. For any y4 € P4 the
quantity e 4 gc x4y P P¢ definesthe 3D planethrough
theoptical centrethat projectsto theimagelinethrough
x4 and y“. All such planes contain the optical ray of
x4, andasy“ variestheentirepencil of planesthrough
thislineistraced out. The constraint then saysthat for
any plane through the optical ray of x“2 and any other
plane through the optical ray of x43, the 3D line of
intersection of these planes meets the optical ray of
x4t

The line of intersection always meets the optical
rays of both x42 and x“3 because it lies in planes
containing those rays. If the rays are skew every line
through the two rays is generated as the planes vary.
The optical ray through x4t can not meet every such
line, so the constraint implies that the optical rays of
x42 and x4% can not be skew. In other words the im-
age 1trilinear constraint impliesthe epipolar constraint
between images 2 and 3.

Given that the rays of x> and x“3 meet (say, at
some point x%), as the two planes through these rays
vary their intersection traces out every line through x*
not in the plane of the rays. The only way that the
optical ray of x4 can arrange to meet each of these
linesisfor it to passthrough x* aswell. In other words
the trilinear constraint for each image implies that all
three optical rays pass through the same point. Thus,
the epipolar constraints between images 1 and 2 and
images 1 and 3 aso follow from the image 1 trilinear
constraint.

The constraint tensor G4, 4242 =
eapc, 15101424 tregts image 1 specially.
The analogous image 2 and image 3 tensors
GA2A3A1 = €4,B,C, IBZCQABAI and GA3A1A2 =
ea,B.c, 172934142 gre linearly independent of
GA132A3 and give further linearly independent tri-
linear constraints on x4 x42x43.  Together, the 3
homogeneous constraint tensors contain 3 x 27 = 81
linearly independent components (including 3 arbit-
rary scalefactors) and naively give3 x 9 = 27 trilinear
scalar constraint equations, of which 3 x 4 = 12 are
linearly independent for any given triple x4 x42x43,

However, although there are no linear relations
betweenthe3 x 27 = 81 trilinear and 3 x 9 = 27 bilin-
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ear matching tensor components for the three images,
the matching tensors are certainly not algebraically
independent of each other: there are many quadratic
relations between them inherited from the quadratic
simplicity constraints on the joint image Grassman-
nian tensor. In fact, we saw in section 5 that the sim-
plicity constraints reduce the number of algebraically
independent degreesof freedom of I *°"~*3 (and there-
fore the complete set of bilinear and trilinear match-
ing tensor components) to only 11m — 15 = 18 for
m = 3 images. Similarly, thereareonly 2m — 3 = 3
algebraically independent scalar constraint equations
among the linearly independent 3 x 4 = 12 trilinear
and 3 x 1 = 3 hilinear constraints on each matching
triple of points. One of the main advantages of the
Grassmann formalismisthe extent to which it clarifies
therich algebraic structure of this matching constraint
system. The components of the constraint tensors are
essentially just Grassmann coordinates of the joint im-
age, and Grassmann coordinates are always linearly
independent and quadratically redundant.

Since all three of the epipolar constraints follow
from a single trilinear tensor it may seem that the tri-
linear constraint is more powerful than the epipolar
ones, but thisis not really so. Given atriple of image
points {x4i|i = 1,..., 3}, thethree pairwise epipolar
congtraints say that the three optical rays must meet
pairwise. If they do not meet at a single point, this
impliesthat each ray must lie in the plane of the other
two. Since the rays pass through their respective op-
tical centres, the plane also contains the three optical
centres, and is therefore the trifocal plane. But this
isimpossible in general: most image points ssimply do
not lie on the trifocal lines (the projections of the tri-
focal planes). Sofor general matchingimage pointsthe
three epipolar constraintstogether imply that the three
optical rays meet at aunique 3D point. Thisisenough
to imply the trilinear constraints. Since we know that
only 2m — 3 = 3 of the constraints are algebraically
independent, thisis as expected.

Similarly, the information contained in just one
of the trilinear constraint tensors is generically 4 >
2m — 3 = 3 linearly independent constraints, whichis
enough to imply the other two trilinear tensors as well
as the three bilinear ones. This explains why most
of the early work on trilinear constraints successfully
ignores two of the three available tensors [19], [8].
However in the context of purely linear reconstruction
all three of the tensors would be necessary.
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7.3. Quadrilinear Constraints

Finally, the quadrilinear, four image Grassmannian
congtraint I 151828383 y Ay Ay Asy As] — 0 corres-
pondsto an 8 x 8 basi ¢ reconstruction minor that selects
two rows from each of four images. Asusual the an-
tisymmetrization applies to each image separately, but
in this case the simplest form of the constraint tensor
isjust adirect selection of 3* = 81 componentsof the
Grassmannian itself

HA1A2A3A4 —

= IA1A2A3A4

— % Pf1Pa42Pé43P:i44 eabcd
Dualizing theantisymmetricindex pairs[A;B;] by con-
tracting with e 4,5, fori =1,. .., 4 givesthe quad-
rilinear constraint

0 = €4,B,¢, €A2B2Cs EAsBsCs EALBACY
. XAIXAZ XAg XA4 HBleBSB4

_ 1 A B A B
=0 (EAlBchX 1].:)al) (€A2BQCQX QPbQ .

AspB AupB
'(€A3B303X 3PC3) (eA4B4C4x 4Pd“) gabed

This must hold for each of the 3* = 81 values of
C1CyC3Cy . But again the constraints with C; along
the direction x“ forany i = 1,...,4 vanish identic-
aly, so for any given quadruple of points there are
only 2* = 16 linearly independent constraints among
the 3* = 81 equations.

Together, these congtraints say that for every pos-
sible choice of four planes, one through the optical ray
defined by x4 foreachi = 1, ..., 4, the planes meet
in a point. By fixing three of the planes and varying
the fourth weimmediately find that each of the optical
rays passes through the point, and hence that they all
meet. This brings us back to the two and three image
sub-cases.

Again, thereis nothing algebraically new here. The
3* = 81 homogeneouscomponentsof the quadrilinear
constraint tensor are linearly independent of each other
and of the 4 x 3 x 27 = 324 homogeneous trilinear
and 6 x 9 = 54 homogeneous bilinear tensor compon-
ents; and the 2* = 16 linearly independent quadrilin-
ear scalar constraints are linearly independent of each
other and of the linearly independent 4 x 3 x 4 = 48
trilinear and 6 x 1 = 6 bilinear constraints. However
thereareonly 11m — 15 = 29 algebraically independ-
ent tensor componentsin total, which give2m —3 = 5
algebraically independent constraints on each 4-tuple

of points. The quadrilinear constraint is algebraically
equivalent to various different combinations of two
and three image constraints. For example five scalar
epipolar constraints will do: take the three pairwise
constraints for the first three images, then add two of
the three involving the fourth image to force the op-
tical rays from the fourth image to pass through the
intersection of the corresponding optical raysfromthe
other three images.

7.4. Matching Constraints for Lines

It is well known that there is no matching constraint
for linesin two images. Any two non-epipolar image
lines 14, and 14, are the projection of some unique
3D line: simply pull back the image lines to two 3D
planesl, P41 and 14, P22 throughthe centresof pro-
jection and intersect the planes to find the 3D line
Loy = La,la, P P2

However for three or more images of a line there
are trilinear matching constraints as follows [8]. An
image line is the projection of a 3D line if and only
if each point on the 3D line projects to a point on the
image line. Writing this out, we immediately see that
thelines {14,|i =1,...,m} correspond to a 3D line
if and only if them x 4 reconstruction equations

1A1Pz1?1
x* =0

lAmP:?m

have a line (i.e. a 2D linear space) of solutions
AX® + py® for some solutionsx® £ y*°.

Thereisa 2D solution spaceif and only if the coef-
ficient matrix hasrank 4 — 2 = 2, which means that
every 3 x 3 minor hasto vanish. Obviously each minor
isatrilinear functionin threel,4,’s and misses out one
of the columns of P¢. Labelling the missing column
as a and expanding produces constraint equations like

La, La, La, (Pflpghpfs eabcd) -0

These simply require that the three pulled back planes
14, P41, 14, P42 and 1,4, P3 meet in some common
3D line, rather than just a single point. Note the geo-
metry here: each line 14, pulls back to a hyperplane
in P* under the trivial projection. This restricts to a
hyperplanein PZ%, which can be expressed asl,, P
in the basis P¢ for PZ%. There are 2m — 4 algebra-



ically independent constraints for m images: two for
each image except the first two. There are no irredu-
cible higher order constraints for lines in more than 3
images, e.g. there is no analogue of the quadrilinear
constraint for lines.

By contracting with afinal P¢, the constraints can
also be written in terms of the Grassmannian tensor as

g, Iy, 1y, T0414245 = g

for dl «. Choosing « from images 1, 2 or 3 and
contracting with an image 1, 2 or 3 epsilon to pro-
duce a trivalent tensor G 4,4 or choosing a from
afourth image and substituting the quadrival ent tensor
HA4i4i Ax A1 reduces the line constraints to the form
i, Lay La, G =
14, La, Ly, HAA2 A4 =

These formulae illustrate and extend Hartley’'s obser-
vation that the coefficient tensors of the three-image
line constraints are equivalent to those of the trilinear
point constraints [8]. Note that although all of these
line constraints are trilinear, some of them do involve
guadrivalent point constraint tensors.

Sincea cantakeany of 3m values A;, for eachtriple
of linesand m > 3 images there are very naively 3m
trilinear constraints of the above two forms. However
al of these constraints are derived by linearly con-
tracting 4 underlying world constraints with P¢’s, so
at most 4 of them can be linearly independent. For
m matching images of lines this leaves 4 (') linearly
independent constraints of which only 2m — 4 area-
gebraically independent.

The skew symmetrization in the trivalent tensor
based constraint immediately impliesthelinetransfer
equation

Az A
La, ~ 14,14, G4, 27

This can be used to predict the projection of a 3D
line in image 1 given its projections in images 2 and
3, without intermediate 3D reconstruction. Note that
line transfer from images 1 and 2 to image 3 is most
simply expressed in terms of the image 3 trilinear
tensor G 4,142, whereas the image 1 or image 2
tensors G 4, 424% or G 4,14 are the preferred form
for point transfer.

It is also possible to match (i) points against lines
that contain them and (ii) distinct image lines that are
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known to intersect in 3D. Such constraints might be
useful if apolyhedron vertex isobscured or poorly loc-
alized. They are most easily derived by noting that
both the line reconstruction equations and the reduced
point reconstruction equationsare homogeneousin x¢,
the coordinates of the intersection point. So line and
point rows from several images can be stacked into a
single 4 column matrix. As usual there is a solution
exactly when all 4 x 4 minors vanish. This yields
two particularly simple irreducible constraints — and
correspondingly simple interpretations of the match-
ing tensors content — for an image point against two
lines containing it and four non-corresponding image
lines that intersect in 3D:

A Az A i
x Gy, 2 31A21A3 =0

HA1A2A3A4 1A1 IA2 ;/‘3 /}/‘/4 —

7.5. Matching Constraints for k-Subspaces

More generaly, the projections of a k& dimensional
subspace in d dimensions are (generically) k£ dimen-
sional image subspacesthat can be written as antisym-
metric D; — k index Grassmann tensors x 4,...s;...c; -
The matching constraints can be built by selecting any
d + 1 — k of these covariant indices from any set
i,j,...,k of image tensors and contracting with the
Grassmannian to leave k free indices:

XAy--ByCy-Ey
. Ial“'akAi"'Bi"'Ak‘”Bk

0= XA B Oy By

Dualizing each covariant Grassmann tensor gives an
equivalent contravariant form of the constraint, for im-
age subspaces x45"Fi defined by the span of a set of
image points

0 = Ial---ak[Ai---Bi---Ak---Bk XCz’“‘Ei o Cre By

X
As usua it is enough to antisymmetrize over the
indices from each image separately. Each set
A;---B;C;---Ejisany choiceof upto D; + 1 in-
dicesfromimagej, j =1i,...,k.

7.6. 2D Matching Constraints & Homographies

Our formalism also works for 2D projective images of
a 2D space. Thiscaseis practically important because
it applies to 2D images of a planar surface in 3D and
there are many useful plane-based vision algorithms.
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The joint image of a 2D source space is two dimen-
sional, so the corresponding Grassmannian tensor has
only three indices and there are only two distinct types
of matching constraint: bilinear and trilinear. Let in-
dices a and A; represent 3D space and the it image
as usual, and indices A = 0, 1, 2 represent homogen-
eous coordinates on the source plane. If the planeis
given by p,x® = 0, the three index epsilon tensor on
it is proportional to p,e?°“¢ when expressed in world
coordinates, so the Grassmann tensor becomes

1°97 = 1 PPy P eAPC
~ % Pa ng P? P;l/ Eabcd
Thisyields the following bilinear and trilinear match-
ing constraints with free indices respectively C> and
C1C2C5
0 = p, (eAlBlcl x A Pflel)-

A B> abed
-(6A23202 x2 P, ) €

— A B A B2
0 = p, (€A1B101 x4 Pbl) (€A2B202 x2 PC")-

A Bs abed
-(SABBBCS x P ) €

The bilinear equation says that x“2 isthe image of the
intersection of optical ray of x“* with the plane p,:
Pa " €A:B:C4 PbBl PcC1 ’ P:?Q ’ eabcd) xAr,
Infact it iswell known that any two images of a plane
are projectively equivalent under atransformation (ho-
mography) x4z~ H}> x1. In our notation the
homography isjust

x4z~

Ay _ BipC A bed
HY? = pa-eaBc, PP - P2 - e

The trilinear constraint says that any three image
lines through the three image points x4, x42 and
x43 always meet in a point when pulled back to
the plane p,. This implies that the optical rays of
the three points intersect at a common point on the
plane, and hence gives the obvious cyclic consist-
ency condition H4! H4> ~ H}! (or equivalently
H,!' H{> HE? ~ 05" ) between the three homo-
graphies.

7.7. Matching Congtraintsfor 1D Cameras

If some of the images are taken with one dimensional
‘linear’ cameras, asimilar analysis appliesbut the cor-

responding entriesin the reconstruction equationshave
only two rowsinstead of three. Constraints that would
require three rows from a 1D image no longer exist,
and the remaining constraints lose their free indices.
In particular, when al of the cameras are 1D there are
no bilinear or trilinear tensors and the only irreducible
matching constraint is the quadrilinear scalar:

0 = Ha,a,454, x A1 xA2xAs g As

A B A B
= (EAlBl x™! Pal) (EAQBQX : PbQ)'

. (EA3B3 XAB PCBB) (EA4B4 XA4 P§4) Eade

This says that the four planes pulled back from the
four image points must meet in a 3D point. If one of
the cameras is 2D and the other two are 1D a scaar
trilinear constraint also exists.

7.8. 3Dto 2D Matching

Itisalso useful to be ableto match known 3D structure
to 2D image structure, for examplewhen building are-
constructionincrementally from a sequence of images.
This case is rather trivial as the ‘constraint tensor’ is
just the projection matrix, but for comparisonit is per-
haps worth writing down the equations. For an image
point x4 projected from a world point x* we have
x4 ~ P4 x® and hence the equivalent constraints
xAPEIx1 =0 —= espex?PEx*=0

There are three bilinear equations, only two of which
are independent for any given image point. Similarly,
aworld line 1, (or dually, 11**') and a corresponding
imagelinel 4 satisfy the equivalent bilinear constraints

LPLl, =0 < LPL.e" =0
or dually
LPA1 =0
Each form contains four bilinear equations, only two
of which arelinearly independent for any given image
line. For example, if the line is specified by giving

two pointson it 19 ~ xl@y®! we have the two scalar
equationsl, P4 x* = 0and1y P2 y® = 0.



7.9. Epipoles

Thereisstill oneaspect of I “°"~“¢ that we have not yet
seen: the Grassmannian tensor also directly contains
the epipoles. In fact, the epipoles are most naturally
viewed asthefirst order term in the sequence of match-
ing tensors, although they do not themselves induce
any matching constraints.

Assumingthat it hasrank d,thedx (d+1) projection
matrix of ad — 1 dimensional image of d dimensional
space defines a unique centre of projection e;® by
P4i e;” = 0. The solution of this equation is given
(c.f. section 8) by the vector of d x d minors of P/,
i.e

e’ ~ €A,..C; Pfli ___PaC; £a1ad

The projection of a centre of projection in another im-
ageisan epipole

eiA]- ~ EAC, PfUJ Pfli ___PaC;- g0a1-ad

[AiAiBi--C

Recognizing the factor of i, we can fix the

scale factors for the epipoles so that

Aj IWe?

e;

= % €A;B;---C; 1 4;4:B
— eiAj 6A,‘B,‘---C,‘

The d-dimensional joint image subspace PZ* of P
passes through the d-codimensiona projective sub-
space x4 = 0 at thejoint image epipole

eia = (eiAl, ey eiA"*l N 0, ez'AiJrl, Cey eiAm)T

Asusual, anarbitrary choiceof therelative scalefactors
isrequired.

Counting up the components of the ("}) quadrilin-
ear, 3(7) trilinear, (") bilinear and m(m — 1) mono-
linear (epipole) tensors for m images of a 3D world,
we find a total of

<3T> = 81-<T> +27-3<7;>
+9-<”;> + 3-m(m—1)

linearly independent components. These are linearly
equivalent to the complete set of (°7") linearly in-
dependent components of I°°""*?  so the joint im-
age Grassmannian tensor can bereconstructed linearly
given the entire set of (appropriately scaled) matching
tensors.
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8. Minimal Reconstructionsand Uniqueness

The matching constraints found above are closely as-
sociated with a set of minimal reconstruction tech-
niques that produce candidate solutions x* from min-
imal sets of d image measurements (three in the 3D
case). Geometrically, measuring an image coordinate
restrictsthe corresponding world point to a hyperplane
in P¢. Theintersection of any d independent hyper-
planes gives a unique solution candidate x“, so there
isaminimal reconstruction technique based on any set
of d independent image measurements. Matching is
equivalent to the requirement that this candidateliesin
the hyperplaneof each of the remaining measurements.
If d measurementsare not independent the correspond-
ing minimal reconstruction technique will fail to give
a unique candidate, but so long as the images con-
tain some set of d independent measurements at |east
one of the minimal reconstructions will succeed and
the overall reconstruction solution will be unique (or
fail to exist atogether if the matching congtraints are
violated).

Algebraically, we can restate this as follows. Con-
sider agenera k x (k + 1) system of homogeneous
linear equations with rank k. Up to scale the system
has a unique solution given by the (k + 1)-component
vector of k& x k minors of the system matrix3. Adding
an extrarow to the system destroys the solution unless
the new row is orthogonal to the existing minor vector:
thisis exactly the requirement that the determinant of
the (k + 1) x (k 4+ 1) matrix vanish so that the system
still hasrank k. With an overspecified rank k system:
any choice of k rows givesaminor vector; at least one
minor vector is nonzero by rank-k-ness; every minor
vector is orthogonal to every row of the system matrix
by non-rank-(k + 1)-ness; and al of the minor vectors
areequal up to scale becausethereisonly onedirection
orthogonal to any given & independent rows. In other
words the existence of a solution can be expressed as
a set of simple orthogonality relations on a candidate
solution (minor vector) produced from any set of &
independent rows.

We can apply thistothe (d+m) x (d+m) minorsof
the (D +m) x (d+m+ 1) basic reconstruction system,
or equivalently tothed x d minorsof the D x (d + 1)
reduced reconstruction system. The situation is very
similar to that for matching constraints and a similar
analysis applies. Theresult is that if ¢,j,...,k isa
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set of 2 < m' < d distinctimagesand -, ...,d isany
selection of d — m/ indicesfrom imagesi, j, ..., k (at
most D; —1 fromany oneimage), thereisapair of equi-
valent minimal reconstruction techniquesfor x* € P¢
and x* € P*:

X~ Pa[B,-Bj---Bk'y---é XA,-XAj . XAk]
on ~ IOZ[B,'B]‘---B]Q’Y--'(s XA,'XA]‘ "'XAk]
where
alarag] — 1 a1 Qg ~aa1-aq
pel l=1lpor.. . pag

In these equations, the right hand side has tensorial
indices [B;--- Byy---dA;---Ai] in addition to a
or «, but so long as the matching constraints hold
any value of these indices gives a vector parallel
to x* or x* (i.e. for matching image points the
tensor PelBiBryd xAi ... x4kl can be factorized
as x® TIB:Beyd4i Akl for some tensors x* and
T). Again it is enough to antisymmetrize over the in-
dices of each image separately. For 2D images of 3D

space the possible minimal reconstruction techniques
are Pa[BlclBg XAl XAQ] and Pa[BlBng XAl XAQ XAS] :

A, pB
X ~ (EAlBlcl x4 PblPCCl)-

A C
. (€A2B202 xA2 PdQ) eabcd

A C A C
x2 ~ (EAlBchX 1Pb1)(€A2B202X 2:PCZ)'

A Ca abed
-(6,433303 x Py ) €

These correspond respectively to finding the intersec-
tion of theoptical ray from oneimage and the constraint
plane from one coordinate of the second one, and to
finding the intersection of three constraint planesfrom
one coordinatein each of three images.

To recover the additional matching constraints that
apply to the minimal reconstruction solution with in-
dices [B;--- Byy---0A;--- Ag], project the solution
to someimage! to get

Pacl X(l — IC[[B,B}(‘/& XAi .. XAk]

If the constraint is to hold, this must be proportional
to x“. If [ is one of the existing images (i, say)
x4t is dready in the antisymmetrization, so if we
extend the antisymmetrization to C; the result must
vanish: TICBiBurd A x4l = 0. If |
is distinct from the existing images we can expli-

citly add x4 to the antisymmetrization list, to get
[CiBiBayd g Ay AixAll — @,

Similarly, the minimal reconstruction solution for
3D lines from two imagesis just the pull-back

Loy ~ La,la, PP}

or in contravariant form
19 ~ 14,14, PArPo2 gobed

This can be projected into a third image and dualized
to give the previoudly stated line transfer equation

lAs ~ 1A11A2 *€A3B;3C3 PaBspr'Bch‘hP:?z Eade
~ 14,14, G o,

More generally, the covariant form of the k-subspace
constraint equations given in section 7.5 generates ba-
sic reconstruction eguations for k& dimensional sub-
spaces of the j" image or the world space by dropping
oneindex A; from the contraction and using it as the
ag of aset of k£ + 1 freeindices ag - - - ay, designating
the reconstructed k-subspace in P4i. To reconstruct
the k-subspace in world coordinates, the projection
tensors P corresponding to the free indices must
also be dropped, leaving free world indices ag - - - ay.

9. Grassmann
Tensors

Relations between Matching

The components of any Grassmann tensor must sat-
isfy a set of quadratic ‘simplicity’ constraints called
the Grassmann relations. In our case the joint image
Grassmannian satisfies

0= Ia()“'ad—l[ﬁo Iﬁn'“ﬁd+1]
d+1
— dL-ﬁ-Q Z(_l)a Iao'“ad—lﬁa Iﬁ(l"'ﬁaflﬁa+1“‘ﬁd+l
a=0

Mechanically substituting expressions for the vari-
ous components of I%°""%¢ in terms of the match-
ing tensors produces a long list of quadratic relations
between the matching tensors. For reference, table 1
gives a (hopefully complete) list of the identities that
can be generated between the matching tensors of two
and three images in d = 3 dimensions, modulo im-
age permutation, traces of identitieswith covariant and
contravariant indices from the same image, and (anti-
)symmetrization operations on identities with several



covariant or contravariant indices from the same im-
age. (Forexample, F 4, 4, G 4, 424% = 2F 4 4, e342
and F 4,4, Gg,)*>"** = 0 follow respectively from
tracing [112, 22233] and symmetrizing [112,11333]).
The constraint tensors are assumed to be normalized
as in their above definitions, in terms of an arbit-
rary choice of scale for the underlying image projec-
tions. In practice, these scale factors must often be
recovered from the Grassmann relations themselves.
Note that with these conventions, F 4,4, = Fa,4,
and G4, 24 = —G 4, 2. For clarity the free
indices have been displayed on the (zero) left-hand
side tensors. The labels indicate one choice of image
numbers for the indices of the Grassmann simplicity
relation that will generate the identity (there may be
others).

As an example of the use of these identities,
G 4, 23 follows from linearly from F 4, 4., F 4, 4,
and the corresponding epipoles e; 42, es41 and e3 42
by applying [112,11333] and [112,22333].
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10. Reconstruction in Joint | mage Space

We have argued that multi-image projective recon-
structionisessentially amatter of recovering acoherent
set of projective scale factors for the measured image
points, that it canonically takes placein thejoint image
spaceP*, and that reconstruction in world coordinates
is best seen as a choice of basis in the resulting joint
image subspace PZ*. To emphasize these pointsit is
interesting to develop ‘reconstruction’ techniques that
work directly in joint image space using measured im-
age coordinates, without reference to any 3D world or
basis.

First suppose that the complete set of matching
tensors between the images has been recovered. It
is till necessary to fix an arbitrary overall scale factor
for each image. This can be done by choosing any co-
herent set of relative scalings for the matching tensors,
so that they verify the Grassmann simplicity relations
asgiven above. Then, sincethecomponentsof thejoint

Table 1. The Grassmann identities between the matching tensors of two and three images.

0.4, = Fa,a, 0™ [111,11122]
04142 = Fp,p, Fo,0, ePr1O141 gB20242 4 9 )41 ¢ 42 [112,11222]
0.4, = Fa,a, €™ — €480, €170 €25 [111,22233]
074, = eaB,0, €177 Go, PN+ e Fy 4, [111,11223]
0714, = .80, €172 G, Mt eg,p,0, 0157 Gy, M [111,12233]
0248 = Fg,p, Go, 4247 B0 _g 42 G, M1 45 4 5,2 0,72 G, 1140 [112,11223]
0404, = eamsos Ga, P G, B — 112 4,50, Ga, [112,11233]
_FA102 ngAng FB1A3
045, = Fa,4, G5, "™ +ea,8,0, 57 e [112,11333]
05, = ea,8,05 Ga, PG, P 0 —Fy 0, G, PP 464,52 Fao, Ga, P19 [112,12233)
+04,7 €52 Fu,a,
05 A=b = G, "7 Gu, D + e3P Fy o, €922 1 54, P g2 e3P [112,12333]
0724, = €auBaCy €7 G4, 2% — F 4,5, F, a, €320242 112, 22233]
0524, = Fa,n, Ga, P + Fayn, 3™ — 04,7 Fay0, 057 112, 22333]
0A]A232A3B3 — GB1A2A3 GCIBng EBlclAl _ GCQAlAg E_C’ZAZB2 e133 [123} 11123]
_G03A1A2 gCsAsBs o B2
0512 ABs = Gy, B Gy, B — G, PP Gy, B — F g, a, G, BB eCodels 123, 11223]

B B, A C2B B C1B Bx A
_6,42 2G02 1 SGAI 2 3+6A1 1GA2 1 3G01 243
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image Grassmann tensor I 77 can be recovered dir-
ectly from the matching tensors, the location of the
joint image PZ* has been fixed.

Now consider a matching set of image points
{xA1, ..., xm} with arbitrary relative scalings. As
discussed in section 6, the matching constraints are
equivalent to the requirement that there be a rescaling
of the image points that places the joint image space
vector 37 A; x4 inthejointimage PZ“. Expressed
in terms of the Grassmannian, this becomes the joint
image reconstruction system

m
[laf-. (Z)\ XAi]> =0
i=1

This is a redundant set of homogeneous multilin-
ear equations in the Grassmannian 127, the image
pointsx“¢, and the scale factors \;, that can be used to
‘reconstruct’ the scale factors given the Grassmannian
and the image measurements.

These equations can be reexpressed in terms of the
matching tensors, in much the same way as the Grass-
mann simplicity relations can. The types of constraint
that can arise for 2D images of 3D space are shown
in table 1. The left hand sides are zero tensors and
thelabels give index image numbersthat will generate
theequation. The numerical coefficientsarevalid only
for correctly scaled matching tensors. Permuting the
images generates further equations. Note that since
the equations are algebraically redundant it is only ne-
cessary to apply a subset of at least m — 1 of them to
solve for the m scale factors. The optimal choice of
equations probably depends on the ease and accuracy
with which the various matching tensor components
can be estimated.

Recovery of the scal e factorslocatesthe reconstruc-
ted joint image point x“ unambiguoudly in the sub-
space PZ®. Its coordinates in any chosen basis (i.e.
with respect to any given choice of the basis-vector
columns of the joint projection matrix P¢) can easily
be obtained, if required. Although this processis ar-
guably too abstract to be called ‘ reconstruction’, al of
the relevant structure is certainly present in the joint
image representation and can easily be extracted from
it.

Given an efficient numerical technique for the res-
olution of sets of bilinear equations and a sufficient
number of matching points, it would also be possibleto
solvethe above equationssimultaneously for the vector
of matching tensor components and the vector of scale
factors, given the measured image coordinates as coef-
ficients. Algebraicelimination of thescalefactorsfrom
these equations should ultimately lead back to the vari-
ous matching constraints (modul o probably heavy use
of the Grassmann relations). Elimination of the match-
ing tensors (modulo the matching constraints viewed
as constraints on the matching tensor components) for
sufficiently many matching pointswould lead to (high
degree!) basic reconstruction methods for the recov-
ery of the scale factors directly from measured image
coordinates.

Geometrically, the reconstruction process can be
pictured as follows. Each image point is a D;-
codimensional subset of its D;-dimensional image, so
under thetrivial projectionit canbepulledbacktoa D;-
codimensional subspace of the joint image space P*.
I ntersecting the subspaces pulled back from the differ-
entimagesresultsinan (m—1)-dimensional projective
subspaceof P*. Thisisprecisely the set of all possible
rescalings of the x4, Thejoint image PZ* intersects

Table 1. Thefive basic types of reconstruction equation for a point in the joint image.

04, = (Faya, X"\ + (€4,B,0, €172 x2) N9 [11122]
0424 = (Ga, PP xM)\ — (&1 x2) Ny + (€42 x4%) N3 [11123]
03?142 = (EAIBICI GA2 Bids XCI)/\l + (eAszoz GAlBQAS XOZ)AQ - (FAIAQ XA3)>‘3 [11223]
OﬁfA3A4 = (e, B,c, HP 424344 xC1Y\| 4 (G4, 4442 x42) Ny — (G4, 124 x3) N [11234]
+(GA1A2A3 XA4)>\4
04142434445 _— (HA2A3A4A5 XAl)/\l _ (HA1A3A4A5 XAQ)/\2 + (HA1A2A4A5 XAs))\3 [12345]

_(HAlAQASAS XA4)>\4 + (HA1A2A3A4 XAS)AE,




this subspace if and only if the matching constraints
are satisfied, and the intersection is of course the de-
sired reconstruction. So the problem of multi-image
projective reconstruction from points can be viewed as
the search for the (d + m — 1)-dimensional subspace
of P that contains (or comes closest to containing)
agiven set of (m — 1)-dimensional joint-image-point
subspaces, followed by an arbitrary choice (the scale
factors) of ad-dimensional subspace (the joint image)
of the (d + m — 1)-dimensional space that meets each
joint-image-point subspace transversally. The recon-
struction of lines and higher dimensional subspaces
can be viewed in similarly geometric terms.

11. Perspectives

The theoretical part of the paper is now finished, but
before closing it may be worthwhile to reflect a little
on our two principal themes: projectivereconstruction
and the tensor calculus. We will takeit for granted that
the projective and algebraic-geometric approaches to
vision are here to stay: the ‘unreasonable efficacy of
mathematicsin the physical sciences’ can only lead to
an increasing mathematization of the field.

11.1. Matching & Reconstruction

Clearly visual scenereconstructionisalarge and com-
plex problem that is not going to be ‘solved’ by any
one contribution, so we will restrict ourselvesto afew
technical remarks. To the extent that the problem can
be decomposed at al, the most difficult parts of it will
probably always bethe low level feature extraction and
token matching. 3D reconstruction seems relatively
straightforward once image tokens have been put into
correspondence, athough much remains to be done
on the practical aspects, particularly on error models
[17], [4], [21] and the recovery of Euclidean structure
[17].

Given the complexity and algebraic redundancy of
the trilinear and quadrilinear constraintsit is certainly
legitimate to ask whether they are actually likely to be
useful in practice. | think that the answer is a clear
‘yes for the trilinear constraints and the overall joint
image/Grassmannian picture, but the casefor the quad-
rilinear constraintsis still open.

The principal application of the matching tensors
must befor token matching and verification. Thetrilin-
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ear constraints can be used directly to verify the corres-
pondence of atriple of points or lines, or indirectly to
transfer ahypothesized featurelocationtoathirdimage
given itslocation in two others, in a hypothesize-and-
test framework. Image synthesis (e.g. image sequence
compression and interpolation) is likely to be another
important application of transfer [11].

Fundamental matrices can also be used for these
applications, but because the higher order constraints
‘holistically’ combine data from several images and
thereisbuilt-in redundancy in the constraint equations,
itislikely that they will proveless proneto mismatches
and numerically more stable than a sequence of applic-
ations of the epipolar constraint. For example Shashua
[19] hasreported that asingletrilinear constraint gives
more reliable transfer results than two epipolar ones,
and Faugerasand Mourrain [ 7] have pointed out that bi-
linear constraint based transfer breaks down when the
3D point liesin the trifocal plane or the three optical
centresarealigned, whereastrilinear transfer continues
to be reasonably well conditioned.

When there are four images the quadrilinear con-
straint can also be used for point matching and trans-
fer, but the equationsare highly redundant and it seems
likely that bilinear and trilinear methodswill prove ad-
equate for the majority of applications. The trilinear
congtraint is nonsingular for aimost all situations in-
volving points, provided the optical centres do not co-
incide and the points avoid the lines passing between
them.

Themost important failurefor linesis probably that
forlineslyingin an epipolar plane of two of theimages.
Inthiscasetheconstraintsmediated by trival ent tensors
arevacuous (althoughthereis still enoughinformation
to reconstruct the corresponding 3D line unlessit lies
in the trifocal plane or the optical centres are aligned)
and those mediated by quadrivalent tensors are rank
deficient. But given the linear dependence of the vari-
ousline constraintsit is not clear that the quadrivalent
ones have any advantage over an equivalent choice of
trivalent ones.

A closely related issueisthat of linear versushigher
order methods. Where possible, linear formulations
are usualy preferred. They tend to be smpler, faster,
better understood and numerically more stable than
their nonlinear counterparts, and they are usually much
easier to adapt to redundant data, which iscommonin
visionand providesincreased accuracy and robustness.
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Ontheother hand, nonlinear constraintscan not berep-
resented accurately within alinear framework.

This is especially relevant to the estimation of the
matching tensors. We have emphasi zed that the match-
ing tensor components and constraint equations are
linearly independent but quadratically highly depend-
ent. It is straightforward to provide linear minimum-
eigenvector methods to estimate: the 9-component
fundamental matrix from at least 8 pairs of corres-
ponding points in two images [12], [13]; each of
the three linearly independent 27-component trilinear
tensorsfrom at least 7 triples of pointsin threeimages,
and the 81-component quadrilinear tensor from at | east
6 quadruples of corresponding points in four images
[21]. For complex applications several of these tensors
might be needed, for exampleafundamental constraint
might provide initial feature pairings that can be used
to check for corresponding featuresin athird image us-
ing further fundamental or trilinear constraints. Also,
different trilinear tensorsare required for point transfer
and line transfer.

Unfortunately, it turns out that the above linear es-
timation techniques (particularly that for the funda-
mental matrix) are numerically rather poorly condi-
tioned, so that the fina estimates are very sensitive
to measurement errors and outliers. Moreover, even
in the case of a single fundamental matrix there is a
nonlinear constraint that can not be expressed within
the linear framework. The quadratic epipolar rela
tion F 4,4, e;42 = 0 implies the cubic constraint
Det(F) = 0. If this constraint is ignored, one finds
that the resulting estimates of F' and the epipoles tend
to be rather inaccurate[13]. In fact, the linear method
is often used only to initialize nonlinear optimization
routines that take account of the nonlinearity and the
estimated measurement errorsin the input data.

This leads to the following open question: When
several matching tensors are being estimated, to what
extent isit possible or necessary to take account of the
guadratic constraints between them? The full set of
quadratic relations is very complex and it is probably
not practical to account for all of them individually: it
would bemuch simpler just towork directly intermsof
the 3D joint image geometry. Moreover, many of the
relationsdepend on therel ative scaling of the constraint
tensors and the recovery of these further complicates
theissue(itisaquestion of exactly which combinations
of components need to be fixed to ensure consistency
and numerical stability). On the other hand, experi-

ence with the fundamental matrix suggests that it is
dangerousto ignore the constraints entirely. Some at
least of them are likely to be important in any given
situation. Our current understanding of these matters
isvery sketchy: essentialy al we haveisafew ad hoc
comparisons of particular techniques.

As afinal point, a few people seem to have been
hoping for some‘magic’ reconstruction technique that
completely avoids the difficulties of image-to-image
matching, perhaps by holistically combining datafrom
alarge number of images (or a single dense image se-
quence). The fact that the matching constraints stop
at four images (or equivalently three time derivatives)
doesnot precludethis, but perhapsmakesit seemalittle
lesslikely. Ontheother hand, thesimplicity of thejoint
image picture makesincremental recursive reconstruc-
tion techniquesthat correctly handle the measurement
errors and constraint geometry seem more likely (c.f.

(16]).

11.2. Tensorsvs. the Rest

This paper is as much about the use of tensors as a
vehicle for mathematical vision as it is about image
projection geometry. Tensors have seldom been used
in vision and many people appear to be rather tensor-
phobic, so it seems appropriate to say a few wordsin
their favour: “Don’t panic!” [1].

First of al, what isatensor? — It isacollection (a
multidimensional array) of components that represent
a single geometric object with respect to some system
of coordinates, and that are intermixed when the co-
ordinate system is changed. Thisimmediately evokes
the two principal concerns of tensor calculus: (i) to
perform manipulations abstractly at the object level
rather than explicitly at the component level; and (ii) to
ensure that all expressions are properly covariant (i.e.
havethe correct transformation |aws) under changes of
basis. The advantages are rather obvious: the higher
level of abstraction brings greater compactness, clarity
and insight, and the guaranteed covariance of well-
formed tensorial expressions ensures that no hidden
assumptions are made and that the correct algebraic
symmetries and rel ationshi ps between the components
are automatically preserved.

Vectors are the ssimplest type of tensor and the
familiar 3D vector calculus is a good example of
the above points: it is much smpler and less error



prone to write a single vector x instead of three com-
ponents (z!, z2, ) and a symbolic cross product
z = x xy instead of threeequations 2! = 22y3 — 2392,
2?2 = 2%y' —2'y? and 22 = z'y® — 2%y'. Unfor-
tunately, the ssimple index-free matrix-vector notation
seems to be difficult to extend to higher-order tensors
with the required degree of flexibility. (Mathem-
aticians sometimes define tensors as multilinear func-
tionsT(x,...,z) wherex, ...,z are vectors of some
typeandtheresult isascalar, but thisnotation becomes
hopelessly clumsy when it comes to inter-tensor con-
tractions, antisymmetrization and so forth). In fact,
the index-free notation becomes as much a dangerous
weapon as a useful tool as soon as one steps outside
the realm of simple vector calculationsin asingle Eu-
clidean space. It isonly too easy to writex 'x = 1in
a projective space where no transpose (metric tensor)
exists, or ameaningless' epipolar equation’ 1" F x = 0
where 1 is actually the 3-component vector of an im-
age line (rather than an image point) and x belongsto
the wrong image for the fundamental matrix F (which
should have been transposed in any case).

To avoid this sort of confusion, it is essentia to use
a notation that clearly distinguishes the space and co-
variant/contravariant type of each index. Although it
can not be denied that this sometimes leads to rather
baroque-looking formulae— especially whenthereare
many indices from many different spaces asin this pa-
per — it ismuch preferableto the alternatives of using
either no indices at all or i, j, and k for everything,
so that one can never quite see what is supposed to
be happening. It is important not to be fooled into
thinking that tensor equationsareintrinsically difficult
just because they haveindices. For simple calculations
the indexed notation is not significantly more difficult
to use than the traditional index-free one, and it be-
comes much clearer and more powerful in complex
situations. For a visually appealing (but typographic-
ally inconvenient) pictorial notation, see the appendix
of [18].

Simultaneously with the work presented in this pa
per, at least two other groupsindependently converged
on parts of the constraint geometry from component-
based points of view: Faugeras& Mourrain [7] using
the Grassmann-Cayley algebra of skew linear forms,
and Werman & Shashua[22] using Grébner bases and
algebraic elimination theory. Both approaches make
very heavy use of computer algebrawhereas al of the
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calculations in the present paper were done by hand,
and neither (notwithstanding the considerable val ue of
their results) succeeded in obtaining anything like a
complete picture of the constraint geometry. My feel-
ing isthat it is perhaps no accident that in each of the
three categories: level of geometric abstraction, effi-
ciency of calculation, and insight gained, the relative
ordering is the same: tensor calculus > Grassmann-
Cayley algebra > elimination theory.

Elimination-theoretic approaches using resultants
and Grobner bases seem to beintrinsically component-
based. They take no account of the tensorial structure
of the equationsand therefore make no use of the many
symmetries between them, so even when the coordin-
ate systems are carefully adapted to the problem they
tend to carry a significant amount of computational
redundancy. Werman & Shashua [22] suggest that
an advantage of such approachesis the fact that very
little geometric insight is required. Unfortunately, one
might also suggest that very little geometric insight is
gained: the output is a complex set of equations with
no very clearly articulated structure.

The Grassmann-Cayley algebra [7], [2] is spiritu-
ally much closer to the tensorial point of view. Indeed,
it can beviewed asaspecialized index-freenotation for
mani pul ating completely antisymmetric covariant and
contravariant tensors. It supports operations such as
antisymmetrization over indices from severa tensors
(wedge product), contractions over corresponding sets
of covariant and contravariant antisymmetric indices
(hook product), and contravariant-covariant dualiza-
tion (sometimes used to identify the covariant and
contravariant algebras and then viewed as the iden-
tity, in which case the hook product is replaced by
the join product). Given the connection with Grass-
mann coordinates, the Grassmann-Cayley algebra can
beviewed asacal culusof intersection and union (span)
for projective subspaces:. clearly apowerful and highly
relevant concept. It islikely that this approach would
haveleadfairly rapidly tothefull Grassmannian match-
ing constraint geometry, notwithstanding the relative
opacity of theinitial component-orientedformulations.

Despite its elegance, there are two problems with
the Grassmann-Cayley algebra as a general formal-
ism. Thefirstisthat it is not actually very general: it
is good for calculations with linear or projective sub-
spaces, but it does not extend gracefully to more com-
plex situations or higher-degree objects. For example
quadric surfaces are represented by symmetric tensors
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which do not fit at all well into the antisymmetric al-
gebra. Tensors are much more flexible in this regard.
The second problem with the Grassmann-Cayley al-
gebraisthat it is often infuriatingly vague about geo-
metric (covariance) issues. Forms of different degree
with indices from different spaces can be added form-
ally within the algebra, but this makes no sense at al
tensorially: such objects do not transform reasonably
under changes of coordinates, and consequently do not
have any clear geometric meaning, whatever the status
of the algebra. Thefact that the algebrahas a stratified
tensorial structure is usually hidden in the definitions
of the basic product operations, but it becomes a cent-
ral issue as soon as geometric invarianceis caled into
guestion.

In summary, my feeling is that the tensorial ap-
proach is ultimately the most promising. The indexed
notation is an extraordinarily powerful, general and
flexible tool for the algebraic manipulation of geomet-
ric objects. It displaysthe underlying the structure and
covariance of the equations very clearly, and it natur-
ally seemstowork at about theright level of abstraction
for practical calculations: neither so abstract nor so de-
tailed as to hide the essential structure of the problem.
Component-based approaches are undoubtedly useful,
but they are probably best reserved until after a gen-
eral tensorial derivation has been made, to specialize
and simplify a set of abstract tensorial equationsto the
particular application in hand.

As an example of this, a k + 1 index antisymmet-
ric tensor representing a k£ dimensional subspace of
a d dimensional projective space has (very naively)
(d + 1)*+! components, but only (j/1}) of these are
linearly independent owing to antisymmetry. Theinde-
pendent components can easily be enumerated (the in-
dicesigiy - - i for0 <ig <iy < ... < i, < dforma
spanning set) and gathered into an explicit () com-
ponent vector for further numerical or symbolic ma-
nipulation. Infact, these components span exactly one
tensorial stratum of the Grassmann-Cayley algebra

It is perhaps unfortunate that current computer al-
gebra systems seem to have very few tools for manip-
ulating general tensorial expressions, as these would
greatly streamline the derivation and specidization
processes. However, there does not appear to be any
serious obstacle to the development of such tools and
it is likely that they will become available in the near
future.

12. Summary

Given aset of perspective projectionsinto m projective
image spaces, there is a 3D subspace of the space of
combined image coordinates called the joint image.
This is a complete projective replica of the 3D world
expressed directly in terms of scaled image coordin-
ates. Itisdefinedintrinsically by the physical situation
up to an arbitrary choice of some interna scalings.
Projective reconstruction in the joint image is a ca
nonical processrequiring only arescaling of theimage
coordinates. A choiceof basisinthejointimageallows
the reconstruction to be transferred to world space.

There are multilinear matching constraints
between the images that determine whether a set of
image points could be the projection of asingle world
point. For 3D worlds only three types of constraint
exist: the epipolar constraint generated by the fun-
damental matrix between pairs of images, Shashua's
trilinear constraints between triples of images and a
new quadrilinear constraint on sets of corresponding
points from four images.

Moreover, the entire set of constraint tensors for
al the images can be combined into a single com-
pact geometric object, the antisymmetric 4 index j oint
image Grassmannian tensor. This can be recovered
from image measurements whenever the individua
congtraint tensors can. It encodes precisely the in-
formation needed for reconstruction: the location of
the joint image in the space of combined image co-
ordinates. It also generates the matching constraints
for images of lines and a set of minimal reconstruc-
tion techniques closely associated with the matching
constraints.  Structural constraints on the Grassman-
nian tensor produce quadratic identities between the
various constraint tensors.
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Appendix A
Mathematical Background

This appendix provides a very brief overview of the
linear algebra and projective geometry need to under-
stand thispaper, and alittle backgroundinformation on
our notation. For more details on using tensor calculus
for projective space see [10], [18].

A.1. Vectorsand Tensors

A vector space H? is a space on which addition and
scaling of elements are defined: Ax® + py® isin H®
for al scalars A and i and elementsx® and y® of 1.
Thespan of aset {ef, .. ., e} } of elementsof 7 isthe
vector space of linear combinationsz'e{ + - - - + z¥ el
of elements of the set. A minimal set that spans the
entire space is called a basis and the number of ele-
ments in the set is the dimension of the space. Given
abasis{ef{,..., e} for ad dimensiona vector space
‘He, any element x® of the space can be expressed as
ztef + - - + e’ and associated with the coordinate
vector (zt, ..., 24).

Itis helpful to view the superscript a asan abstract
index [18], i.e. an abstract label or placeholder denot-
ing the space the object belongs to. However given
a choice of basis it can aso be thought of as a vari-
able indexing the coordinate vector that represents the
object in that basis.

For every vector space #H° there is a dual vector
space of linear mappings on #*, denoted H,. An
element 1, of #H, acts linearly on an element x®
of H® to produce a scalar. This action is denoted
symbolically by 1,x® and called contraction. Any
basis{ef,...,e}} for #" definesauniquedual basis
{el ... e} for H, with efle? = 6;, where 5; is
1 when i = j and O otherwise. The it* coordin-
ate of x“ in the basis {e} is just ' = e} x. If
elements of #“ are represented in the basis {e!} as
d index column vectors, e ements of H, in the dual
basis {e} behave like d index row vectors. Con-
traction is then just the dot product of the coordinate
vectors: (uj el +---+ugel)(zl ef+---+zlel) =
uy z' + - -+ + ug x%. Contraction involves a sum over
coordinates but we do not explicitly write the summa-
tion signs: whenever a superscript label also appears
as a subscript a summation is implied. Thisis called
the Einstein summation convention. The order of
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termsisunimportant: u, x® and x* u, both denotethe
contraction of the dual vector u, with the vector x2.

Suppose we change the basis in H® according to
e} — &} = ) e} AJ; for some matrix A7;. To
keep the resulting abstract element of H“ the same,
coordinate vectors must transform inversely according
toz' — ' =3, (A7!)"; 2/, To preserve the rela
tionsé}, &} = 4%, the dual basis must also transform as
e, — &, =Y . (A1), e}. Finaly, to leave the ab-
stract element of the dual spacethe same, dual coordin-
ate vectors must transform as u; — @; = ), u; Ad;.
Because of the transformations of their coordinates
under changes of basis, vectors x* are called contrav-
ariant and dual vectors u, are called covariant.

An element x* of H* can aso beviewed asalinear
mapping on elements of #, defined by u,x“, in other
words as an element of the dual of the dual of H®. For
finite dimensional spaces every linear mapping on H,
can be written this way, so there is a complete sym-
metry between H® and H,: neitheris‘moreprimitive’.

Any nonzero element of H, definesad — 1 dimen-
sional subspaceof H® by theequationsu,x® = 0, and
conversely any d — 1 dimensional subspace defines a
unique element of H, up to scale.

It is possible to take formal (‘tensor’ or ‘outer’)
products of n-tuples of elements of vector spaces,
for example a formal eement T*4, = x° y* z,
can be made from elements x*, y4, z, of vector
spaces H®, H* and H,. The vector space of lin-
ear combinations of such objects (for different choices
of x%, y4 and z,) is called the tensor product space
HeA, = HY @ HA ® H,. When there are severa
distinct copies of 7{* we use distinct |etters to denote
them, e.g. H**. = H* @ H® ® H, containstwo copies
of 7“. Elements of atensor product space are called
tensors and can be thought of as multidimensional
arrays of components in some chosen set of bases.
Under changes of basis each of the indices must be
transformed individualy.

There are a number of important generic opera
tions on tensors. A set of tensors can be contracted
together over any appropriate subset of their indices,
for example u,, x* € Hy, u, TP, x¢ € HEB. Sdf
contractionsTet ... € H ... arecalled traces. A
group of indices can be (anti-)symmetrized by av-
eraging over al possible permutations of their po-
sitions, with an additional minus sign for odd per-
mutations during antisymmetrization. On indices,
(+--) denotes symmetrization and [-- -] antisymmet-
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rization. For example T(e¥) = (T + T*) and
Tletl = 1(T2 — Tb) can be viewed as symmetric
and antisymmetric matrices, and Tletel = L (Tabe —
Tbac y bea _rpeba  rpeab _rpach) jsgn antisymmetric
3index tensor. A group of indicesis (anti-)symmetric
if (anti-)symmetrization over them does not changethe
tensor: (---) and |- - -] are also used to denote this, for
example TEZZ]) € Hla .4 is antisymmetricin ab and
symmetric in e¢d. Permutation of (anti-)symmetric in-
dices changes at most the sign of the tensor.

In d dimensions antisymmetrizations over more
than d indices vanish: in any basis each index must
take a distinct value between 1 and d. Up to
scale there is a unique antisymmetric d index tensor
guazaa ¢ glarazaal: chopsing e'2? = +1 in
some basis, al other components are +£1 or 0. Un-
der a change of basis the components of %% are
rescal ed by the determinant of the transformation mat-
rix. Thereis a corresponding dual tensor €4, 4,...a, €
Hiaras---aq) With components +1 or 0 in the dual
basis. €4,4,...a, definesavolume element on #“, giv-
ing the volume of the hyper-parallelepiped formed by
d vectors x{,...,X% 85 €4,45-.aq X1' - Xy". The
determinant of a linear transformation T} on H°
can be defined as f€4,a5-a, Tj! -+ Tp? €P10270e,
and this agrees with the determinant of the matrix
of T} in any coordinate basis. A contravariant an-
tisymmetric k index tensor T!* %! has a covari-
ant antisymmetric d — & index dual (*T)q,,,...ay =
T Eansro-agbr-b, TPk Conversely Tk =
ﬁ (+T) p, €01 Paa1 ek - A tensor and its

bry1---ba
dual contain the same information and both have (¢)
independent components.

A.2. Grassmann Coordinates

Antisymmetrization and dudity are important in
the theory of linear subspaces. Consider a set
{v§,...,vi} of k independent vectors spanning a k
dimensional subspace ¥ of H“. Given some choice
of basis the vectors can be viewed as column vectors
and combined into a single d x k matrix. Any set
{ai,...,a;} of k distinct rows of thismatrix definesa
k x k submatrix whose determinantisa k x k& minor
of the original matrix. Up to a constant scale factor
these minors are exactly the components of the tensor
sera = vl y8] if the original vectors are
independent the d x k matrix has rank k& and at |east

oneof the k x k minors(and hencethetensor ¥41 @)
will not vanish. Conversely, if the tensor vanishesthe
vectors are linearly dependent.

A vector x° liesin the subspace ¥ if and only if all
of the (k + 1) x (k + 1) minors of the d x (k + 1)
meatrix whose columns are x* and the v{ vanish. In
tensorial terms. x* is an element of X if and only if
ylorax xal = 0. So no two distinct subspaces have
the same X%1%+. Under a k x k linear redefinition
vi = vi = A/ vy of the spanning vectors, the
k x k minorsare simply a constant factor of Det (A;7)
different from the old ones by the usual determinant of
aproduct rule. So up to scale X.2t"% jsindependent
of the set of vectorsin ¥ chosen to spanit.

A subspace ¥ can also be defined asthe null space of
aset of d—k independent linear forms {u*+!, ... u?},
i.e. as the set of x? on which all of the u’ vanish:
ul x? = 0. Theu! canbeviewedasa (d — k) x d
matrix of row vectors. Arguments analogous to those
above show that the covariant antisymmetricd — & in-
dextensor £, ,...a, = “fatil . “Zd] isindependent
(upto scale) of the {u’ } chosen to characterize 3. and
defines ¥ astheset of pointsforwhich X, | ,...q,x% =
0. We usethesame symbol for ¥, , ..., and X%
because up to scale they turn out to be mutually dual:
Sarpiaq ~ 77 Eangioeaabrby S0V I particu-
Ia[r a hype]rsurface can be denoted either by u, or by
ularad—1]

Hence, up to scale, ¥4+ anditsdua X, . ,...a,
are intrinsic characteristics of the subspace ¥, inde-
pendent of the bases chosen to span it and uniquely
defined by and defining it. In this sense the antisym-
metric tensors provide a sort of coordinate system on
the space of linear subspacesof %, called Grassmann
coor dinates.

Unfortunately, only very special antisymmetric
tensors specify subspaces. The space of £ dimensional
linear subspaces of ad dimensional vector spaceisonly
k (d — k) dimensiona, whereas the antisymmetric k
index tensors have (%) independent components, so
the Grassmann coordinates are massively redundant.
Thetensorsthat do define subspaces are called smple
because they satisfy the following complex quadratic
Grassmann relations:

Zal“‘[ak Zbl“‘bk] -0
or in terms of the dual

) ag B4 =0

Ak 41"



These relations obviously hold for any tensor of the

form vl ... v®*) because one of the vectors must ap-
pear twice in an antisymmetrization. What is less ob-
vious is that they do not hold for any tensor that can
not be written in this form.

Although their redundancy and the complexity of
the Grassmann rel ations makes them rather inconveni-
ent for numerical work, Grassmann coordinates are a
powerful tool for the algebraization of geometric op-
erations on subspaces. For example the union of two
independent subspacesisjust Tl e+ P11l and du-
aly the intersection of two (minimally) intersecting
subspacesis Xiq, ..., Loy .0y

A.3. Projective Geometry

Given a d + 1 dimensiona vector space H® with
nonzero elements x* and y* (a = 0, ..., d), we will
writex® ~ y“ and say that x* andy® areequivalent up
to scale whenever thereis anonzero scalar A such that
x* = Ay®. Thed dimensional projectivespace P* is
defined to be the set of nonzero elements of 74 under
equivalence up to scale. When we write x* € P we
really mean the equivalenceclass {\ x*| A # 0} of x”
under ~.

The span of any k£ + 1 independent representatives
{x§,....x}} of pointsin P* isak + 1 dimensional
vector subspace of H* that projects to a well-defined
k dimensional projective subspace of P® called the
subspace thr ough the points. Two independent points
define a one dimensional projective subspace called a
projective line, three points define a projective plane,
and so forth. The vector subspaces of H“ support no-
tions of subspace dimension, independence, identity,
containment, intersection, and union (vector space sum
or smallest containing subspace). All of these descend
to the projective subspaces of P¢. Similarly, linear
mappings between vector spaces, kernels and images,
injectivity and surjectivity, and so on all have their
counterpartsfor projective mappings between project-
ive spaces.

Tensors on H“ also descend to projective tensors
defined up to scaleon P®. Elementsu, of the project-
ive version P, of the dual space #, defined — 1 di-
mensional projective hyperplanesin P? viau,x* = 0.
The duality of 74 and ‘H, descendsto a powerful du-
ality principle between points and hyperplanes on P
and P,.
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More generally the antisymmetric k£ + 1 index con-
travariant and d — k index covariant Grassmann tensors
on H" define k£ dimensional projective subspaces of
Pe. For example given independent points x¢, y*
and z of P the projective tensor x[*y®! defines the
linethrough x* and y* and x!*y*z¢! definesthe plane
through x%, y® and z®. Similarly, in 3D aline can
be represented dually as the intersection of two hyper-
planesuy, vy whileapoint requiresthree u;, vy w,;. In
2D asingle hyperplane u, sufficesfor aline, and two
arerequired for apoint ug, v, . Dualization gives back
the contravariant representation, e.g. x* = u,v, £
are the coordinates of the intersection of the two lines
u, and v, in 2D.

A d dimensional projective space can be thought of
asad dimensional affine space (i.e. a Euclidean space
with points, lines, planes, and so on, but no origin
or notion of absolute distance) with a number of ideal
pointsadded ‘ at infinity’. Choosingabasisfor %, any
representative x* of an element P with 2° # 0 can
berescaledto theform (1,z',...,24)T. Thisdefines
aninclusion of the affine space (z*, . .., 24) in P2, but
thed — 1 dimensional projective subspace * at infinity’
of elements of P with z° = 0 is not represented.
Under this inclusion affine subspaces (lines, planes,
etc) become projective ones, and all of affine geometry
can be transferred to projective space. However pro-
jective geometry is simpler than affine geometry be-
cause projective spaces are significantly more uniform
than affine ones — there are far fewer specia casesto
consider. For example two distinct lines always meet
exactly once in the projective plane, whereas in the
affine plane they always meet except when they are
paralel. Similarly, there are natura transformations
that preserve projective structure (i.e. that map lines
to lines, preserve intersections and so) that are quite
complicated when expressed in affine space but very
simple and natural in projective terms. The 3D—2D
pinhole camera projection is one of these, hence the
importance of projective geometry to computer vision.

Appendix B
Factorization of the Fundamental Matrix

This appendix proves two claims made in section 3.

(1) Given the factorization F44 = ugq va —
v4 uyg, the most general redefinition of the u's and
v'sthat leaves F unchanged up to scaleis
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up uyr uyq ug 1//\ 0
(VA VA/>—>A<VA VA1>< 0 1//\')
where A isan arbitrary nonsingular 2 x 2 matrix and
{A, X'} arearbitrary nonzero relative scale factors.
Sinceu 4 and v 4 areindependent epipolar linesand
thereisonly atwo parameter family of these, any other
choice 4, v.4 must be a nonsingular linear combina-

tion of thesetwo, and similarly foru 4 and v 4.. Hence
the only possibilities are:

() =) () = ()
va va va Var

for nonsingular 2 x 2 matrices A and A’. Then

1 /
Fae = (uva) (5) (30)
= (mvaT (g ) (W)

Sincethecovectorsu 4, v 4 anduy, v 4 areindepend-
ent, for F to remain unchanged up to scale we must

have
+( 0 1 , 0 1
(o)~ (Bo)

Using the 2 x 2 matrix identity

A= —Det(A)<_01 é)A_T<_01 (1J>

we find that A’ ~ A up to scale. Defining A’/ to
reflect the difference in scale, the result follows.

(2) Given any factorization F 44 = ug va —
v 4 uy defining a 4D subspace 7¢ of H* via

() ()

] =0
VA Vy X
and any pair {P, PA"} of rank 3 projection matrices
with distinct centres of projection compatible with
Faa inthe sense that F 44 PAP x%xP = 0 for
all x* € H°, there is a fixed rescaling {A, \'} that
makes 7 coincide with the image of #* under the
joint projection (A PA X PA)T,

If the compatibility condition holds for all x¢, the
symmetric part of the quadratic form F 44 PAP;"
must vanish. Expanding F and for clarity defining
u, = uy PA, v, = uy PY, v, = vy P2, and

v/ = vy P4 wefind:

u, vy +viou,—vou, —u, v, = 0

Since both projections have rank 3 none of the pulled
back covectors u,,u),,v,, v} vanish, and since the
pairs us % vy and uy # vy are independent,
u, # v, and u), # v/, are independent too. Con-
tracting with any vector x* orthogonal to both u,, and
u/, wefind that

(vixup — (vox*)u, =0

Either thereis some x® for which one (and hence both)
of the coefficients v, x* and v/, x® are nonzero —
which implies that u, ~ u!, — or both coefficients
vanish for al such x®. But in this case we could con-
cludethat v,, and v/, werein Span(u,,u),) and since
v, isindependent of u, and v/, of u, that v, ~ u),
and v/, ~ u,. Substituting back into F immediately
shows that A u,u; — X v,v, = 0 with nonzero A
and )\, and hence that u, ~ v,. So this branch
is not possible and we can conclude that for some
nonzero A and X', Au, + N ul, = 0. Similarly, uv, +
p' v!, = 0 for some nonzero p and p'. Substituting
back into F gives (A/XN — u/u') (ugvy + voup) =
0, so up to scale {u,u'} ~ {\,A'}. The rescaling
{P4, P4} — {AP4, X P4’} then takes the pro-
jection of any x® to avector lyingin Z¢:

us ua APA .
VA VAI )\/P:?’ X

Au, + N 0
= ()\v +A’v’a>xa - <0>Xa =0
a a

Notes

1. Epipolarity. uy e = 0 = v, e4 follows from

= Fuiu er = (uged) vy — (vaet) uy,

given the independence of u,, and v, for rank 2 F.

Correspondence: For any X4 on 1y, us X4 = 0 implies
thatFAA/ xA = —(VAXA> Uy ~ Uy,



2.

If xA1 and X42 are not matching points, the transfer equations
trace out an entire line of mutually inconsistent ‘solutions' as
[A2Bs] or Cs vary. For fixed xA1 and any linel 4, thereisa

‘solution’ X43(x41,14,) ~ 14, G4 A°A3 xA1, Thisis

just the intersection of theimage 3 eplpolar lineof x41 withthe
image 3 epipolar line of the intersection of 1,4, and the image 2
epipolar line of X41, i.e the transfer of the only point on le
that could beacorrect match. Ingeneral, asl A, tracesout thethe
pencil of lines through X 42 the corresponding ‘solutions’ x 43
trace out the entire epipolar line of x41 inimage 3. Theline of

‘solutions’ collapses to a point only when X2 lies on the epi-

polar line of x41. For reliable transfer theline 1 4, should meet
the epipolar line of X 41 reasonably transversally and if possible
should pass close to the image 3 epipole. This can be arranged
by projecting thefree index C'> along (an approximation to) the
image 3 epipole e

Similarly, XA3 could be predicted as the intersection of

the epipolar lines of x41 and x42 in P43, This intersection
aways exists, but it is not structurally meaningful if x41 and
x42 do not correspond. The moral isthat it is dangerous to use
only some of the available equations for transfer.

Proof: By the rank & condition the vector of minors does not
vanish. Adding any (k + 1)** row vector v to the system gives
alk+1) x
the determinant of this matrix is exactly the dot product of v
with the vector of minors. The determinant vanishes when Vv is
chosen to be any of the existing rows of the matrix, so the minor
vector is orthogonal to each row.

(k + 1) matrix. By the usua cofactor expansion,
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